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1. Introduction. Let k be a totally real number field. Let p be a fixed
prime number and Zp the ring of all p-adic integers. We denote by λ = λp(k),
µ = µp(k) and ν = νp(k) the Iwasawa invariants of the cyclotomic Zp-
extension k∞ of k for p (cf. [10]).

Then Greenberg’s conjecture states that both λp(k) and µp(k) always
vanish (cf. [8]). In other words, the order of the p-primary part of the ideal
class group of kn remains bounded as n tends to infinity, where kn is the nth
layer of k∞/k. We know by the Ferrero–Washington theorem (cf. [2], [15])
that µp(k) always vanishes when k is an abelian (not necessarily totally real)
number field. However, the conjecture remains unsolved up to now except
for some special cases (cf. [1], [3], [5]–[8], [13]).

This paper is a continuation of our previous papers [3], [5]–[7] and
[12], that is to say, we investigate Greenberg’s conjecture when k is a real
quadratic field and p is an odd prime number which splits in k. The purpose
of this paper is to extend our previous results, and to give basic numerical
data of k = Q(

√
m) for 0 ≤ m ≤ 10000 and p = 3. On the basis of these

data, we can verify Greenberg’s conjecture for most of these k’s.

2. Notation and statement of the results. Let k be a real quadratic
field with class number h and ε the fundamental unit of k. Let p be an odd
prime number which splits in k, namely, (p) = pp′ in k where p 6= p′. Then
we can choose α ∈ k such that p′h = (α). In [6], we defined two invariants
n1, n2 ∈ N for k and p by

pn1 ‖ (αp−1 − 1), pn2 ‖ (εp−1 − 1).

Here pn ‖ a means that pn | a and pn+1 - a for an ideal a of k. In spite of
ambiguity of α, n1 is uniquely determined under the condition n1 ≤ n2.
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For the cyclotomic Zp-extension

k = k0 ⊂ k1 ⊂ . . . ⊂ kn ⊂ . . . ⊂ k∞ =
∞⋃
n=1

kn

with Galois group Γ = Gal(k∞/k), let An be the p-primary part of the ideal
class group of kn, and pn (resp. p′n) the unique prime ideal of kn lying above
p (resp. p′). We put

AΓn = {a ∈ An | aσ = a for all σ ∈ Γ} and Dn = 〈Cl(pn)〉 ∩An,
where Cl(pn) denotes the ideal class represented by pn. Then we have AΓn ⊃
Dn. These groups are closely related to Greenberg’s conjecture (cf. Theorem
2 in [8]).

Moreover, we introduce two other invariants n(r)
0 and n(r)

2 following [13].
Let En be the group of units in kn and dn the order of Cl(pn) (so the order
of Cl(p′n)) in the ideal class group of kn. For each m ≥ n ≥ 0, we denote
by Nm,n the norm map from km to kn. Fix an integer r ≥ 0. Then we can
choose βr ∈ kr such that p′drr = (βr). We define the invariants n(r)

0 , n
(r)
2 ∈ N

for k and p by

pn
(r)
0 ‖ (Nr,0(βr)p−1 − 1), pn

(r)
2 = pn2(E0 : Nr,0(Er)).

As in the case of n1, n(r)
0 is uniquely determined under the condition n(r)

0 ≤
n

(r)
2 , though the choice of βr is not unique. Here we note that r + 1 ≤ n

(r)
0

because k∞/k is totally ramified at p. Furthermore, it is easy to see that

n
(r)
0 ≤ n(r+1)

0 ≤ n(r)
0 + 1 and n

(r)
2 ≤ n(r+1)

2 ≤ n(r)
2 + 1

for each r ≥ 0. Put n0 = n
(0)
0 in particular. We then see that n0 ≤ n1 ≤ n2.

R e m a r k 1. By the definitions of n(r)
0 and n

(r)
2 , we see that n(r)

0 is the
maximal integer n such that pn | (Nr,0(βr)p−1 − 1) for all elements βr of
kr satisfying p′drr = (βr) and that n(r)

2 is the maximal integer n such that
pn | (Nr,0(εr)p−1 − 1) for all elements εr of Er. Indeed, it follows from the

definition of n(r)
2 that pn

(r)
2 | (Nr,0(εr)p−1−1) for all εr ∈ Er. Moreover, there

exists ηr ∈ Er such that εur = Nr,0(ηr), so that pn
(r)
2 ‖ (Nr,0(ηr)p−1 − 1),

where ur denotes the integer such that pur = (E0 : Nr,0(Er)). Hence the sec-
ond assertion follows. The first one immediately follows from the inequality
n

(r)
0 ≤ n(r)

2 .

R e m a r k 2. When we put r = 0, we have

n1 = min{n0 + vp(h)− vp(d0) , n2}
where vp(a) denotes the exact power of p dividing a. Hence, if A0 = D0,
then n0 = n1.
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Let ζp be a primitive pth root of unity and k∗ = k(ζp). For the CM -
field k∗, let (k∗)+ be the maximal real subfield of k∗ and put λ−p (k∗) =
λp(k∗)− λp((k∗)+). Our main theorems are as follows.

Theorem 1 (Generalization of Proposition in [3] and Theorem 2 in
[12]). Let k be a real quadratic field and p an odd prime number which splits
in k. Assume that

(i) λ−p (k∗) = 1 and

(ii) n(r)
0 6= n

(r)
2 for some r ≥ 0.

Then λp(k) = µp(k) = 0.

R e m a r k 3. Let χ be the non-trivial Dirichlet character associated with
k and ω the Teichmüller character of Gal(Q(ζp)/Q). We denote by λp(k∗)ωχ−1

the ωχ−1-component of λp(k∗). Then we may replace assumption (i) of The-
orem 1 by a weaker assumption that λp(k∗)ωχ−1 = 1 (cf. Proposition 1
in [9]).

Putting r = 0 in Theorem 1, we obtain the following

Corollary 1 (cf. Theorem 2 in [6]). Let k and p be as in Theorem 1.
If λ−p (k∗) = 1 and n0 6= n2, then λp(k) = µp(k) = 0.

Theorem 2. Let k be a real quadratic field and p an odd prime number
which splits in k. Assume that A0 = D0. Then the following conditions are
equivalent.

(i) n(r)
0 = r + 1 for some r ≥ 0.

(ii) n(r)
0 = r + 1 for all sufficiently large r.

(iii) n(r)
2 = r + 1 for some r ≥ 0.

(iv) n(r)
2 = r + 1 for all sufficiently large r.

(v) AΓn = Dn for all sufficiently large n.

In particular , one of these conditions holds if and only if λp(k) = µp(k) = 0.

Putting r = 0 in the condition (i) of Theorem 2, we obtain the following.

Corollary 2 (cf. Theorem 1 in [6]). Let k and p be as in Theorem 2.
If A0 = D0 and n0 = 1 (i.e., n1 = 1), then λp(k) = µp(k) = 0.

Moreover, putting r = n2 − 1 in condition (iii) of Theorem 2, we obtain
the following by Lemma 8 (cf. Section 5).

Corollary 3 (cf. Theorem in [5] and Lemma in [7]). Let k and p be as in
Theorem 2. If A0 = D0 and Nn2−1,0(En2−1) = E0, then λp(k) = µp(k) = 0.

The notation defined in this section will be used throughout this paper.
We also denote by βr ∈ kr a generator of p′drr satisfying

pn
(r)
0 ‖ (Nr,0(βr)p−1 − 1) and n

(r)
0 ≤ n(r)

2 .
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Namely, βr ∈ kr is a generator of p′drr which determines n(r)
0 . Since p splits in

k, we have kp ' Qp, where kp is the completion of k at p. So, by identifying
p ∈ kp with p ∈ Qp, we may write Nr,0(βr)p−1 ∈ k as in the following form
of a p-adic integer:

Nr,0(βr)p−1 = 1 + pn
(r)
0 xr, xr ∈ Z×p .

3. Some fundamental lemmas. We first refer to the following three
lemmas.

Lemma 1 (cf. Theorem 2 in [8]). Let k and p be as in Section 2. Then
AΓn = Dn for all sufficiently large n if and only if λp(k) = µp(k) = 0.

Lemma 2 (cf. Proposition 1 in [6]). Let k and p be as in Section 2. Then

|AΓn | =
{ |A0|pn if n < n2 − 1,
|A0|pn2−1 if n ≥ n2 − 1.

Lemma 3 (cf. Lemma 3 in [12]). Let k and p be as in Section 2. If
An is cyclic for all n ≥ 0 and if Dr is non-trivial for some r ≥ 0, then
λp(k) = µp(k) = 0.

Next we prove two more lemmas. Since pr = ppr+1, we have dr+1 = dr
or pdr; in particular, |Dr+1| = |Dr| or p|Dr|. If we write dr = cpj with an
integer c prime to p, then c is independent of r.

Lemma 4. Let r be a fixed non-negative integer. Assume that |Dr+1| =
p|Dr|. Then

n
(r+1)
0 =

{
n

(r)
0 if n(r)

0 = n
(r)
2 = n

(r+1)
2 ,

n
(r)
0 + 1 otherwise.

P r o o f. Since dr+1 = pdr, we have

p
′dr+1
r+1 = p′pdrr+1 = p′drr = (βr) in kr+1.

Thus we may take βr as a generator of p
′dr+1
r+1 . Then we obtain

Nr+1,0(βr)p−1 = Nr,0(βr)p(p−1)

= (1 + pn
(r)
0 xr)p, xr ∈ Z×p ,

= 1 + pn
(r)
0 +1x′r, x′r ∈ Z×p ,

therefore
pn

(r)
0 +1 ‖ (Nr+1,0(βr)p−1 − 1).

Hence it follows from the definition of n(r+1)
0 that

n
(r+1)
0 = min{n(r)

0 + 1, n(r+1)
2 },

which yields the desired result.
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Lemma 5. Let r be a fixed non-negative integer. Assume that |Dr| =
|Dr+1|. Then

(i) If n(r)
0 < n

(r)
2 , then n

(r+1)
0 = n

(r)
0 .

(ii) If n(r)
2 = n

(r+1)
2 , then n

(r+1)
0 = n

(r)
0 .

P r o o f. (i) Since dr+1 = dr, we have

(βr) = p′drr = Nr+1,r(p
′dr
r+1) = Nr+1,r(p

′dr+1
r+1 ) = (Nr+1,r(βr+1)) in kr.

Hence Nr+1,r(βr+1) = βrεr for some εr ∈ Er. Taking the norm from kr to k,
we have Nr+1,0(βr+1) = Nr,0(βr)Nr,0(εr). Therefore we obtain the following
p-adic expansion:

(1) 1+pn
(r+1)
0 xr+1 = 1+pn

(r)
0 xr+pn

(r)
2 yr+ . . . , xr, xr+1 ∈ Z×p , yr ∈ Zp.

This implies the desired result.
(ii) Suppose that n(r+1)

0 6= n
(r)
0 . Then it follows from (1) that n(r)

0 = n
(r)
2 .

Therefore n(r+1)
0 > n

(r)
0 = n

(r)
2 = n

(r+1)
2 , which contradicts the definition of

n
(r+1)
0 . This completes the proof.

R e m a r k 4. Lemmas 4 and 5 can be used for determining n(r+1)
0 from

n
(r)
0 , n(r)

2 and n
(r+1)
2 . However, Lemma 5 does not work in the case where

n
(r)
0 = n

(r)
2 < n

(r+1)
2 . Actually, when p = 3, we see that n0 = n2 = 2 <

n
(1)
2 = 3 and n

(1)
0 = 2 for k = Q(

√
106), and that n0 = n2 = 2 < n

(1)
2 = 3

and n
(1)
0 = 3 for k = Q(

√
295) (cf. Table 1). Hence, in this situation the

practical calculation of βr+1 is necessary to the determination of n(r+1)
0 .

4. The proof of Theorem 1 and some examples. In order to prove
Theorem 1, we need the following lemma.

Lemma 6. Let r be a fixed non-negative integer. If n
(r)
0 6= n

(r)
2 , then

|Dn| > |Dr| for all n ≥ n(r)
0 .

P r o o f. Suppose that |Dn| = |Dr| for some n ≥ n(r)
0 . Then since dn = dr,

we have Nn,r(βn) = βrεr for some εr ∈ Er, as in the proof of Lemma 5.
Taking the norm and expanding it in the p-adic form, we obtain

(2) 1 + pn
(n)
0 xn = 1 + pn

(r)
0 xr + pn

(r)
2 yr + . . . , xr, xn ∈ Z×p , yr ∈ Zp.

Since n(n)
0 ≥ n+ 1 ≥ n(r)

0 + 1 > n
(r)
0 for all n ≥ n(r)

0 , it follows from (2) that
n

(r)
0 = n

(r)
2 . This completes the proof.

By Lemma 2, |AΓn | remains bounded as n tends to infinity, hence so does
|Dn|. Therefore we obtain the following as a corollary to Lemma 6.
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Corollary 4. Let k and p be as in Section 2. Then n
(r)
0 = n

(r)
2 for all

sufficiently large r.

P r o o f o f T h e o r e m 1. Let k∗n be the nth layer of the cyclotomic
Zp-extension k∗∞/k

∗ and A∗n the p-primary part of the ideal class group of
k∗n. Since k∗n is a CM -field, we can define (A∗n)+ by the p-primary part of the
ideal class group of its maximal real subfield and (A∗n)− by the kernel of the
norm map from A∗n to (A∗n)+. The Ferrero–Washington theorem guarantees
the vanishing of µp(k∗), hence, by assumption (i), (A∗n)− is cyclic for all
n ≥ 0. It follows from the reflection theorem that (A∗n)+ is cyclic, hence so
is An for all n ≥ 0. By Lemma 6, we also have the inequality |Dn| > |Dr|
under assumption (ii), hence Dn 6= 1, for all n ≥ n(r)

0 . Therefore Theorem 1
immediately follows from Lemma 3.

Example 1. Let k = Q(
√

26893) and p = 3, for which we could not verify
that λ3(k) = µ3(k) = 0 in [13]. Then n0 = n1 = n2 = 4, and moreover,
λ−3 (k∗) = 1 and n

(1)
0 = 4 6= n

(1)
2 = 5 (see Table 2 of [13]). Therefore it

follows from Theorem 1 that λ3(k) = µ3(k) = 0.

Example 2. Let k = Q(
√

4651) and p = 3. Then λ−3 (k∗) = 1 and
n0 = 1 6= n1 = n2 = 2 (see Table 1). Therefore it follows from Theorem
1 that λ3(k) = µ3(k) = 0. Note that |A0| = 3 > 1 = |D0|. In order to
conclude that λ3(k) = µ3(k) = 0 for this k, we needed the information
on the initial layer k1 of k∞/k before now (cf. [3], [7]). But we do not need
such information now, therefore it seems that the invariant n0 is more useful
than n1.

5. The proof of Theorem 2. First, we prove the following lemma.

Lemma 7. Let r and s be fixed non-negative integers. If |Dr+s| = pt|Dr|,
then

n
(r)
0 ≥ min{n(r+s)

0 − t, n(r)
2 − t}.

P r o o f. Note that s ≥ t and dr+s = ptdr. Then we have

(βp
s−t
r+s ) = p

′ps−tdr+s
r+s = p′p

sdr
r+s = p′drr = (βr) in kr+s,

hence (Nr+s,r(βr+s))p
s−t

= (βr)p
s

. So (Nr+s,r(βr+s)) = (βr)p
t

in kr. There-
fore

βp
t

r = Nr+s,r(βr+s)εr for some εr ∈ Er.
Taking the norm and expanding it in the p-adic form, we obtain

1 + pn
(r)
0 +tx′r = 1 + pn

(r+s)
0 xr+s + pn

(r)
2 yr + . . . , x′r, xr+s ∈ Z×p , yr ∈ Zp.

This immediately implies Lemma 7.
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From now on, we consider the case where A0 = D0. Let A
Γ

n be the
subgroup of An consisting of ideal classes which contain an ideal invariant
under the action of Gal(kn/k). Then the genus formula (cf. [16]) says that

|AΓn | = |A0| pn

(E0 : Nn,0(En))
.

If A0 = D0, then A
Γ

n = Dn for all n ≥ 0 because A
Γ

n = i0,n(A0)Dn, where
i0,n denotes the natural map from the ideal group of k to the ideal group
of kn induced from the inclusion map. Hence we immediately obtain the
following lemmas.

Lemma 8. Let r be a fixed non-negative integer. Assume that A0 = D0.
Then

(i) |Dr| = |D0|pr−ur = |D0|pn2+r−n(r)
2 ,

(ii) n(r)
2 = n2 + r − u,

where ur is the integer such that pur = (E0 : Nr,0(Er)) and u is the integer
such that |Dr| = pu|D0|.

Lemma 9. Let r be a fixed non-negative integer. Assume that A0 = D0.
Then |Dr+1| = p|Dr| if and only if n(r+1)

2 = n
(r)
2 .

P r o o f. Let ur be as in Lemma 8. Then |Dr+1| = p|Dr| if and only if
ur+1 = ur. Hence the result follows from the definition of n(r)

2 .

Lemma 10. Let r be a fixed non-negative integer. Assume that A0 = D0

and that |Dr+1| = p|Dr|. Then n
(r+1)
0 = n

(r)
0 if and only if n

(r)
0 = n

(r)
2 .

Namely , we have

n
(r+1)
0 =

{
n

(r)
0 if n(r)

0 = n
(r)
2 ,

n
(r)
0 + 1 if n(r)

0 6= n
(r)
2 .

P r o o f. This easily follows from Lemmas 4 and 9.

P r o o f o f T h e o r e m 2. (iv)⇒(iii)⇒(i) and (iv)⇒(ii)⇒(i) are trivial.
Therefore it is sufficient to prove that (i)⇒(v)⇒(iv).

(i)⇒(v). Let r be a non-negative integer such that n(r)
0 = r + 1. Then

n
(r+1)
0 = (r + 1) + 1 because (r + 1) + 1 ≤ n

(r+1)
0 and n

(r+1)
0 ≤ n

(r)
0 + 1.

Repeating this process, we conclude that n(r+s)
0 = r + s + 1 for all s ≥ 0.

We denote by u the integer such that |Dr| = pu|D0|. For s ≥ n2− 1− u, we
put

|Dr+s| = pt|Dr| = pt+u|D0|.
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Now suppose that t+ u < n2 − 1. Then we have

n
(r+s)
0 − t = r + s+ 1− t ≥ r + n2 − u− t ≥ r + 2,

n
(r)
2 − t = n2 + r − u− t ≥ r + 2

by Lemma 8(ii). It easily follows from Lemma 7 that

n
(r)
0 ≥ min{n(r+s)

0 − t, n(r)
2 − t} ≥ r + 2,

which is a contradiction. Hence we must have t + u = n2 − 1, so |Dr+s| =
|D0|pn2−1 for all s ≥ n2 − 1− u. Therefore Lemma 2 implies that AΓn = Dn

for all n ≥ n(r)
2 − 1.

(v)⇒(iv). By Lemma 2, we have

|Dr| = |AΓr | = |A0|pn2−1 = |D0|pn2−1

for all sufficiently large r. Hence Lemma 8(i) shows that

|D0|pn2+r−n(r)
2 = |D0|pn2−1,

which means that n(r)
2 = r + 1 for all sufficiently large r.

The last assertion immediately follows from Lemma 1. This completes
the proof of Theorem 2.

6. Other useful results and some examples. In this section we shall
give a few of easy results, which are useful when we cannot apply Theorems
1 and 2. First we prove the following.

Lemma 11. If there exists an integer r0 such that |AΓr0 | = |Dr0 | and
r0 ≥ n2 − 1, then An ' Ar0 for all n ≥ r0.

P r o o f. Note that Nm,n : Am → An and Nm,n : Dm → Dn are surjective
for all m ≥ n ≥ 0 because k∞/k is totally ramified at p. It follows from the
assumption and Lemma 2 that Nm,n : AΓm → AΓn is isomorphic for all
m ≥ n ≥ r0. Hence, Nm,n : Am → An is also isomorphic for all m ≥ n ≥ r0.
This completes the proof.

Proposition 1. Let k and p be as in Section 2. If |Dr| = |A0|pn2−2

and n
(r)
0 6= n

(r)
2 for some r ≥ 0, then An ' An(r)

0
for all n ≥ n(r)

0 , hence in

particular λp(k) = µp(k) = 0.

P r o o f. It follows from Lemma 6 that |Dn| > |Dr| = |A0|pn2−2 for all
n ≥ n

(r)
0 . Hence |AΓn | = |A0|pn2−1 = |Dn| for all n ≥ n

(r)
0 by Lemma 2.

Since n(r)
0 ≥ n2 − 1, the assertion immediately follows from Lemma 11.

Example 3. Let k = Q(
√

7753) and p = 3. Then n0 = 1 6= n1 = n2 = 2,
λ−3 (k∗) = 2 and |A0| = 3 > 1 = |D0|. Hence Theorems 1 and 2 cannot be
applied to this k. However, |D1| = 3 = |A0| and n

(1)
0 = 2 6= n

(1)
2 = 3 (see
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Table 1). Therefore it follows from Proposition 1 that An ' A2 for all n ≥ 2,
in particular λ3(k) = µ3(k) = 0.

Lemma 6 asserts that n
(r)
0 6= n

(r)
2 implies |Dr| < |Dn

(r)
0
|. However,

the converse does not always hold (cf. Example 4). Thus the following
proposition is sometimes useful. Here we note that, if An is cyclic for all
n ≥ 0 and if A0 is trivial, then the converse is also true. In fact, for
a fixed non-negative integer r, we see that n

(r)
0 = r + s if and only if

|Dr| = . . . = |Dr+s−1| < |Dr+s| for 1 ≤ s ≤ n
(r)
2 − r − 1 in this situa-

tion (cf. Theorem 1 of [12]).

Proposition 2. Let k and p be as in Section 2. If λ−p (k∗) = 1, and
Dr 6= 1 for some r ≥ 0, then λp(k) = µp(k) = 0.

P r o o f. This immediately follows from the proof of Theorem 1 (or
Lemma 3).

Example 4. Let k = Q(
√

1129) and p = 3. Then n0 = n1 = n2 = 1,
n

(1)
0 = n

(1)
2 = 2 and |A0| = 9 > 3 = |D0| (see Table 1). Hence Theorem 1 for

r = 0, 1 and Theorem 2 cannot be applied to this k. But, since λ−3 (k∗) = 1,
it follows from Proposition 2 that λ3(k) = µ3(k) = 0. Now, by Table 1 and
Lemma 2, we see that |AΓ1 | = 9 = |D1|, so |AΓn | = |Dn| = |D1| for all n ≥ 1.
Therefore Lemma 6 implies that n(r)

0 = n
(r)
2 = r + 1 for all r ≥ 1, so all

r ≥ 0. Hence we cannot apply Theorem 1 for all r ≥ 0 to this k.

Finally we note that there exist some examples of k to which we cannot
apply our theorems and propositions, but nevertheless we can verify Green-
berg’s conjecture for them by Lemma 11. Such examples are k = Q(

√
6601),

k = Q(
√

6901) and so on.

7. Tables of basic numerical data of k = Q(
√
m) for p = 3. We shall

give a table of the fundamental data of k = Q(
√
m) for p = 3 and positive

square-free integers m’s less than 10000 satisfying m ≡ 1 (mod 3). The total
number of such m’s is exactly 2279. We find that there exist exactly 2042
m’s which satisfy A0 = D0 and n0 = 1. Greenberg’s conjecture is valid for
these k’s by Corollary 2 to Theorem 2. Table 1 gives several useful data
for 237 remaining m’s. We can verify Greenberg’s conjecture for 185 k’s in
Table 1 by applying our results. The asterisks in the column of λ3(k), the
number of which is exactly 52, mean that Greenberg’s conjecture cannot be
verified by these data.

Concerning our method of computation, we refer to [11] and [13] for
n

(1)
0 , n

(1)
2 , |A1| and |D1|, to [14] for the 3-primary part A∗−0 of the ideal class

group of Q(
√−3m), and to [4] for λ−3 (k∗). Note that λ−3 (k∗) =

λ3(Q(
√−3m)). The rest is easily computed.
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Addendum. Recently, after we have written this paper, we heard from
H. Sumida that he verified Greenberg’s conjecture for p = 3 and m =
727, 2794, 4279, 4741, 5533, 7429, 7465, 7642, 9634 and 9691, which are
marked with the asterisks in Table 1, by computing the Iwasawa polynomials
associated with p-adic L-functions. He is now preparing the paper entitled
“Greenberg’s conjecture and the Iwasawa polynomial”.

Table 1. All m’s satisfying A0 6= D0 or n0 > 1: 1 ≤ m ≤ 10000

m n0 n1 n2 n
(1)
0 n

(1)
2 λ−3 (k∗) A∗−0 |D0| |A0| |D1| |A1| λ3(k)

67 2 2 3 2 4 1 (3) 1 1 1 3 0
103 2 2 2 2 2 2 (3) 1 1 3 9 0
106 2 2 2 2 3 1 (3) 1 1 1 3 0
139 2 2 2 2 2 2 (3) 1 1 3 9 0
238 2 2 3 2 4 1 (3) 1 1 1 3 0
253 2 2 2 2 3 1 (3) 1 1 1 3 0
295 2 2 2 3 3 1 (3) 1 1 1 3 ∗
397 2 2 2 3 3 1 (3) 1 1 1 3 ∗
418 2 2 2 2 2 2 (3) 1 1 3 9 0
454 2 2 2 2 3 1 (3) 1 1 1 3 0
505 2 2 2 2 3 1 (3) 1 1 1 3 0
607 2 2 2 2 3 1 (9) 1 1 1 3 0
610 2 2 4 2 5 1 (3) 1 1 1 3 0
679 2 2 2 2 2 2 (3) 1 1 3 9 0
727 2 2 3 3 3 2 (9) 1 1 3 9 ∗
745 2 2 2 3 3 1 (3) 1 1 1 3 ∗
787 2 2 2 2 3 1 (9) 1 1 1 3 0
790 2 2 2 2 2 2 (3) 1 1 3 9 0
886 2 2 2 2 3 1 (3) 1 1 1 3 0
994 2 2 2 2 3 1 (3) 1 1 1 3 0

1102 2 2 2 2 3 1 (3) 1 1 1 3 0
1129 1 1 1 2 2 1 (3) 3 9 9 27 0
1153 2 2 2 2 2 2 (3) 1 1 3 9 0
1261 2 2 2 2 2 2 (3) 1 1 3 9 0
1294 2 2 2 2 3 1 (3) 1 1 1 3 0
1318 2 2 2 2 3 1 (3) 1 1 1 3 0
1333 2 2 2 2 3 1 (3) 1 1 1 3 0
1390 3 3 4 3 5 1 (3) 1 1 1 3 0
1462 2 2 2 2 3 1 (3) 1 1 1 3 0
1609 2 2 2 2 2 4 (3) 1 1 3 9 0
1642 2 2 2 2 2 2 (3) 1 1 3 27 0
1654 1 1 1 2 2 1 (3) 3 9 9 27 0
1669 2 2 2 2 3 1 (9) 1 1 1 3 0
1714 2 2 2 3 3 4 (3, 3) 3 3 3 9 ∗
1726 2 2 2 2 2 2 (3) 1 1 3 27 0
1738 2 2 2 3 3 1 (9) 1 1 1 3 ∗
1753 2 2 2 2 3 1 (3) 1 1 1 3 0
1810 2 2 2 2 3 1 (9) 1 1 1 3 0
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Table 1 (cont.)

m n0 n1 n2 n
(1)
0 n

(1)
2 λ−3 (k∗) A∗−0 |D0| |A0| |D1| |A1| λ3(k)

1867 2 2 6 2 7 1 (3) 1 1 1 3 0
1894 2 2 3 2 4 1 (3) 1 1 1 3 0
1954 1 1 1 2 2 1 (3) 1 3 3 9 0
2029 2 2 2 3 3 1 (9) 1 1 1 3 ∗
2059 3 3 3 4 4 1 (3) 1 1 1 3 ∗
2122 2 2 2 2 3 2 (3) 1 1 1 9 0
2149 4 4 4 5 5 1 (3) 1 1 1 3 ∗
2158 2 2 2 2 3 1 (3) 1 1 1 3 0
2221 2 2 3 2 4 1 (3) 1 1 1 3 0
2230 2 2 2 2 3 2 (3, 3) 3 3 3 9 0
2263 2 2 2 2 3 2 (3, 3) 3 3 3 9 0
2371 2 2 2 2 3 1 (9) 1 1 1 3 0
2410 2 2 3 2 4 1 (3) 1 1 1 3 0
2419 1 1 1 2 2 1 (9) 1 3 3 9 0
2431 2 2 2 2 2 3 (3) 1 1 3 9 0
2515 2 2 2 2 3 1 (9) 1 1 1 3 0
2521 2 2 3 2 4 1 (3) 1 1 1 3 0
2593 2 2 3 2 4 1 (3) 1 1 1 3 0
2659 2 2 3 2 4 2 (3, 3) 3 3 3 9 0
2701 3 3 5 3 6 1 (3) 1 1 1 3 0
2713 1 1 1 2 2 1 (9) 1 3 1 9 ∗
2737 2 2 2 2 3 1 (3) 1 1 1 3 0
2743 2 2 3 2 4 1 (3) 1 1 1 3 0
2794 2 2 3 3 3 2 (9) 1 1 3 9 ∗
2917 3 3 3 4 4 3 (3, 3) 3 3 3 9 ∗
2971 1 1 1 2 2 1 (9) 1 3 3 9 0
3001 2 2 2 2 2 2 (3) 1 1 3 9 0
3094 2 2 2 2 2 2 (3) 1 1 3 9 0
3133 3 3 5 3 6 1 (3) 1 1 1 3 0
3190 2 2 2 2 3 1 (3) 1 1 1 3 0
3199 2 2 2 2 3 1 (3) 1 1 1 3 0
3226 2 2 2 2 3 1 (9) 1 1 1 3 0
3235 2 2 2 2 3 1 (9) 1 1 1 3 0
3277 2 2 2 2 3 1 (27) 1 1 1 3 0
3355 2 2 2 2 2 3 (3) 1 1 3 9 0
3391 2 2 4 2 5 2 (3, 3) 3 3 3 9 0
3469 2 2 2 3 3 2 (3) 1 1 1 9 ∗
3490 2 2 2 3 3 1 (9) 1 1 1 3 ∗
3571 2 2 2 2 3 1 (3) 1 1 1 3 0
3667 2 2 2 2 3 2 (3, 3) 3 3 3 9 0
3673 2 2 4 2 5 1 (3) 1 1 1 3 0
3739 2 2 2 3 3 1 (3) 1 3 1 9 ∗
3781 2 2 2 2 3 1 (9) 1 1 1 3 0
3787 2 2 2 2 2 2 (3) 1 1 3 9 0
3847 2 2 2 2 2 2 (3) 1 1 3 9 0
3895 2 2 3 2 4 1 (3) 1 1 1 3 0
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Table 1 (cont.)

m n0 n1 n2 n
(1)
0 n

(1)
2 λ−3 (k∗) A∗−0 |D0| |A0| |D1| |A1| λ3(k)

3979 2 2 3 2 4 1 (3) 1 1 1 3 0
3997 2 2 2 2 3 1 (9) 1 1 1 3 0
4081 3 3 3 4 4 1 (3) 1 1 1 3 ∗
4099 2 2 2 2 3 2 (3) 1 1 1 27 0
4207 2 2 2 2 3 1 (9) 1 1 1 3 0
4210 2 2 2 2 3 1 (9) 1 1 1 3 0
4222 2 2 2 2 2 2 (3) 1 1 3 9 0
4237 2 2 2 2 3 1 (3) 1 1 1 3 0
4279 3 3 3 3 3 2 (3, 3) 3 3 9 27 ∗
4447 2 2 2 2 3 2 (3) 1 1 1 9 0
4471 1 1 1 2 2 1 (3) 1 3 3 9 0
4498 2 2 2 2 3 1 (3) 1 1 1 3 0
4519 2 2 2 2 3 1 (3) 1 1 1 3 0
4603 2 2 2 2 3 1 (27) 1 1 1 3 0
4615 2 2 3 2 4 1 (3) 1 1 1 3 0
4618 2 2 4 2 5 1 (3) 1 1 1 3 0
4651 1 2 2 2 3 1 (3) 1 3 3 9 0
4654 2 2 2 3 3 1 (3) 1 1 1 3 ∗
4681 2 2 2 2 3 1 (3) 1 1 1 3 0
4687 2 2 2 2 2 3 (3) 1 1 3 9 0
4711 2 2 2 2 3 1 (3) 1 1 1 3 0
4741 2 2 3 3 3 3 (9) 1 1 3 9 ∗
4789 2 2 2 3 3 1 (9) 1 1 1 3 ∗
4837 2 2 2 2 2 3 (3) 1 1 3 9 0
4867 2 2 2 2 3 1 (3) 1 1 1 3 0
4870 2 2 2 2 3 1 (9) 1 1 1 3 0
4954 1 1 1 2 2 1 (3) 3 9 9 27 0
4963 2 2 3 2 4 1 (3) 1 1 1 3 0
5005 2 2 2 2 2 2 (3) 1 1 3 9 0
5062 3 3 3 3 4 1 (3) 1 1 1 3 0
5083 2 2 2 2 3 1 (3) 1 1 1 3 0
5113 2 2 2 2 3 1 (3) 1 1 1 3 0
5149 2 2 2 2 3 1 (9) 1 1 1 3 0
5161 2 2 2 2 2 2 (3) 1 1 3 9 0
5182 2 2 2 2 3 1 (3) 1 1 1 3 0
5185 2 2 2 3 3 1 (3) 1 1 1 3 ∗
5365 2 2 2 2 2 2 (3) 1 1 3 9 0
5386 2 2 2 2 2 2 (3) 1 1 3 9 0
5407 2 2 2 2 2 2 (3) 1 1 3 27 0
5437 2 2 2 2 2 2 (3) 1 1 3 9 0
5458 2 2 2 2 2 2 (3) 1 1 3 9 0
5494 2 2 2 2 3 1 (3) 1 1 1 3 0
5530 2 2 2 3 3 2 (3) 1 1 1 9 ∗
5533 2 2 3 3 3 2 (9) 1 1 3 9 ∗
5611 3 3 3 3 3 3 (9) 1 1 3 9 ∗
5617 2 2 2 2 3 1 (9) 1 1 1 3 0
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Table 1 (cont.)

m n0 n1 n2 n
(1)
0 n

(1)
2 λ−3 (k∗) A∗−0 |D0| |A0| |D1| |A1| λ3(k)

5647 2 2 3 2 4 1 (3) 1 1 1 3 0
5749 2 2 2 2 3 1 (27) 1 1 1 3 0
5902 2 2 2 2 3 1 (9) 1 1 1 3 0
5938 1 1 1 2 2 1 (27) 1 3 1 9 ∗
5971 2 2 3 3 3 3 (9) 1 1 3 27 ∗
6001 2 2 2 2 3 1 (9) 1 1 1 3 0
6169 2 2 2 3 3 1 (3) 1 1 1 3 ∗
6187 2 2 2 3 3 3 (3) 1 1 1 9 ∗
6202 2 2 2 3 3 1 (3) 1 1 1 3 ∗
6238 1 1 1 2 2 1 (3) 1 3 3 9 0
6271 2 2 2 3 3 1 (3) 1 1 1 3 ∗
6286 2 2 2 3 3 1 (9) 1 1 1 3 ∗
6295 2 2 2 2 2 2 (3) 1 1 3 9 0
6355 2 2 2 2 3 1 (3) 1 1 1 3 0
6403 2 2 2 2 3 1 (9) 1 1 1 3 0
6430 2 2 2 2 2 3 (3) 1 1 3 9 0
6451 2 2 2 2 2 2 (3) 1 1 3 27 0
6502 2 2 2 2 3 1 (9) 1 1 1 3 0
6559 2 2 4 3 4 2 (3, 3) 9 9 27 81 ∗
6601 1 1 1 2 2 2 (3) 1 3 3 9 0
6691 2 2 2 2 3 1 (3) 1 1 1 3 0
6730 2 2 2 2 3 1 (9) 1 1 1 3 0
6799 2 2 2 2 2 2 (3) 1 1 3 9 0
6871 2 2 2 3 3 1 (27) 1 1 1 3 ∗
6901 1 1 1 2 2 2 (3) 1 3 3 9 0
6907 2 2 2 2 3 1 (3) 1 1 1 3 0
6934 2 2 2 3 3 1 (9) 1 1 1 3 ∗
6949 2 2 2 2 2 2 (3) 1 1 3 9 0
6955 3 3 4 3 5 1 (3) 1 1 1 3 0
7006 3 3 3 3 4 3 (3, 3) 3 3 3 9 ∗
7051 2 2 2 2 3 1 (9) 1 1 1 3 0
7078 2 2 4 2 5 1 (3) 1 1 1 3 0
7234 1 1 1 2 2 2 (3) 1 3 3 9 0
7246 2 2 3 2 4 2 (9) 1 1 1 9 0
7294 2 2 2 2 3 1 (9) 1 1 1 3 0
7303 2 2 2 2 2 3 (3) 1 1 3 9 0
7309 2 2 2 3 3 1 (9) 1 1 1 3 ∗
7315 2 2 2 2 3 2 (3) 1 1 1 9 0
7321 2 2 2 3 3 1 (3) 1 1 1 3 ∗
7387 1 1 1 2 2 1 (9) 1 3 3 9 0
7429 2 2 3 3 3 2 (9) 1 1 3 9 ∗
7465 3 3 3 3 4 2 (3, 3) 9 9 9 27 ∗
7522 2 2 2 2 3 1 (3) 1 1 1 3 0
7582 2 2 2 3 3 1 (3) 1 1 1 3 ∗
7603 2 2 2 2 3 1 (27) 1 1 1 3 0
7621 2 2 2 2 3 1 (3) 1 1 1 3 0
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Table 1 (cont.)

m n0 n1 n2 n
(1)
0 n

(1)
2 λ−3 (k∗) A∗−0 |D0| |A0| |D1| |A1| λ3(k)

7633 2 2 2 2 3 1 (9) 1 1 1 3 0
7639 1 1 1 2 2 1 (3) 1 3 3 9 0
7642 2 2 3 3 3 2 (27) 1 1 3 9 ∗
7705 2 2 2 2 2 2 (3) 1 1 3 9 0
7711 1 2 2 2 3 1 (3) 1 3 3 9 0
7726 2 2 2 2 3 3 (3, 3) 1 3 1 81 ∗
7753 1 2 2 2 3 2 (9) 1 3 3 27 0
7906 2 2 2 2 3 1 (9) 1 1 1 3 0
7951 2 2 3 2 4 1 (3) 1 1 1 3 0
7954 2 2 3 2 4 2 (3, 3) 3 3 3 9 0
7957 2 2 2 3 3 1 (3) 1 1 1 3 ∗
7969 3 3 3 3 4 1 (3) 1 1 1 3 0
7978 2 2 2 2 2 2 (3) 1 1 3 9 0
8011 2 2 2 2 3 1 (3) 1 1 1 3 0
8017 1 1 1 2 2 1 (3) 1 3 1 9 ∗
8095 2 2 2 2 3 1 (3) 1 1 1 3 0
8101 2 2 2 3 3 1 (3) 1 1 1 3 ∗
8137 2 2 2 2 3 2 (3) 1 1 1 27 0
8155 2 2 2 3 3 1 (3) 1 1 1 3 ∗
8194 2 2 2 2 2 4 (3) 1 1 3 9 0
8203 2 2 2 2 3 1 (3) 1 1 1 3 0
8209 2 2 2 2 2 2 (3) 1 1 3 9 0
8245 2 2 2 2 3 1 (3) 1 1 1 3 0
8365 2 2 2 2 3 1 (9) 1 1 1 3 0
8374 2 2 3 2 4 3 (3, 3) 3 3 3 27 0
8422 2 2 2 2 3 1 (3) 1 1 1 3 0
8545 1 1 1 2 2 1 (9) 1 3 3 9 0
8569 2 2 2 3 3 1 (3) 1 1 1 3 ∗
8599 2 2 2 2 3 1 (3) 1 1 1 3 0
8626 2 2 2 2 3 1 (3) 1 1 1 3 0
8713 2 2 3 2 4 2 (3, 3) 3 3 3 9 0
8755 2 2 2 2 3 1 (3) 1 1 1 3 0
8758 2 2 2 2 2 4 (3) 1 1 3 9 0
8782 1 1 1 2 2 1 (9) 1 3 1 9 ∗
8785 2 2 3 2 4 1 (3) 1 1 1 3 0
8809 2 2 4 2 5 1 (3) 1 1 1 3 0
8821 2 2 4 2 5 1 (3) 1 1 1 3 0
8854 1 1 1 2 2 2 (3) 1 3 3 9 0
8863 1 2 2 2 3 1 (3) 1 3 3 9 0
8893 2 2 2 2 2 2 (3) 1 1 3 9 0
8965 3 3 3 3 4 1 (3) 1 1 1 3 0
9019 2 2 2 2 3 1 (9) 1 1 1 3 0
9034 1 1 1 2 2 1 (27) 1 3 3 9 0
9058 2 2 2 3 3 1 (9) 1 1 1 3 ∗
9097 2 2 2 2 2 2 (3) 1 1 3 27 0
9103 2 2 2 2 3 1 (27) 1 1 1 3 0



Iwasawa λ-invariants 291

Table 1 (cont.)

m n0 n1 n2 n
(1)
0 n

(1)
2 λ−3 (k∗) A∗−0 |D0| |A0| |D1| |A1| λ3(k)

9115 2 2 3 2 4 1 (3) 1 1 1 3 0
9145 2 2 2 2 3 1 (3) 1 1 1 3 0
9202 2 2 2 2 3 1 (3) 1 1 1 3 0
9274 4 4 5 4 6 1 (3) 1 1 1 3 0
9427 2 2 2 2 3 3 (3) 1 1 1 9 0
9463 2 2 3 2 4 1 (3) 1 1 1 3 0
9586 1 1 1 2 2 3 (3) 1 3 3 9 0
9634 3 3 4 3 5 2 (9, 3) 3 3 3 9 ∗
9679 4 4 6 4 7 1 (3) 1 1 1 3 0
9691 2 2 3 3 3 2 (9) 1 1 3 9 ∗
9754 2 2 4 2 5 1 (3) 1 1 1 3 0
9766 1 1 1 2 2 1 (3) 1 3 3 9 0
9790 2 2 2 2 3 4 (3, 3) 3 3 3 27 0
9814 4 4 4 5 5 1 (3) 1 1 1 3 ∗
9895 3 3 3 3 4 1 (3) 1 1 1 3 0
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