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1. Introduction. Let k be a totally real number field. Let p be a fixed
prime number and Z,, the ring of all p-adic integers. We denote by A = A, (k),
= pp(k) and v = v,(k) the Iwasawa invariants of the cyclotomic Z,-
extension ko, of k for p (cf. [10]).

Then Greenberg’s conjecture states that both A,(k) and pu,(k) always
vanish (cf. [8]). In other words, the order of the p-primary part of the ideal
class group of k,, remains bounded as n tends to infinity, where k,, is the nth
layer of ko, /k. We know by the Ferrero-Washington theorem (cf. [2], [15])
that p, (k) always vanishes when k is an abelian (not necessarily totally real)
number field. However, the conjecture remains unsolved up to now except
for some special cases (cf. [1], [3], [5]-[8], [13])-

This paper is a continuation of our previous papers [3], [5]-[7] and
[12], that is to say, we investigate Greenberg’s conjecture when k is a real
quadratic field and p is an odd prime number which splits in k. The purpose
of this paper is to extend our previous results, and to give basic numerical
data of k = Q(y/m) for 0 < m < 10000 and p = 3. On the basis of these
data, we can verify Greenberg’s conjecture for most of these k’s.

2. Notation and statement of the results. Let k£ be a real quadratic
field with class number h and ¢ the fundamental unit of k. Let p be an odd
prime number which splits in k, namely, (p) = pp’ in k where p # p’. Then
we can choose a € k such that p’* = («). In [6], we defined two invariants
ny,ng € N for k and p by

Pl (@t = 1), e[l (P 1),

Here p™ || a means that p”|a and p"*!fa for an ideal a of k. In spite of
ambiguity of a, n is uniquely determined under the condition n; < ns.
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For the cyclotomic Z,-extension
oo
k=kyChki C...ChkpC...Cko= Uk:n
n=1

with Galois group I' = Gal(ks /k), let A,, be the p-primary part of the ideal
class group of ky,, and p,, (resp. p},) the unique prime ideal of k,, lying above

p (resp. p’). We put
Al ={ac A, |a° =aforallo € '} and D, = (Cl(p,)) N Ay,

where Cl(p,,) denotes the ideal class represented by p,,. Then we have AL D
D,,. These groups are closely related to Greenberg’s conjecture (cf. Theorem
2 in [8]).

Moreover, we introduce two other invariants n, ’ and ng) following [13].
Let E,, be the group of units in k,, and d,, the order of Cl(p,,) (so the order
of Cl(p],)) in the ideal class group of k. For each m > n > 0, we denote
by Ny, the norm map from k&, to k,. Fix an integer » > 0. Then we can

choose 3, € k, such that p/¥ = (3,). We define the invariants n(()r), ng) eN
for k and p by

(r) _ () n
Pno || (Nr,0(5r>p t— 1)7 p2 =p 2(EO : NT,O(ET’))'
As in the case of ny, n((f) is uniquely determined under the condition n((f) <

ngr), though the choice of 3, is not unique. Here we note that r + 1 < n((]r)

because ko /k is totally ramified at p. Furthermore, it is easy to see that

(r)
0

nér) < n(()H_l) < nér) +1 and ngr) < ng—H) < ngr) +1

for each » > 0. Put ng = néo) in particular. We then see that ng < n; < no.

Remark 1. By the definitions of nér) and ngr), we see that n(()r) is the

maximal integer n such that p”| (N, o(3.)P~! — 1) for all elements 3, of
k. satisfying p/? = (3,) and that ng) is the maximal integer n such that

p" | (N, o(e,)P~1 — 1) for all elements &, of E,. Indeed, it follows from the
definition of néT) that p"ér) | (Ny.o(,)P~1=1) for all &, € E,.. Moreover, there

exists 0, € E, such that ¢~ = N, o(n,), so that p”y) | (Nyo(n-)P~t = 1),

where u, denotes the integer such that p*~ = (Ey : N;.o(E,)). Hence the sec-

ond assertion follows. The first one immediately follows from the inequality
(r) (r)

ng <ny .

Remark 2. When we put r = 0, we have
ny = min{ng + v,(h) — v,(do) ,n2}

where v, (a) denotes the exact power of p dividing a. Hence, if Ay = Dy,
then ng = n;.
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Let (, be a primitive pth root of unity and k* = k((,). For the CM-
field k*, let (k*)* be the maximal real subfield of k* and put A, (k*) =
Ap(K*) = Ap((K*)1). Our main theorems are as follows.

THEOREM 1 (Generalization of Proposition in [3] and Theorem 2 in
[12]). Let k be a real quadratic field and p an odd prime number which splits
in k. Assume that

(i) A, (k) =1 and
(ii) nér) # ng) for some r > 0.
Then Ap(k) = pp(k) = 0.

Remark 3. Let x be the non-trivial Dirichlet character associated with

k and w the Teichmiiller character of Gal(Q((,)/Q). We denote by A (k*), -1

the wx~!-component of A\, (k*). Then we may replace assumption (i) of The-
orem 1 by a weaker assumption that A,(k*),,-1 = 1 (cf. Proposition 1
in [9]).

Putting » = 0 in Theorem 1, we obtain the following

COROLLARY 1 (cf. Theorem 2 in [6]). Let k and p be as in Theorem 1.
If A, (k") =1 and ng # na, then A\y(k) = pp(k) = 0.

THEOREM 2. Let k be a real quadratic field and p an odd prime number
which splits in k. Assume that Aqg = Dg. Then the following conditions are
equivalent.

(i) n(()r) =r+1 for somer > 0.

(ii) nér) =1+ 1 for all sufficiently large .

(iii) ng) =r+1 for somer > 0.

(iv) nér) =7+ 1 for all sufficiently large .

(v) AL = D, for all sufficiently large n.

In particular, one of these conditions holds if and only if A\p(k) = pp(k) = 0.
Putting » = 0 in the condition (i) of Theorem 2, we obtain the following.
COROLLARY 2 (cf. Theorem 1 in [6]). Let k and p be as in Theorem 2.

If Ay =Dy and ng =1 (i.e., ny = 1), then \p(k) = pp(k) = 0.

Moreover, putting r = ng — 1 in condition (iii) of Theorem 2, we obtain
the following by Lemma 8 (cf. Section 5).

COROLLARY 3 (cf. Theorem in [5] and Lemma in [7]). Let k and p be as in
Theorem 2. If Ay = Dy and Ny,—1,0(En,—1) = Eo, then A\p(k) = pp(k) = 0.

The notation defined in this section will be used throughout this paper.
We also denote by 3. € k, a generator of p/?" satisfying

P | (Neo(B)P = 1) and  ni) <n).
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Namely, 3, € k, is a generator of p/? which determines n(()r). Since p splits in
k, we have k, ~ Q,, where kj; is the completion of k at p. So, by identifying
p € ky, with p € Q,, we may write N, o(8,)P~! € k as in the following form
of a p-adic integer:

()
Nyo(B )Pt =1+p™ ., =z, €7ZX.
2 p

3. Some fundamental lemmas. We first refer to the following three
lemmas.

LEMMA 1 (cf. Theorem 2 in [8]). Let k and p be as in Section 2. Then
AL = D, for all sufficiently large n if and only if \,(k) = py(k) = 0.
LEMMA 2 (cf. Proposition 1 in [6]). Let k and p be as in Section 2. Then

|Ap|: | Ao |p™ if n<ng—1,
n | Aolp™2~t if n>ng — 1.

LEMMA 3 (cf. Lemma 3 in [12]). Let k and p be as in Section 2. If
A, is cyclic for all n > 0 and if D, is non-trivial for some r > 0, then
Ap(k) = pp(k) = 0.

Next we prove two more lemmas. Since p, = pf 11, we have d,y1 = d,
or pd,; in particular, |D,1| = |D,| or p|D,|. If we write d, = ¢p’ with an
integer ¢ prime to p, then ¢ is independent of r.

LEMMA 4. Let r be a fized non-negative integer. Assume that |D,y1| =
p|D,|. Then

n(r—H) _ n(()r) if n(()T) _ ngr) _ nngrl);
’ n(()r) +1 otherwise.

Proof. Since d, 1 = pd,, we have

Idyy1 Ipd;. 1d. (ﬁ )
= \Pr

pr+1 = pr+1 = pr in kr—i—l-

Thus we may take (3, as a generator of pﬁﬁ“l. Then we obtain
Nr+1,0(/6r)p_l = NT,O(/Br)p(p_l)
(r)
=(L+po z)P, =z €7,

(r)
=1 +pn0 +1$/

/ X
r X €Ly,

therefore
() _
P (N1 0(8,)7 7 = 1)
Hence it follows from the definition of ng’“) that
n(()r-i—l) _ mln{n(()r) 41, ngr-&-l)}7

which yields the desired result. =
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LEMMA 5. Let r be a fivzed non-negative integer. Assume that |D,| =
|Dyy1|. Then

() If n(()r) < nér), then n(()rﬂ) = n(()T).

(ii) If ngr) = ng"“), then nérﬂ) = n((]r).

Proof. (i) Since d,4+1 = d,, we have

(5T) = p;dT = Nr+1,r(p;d-|i1) = Nr—l—l,r(pﬁ-ﬁl) = (Nr—i-l,r(ﬂr—&-l)) n k.

Hence N,41 (8r4+1) = fBre, for some €, € E,.. Taking the norm from k, to k,
we have Ny41,0(8r+1) = Nyro(8r)Nyo(er). Therefore we obtain the following
p-adic expansion:

(r+1) (") (r)
(1) 1—|-pn0 +1 Try1 = 1_|_p"o -’Er“‘an Yrt+..., Ty, Tpy1 € Z;, Yr € Zp.
This implies the desired result.

(ii) Suppose that néTH) # n((f). Then it follows from (1) that n(()r) = ngr).

(r+1) (r) (r+1)
0

Therefore n > n((]r) =ny’ =ny , which contradicts the definition of

n(()rH). This completes the proof. m

Remark 4. Lemmas 4 and 5 can be used for determining n((f“) from

néT), nér) and nngrl). However, Lemma 5 does not work in the case where
n(()r) = ng) < ngﬂ). Actually, when p = 3, we see that ng = ny = 2 <
nél) = 3 and n((]l) = 2 for k = Q(v/106), and that ng = ny = 2 < nél) =3
and n(()l) = 3 for k = Q(v/295) (cf. Table 1). Hence, in this situation the

practical calculation of 3,11 is necessary to the determination of n(()TH).

4. The proof of Theorem 1 and some examples. In order to prove
Theorem 1, we need the following lemma.

LEMMA 6. Let r be a fized non-negative integer. If n[()r) #* ngr), then
|Dy,| > |Dy| for all n > n[()r).

Proof. Suppose that |D,,| = |D,| for some n > n(()r). Then since d,, = d,,
we have N, .(8,) = Bre, for some €, € E,, as in the proof of Lemma 5.
Taking the norm and expanding it in the p-adic form, we obtain

(n) () ()
(2) 14+p" 2y =14p" 2. +p"2 yr+...,  TpTn €L, yr € Lyp.

Since n(()n) >n+1> n(()r) +1> n(()r) for all n > n(()r), it follows from (2) that
n(()r) = n(QT). This completes the proof. m

By Lemma 2, |AZ'| remains bounded as n tends to infinity, hence so does
|D,,|. Therefore we obtain the following as a corollary to Lemma 6.
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COROLLARY 4. Let k and p be as in Section 2. Then n(()r) = n(;) for all
sufficiently large r.

Proof of Theorem 1. Let k be the nth layer of the cyclotomic
Zy-extension ki /k* and A the p-primary part of the ideal class group of
k. Since k¥ is a CM-field, we can define (A% )" by the p-primary part of the
ideal class group of its maximal real subfield and (A})~ by the kernel of the
norm map from A% to (A%)*. The Ferrero-Washington theorem guarantees
the vanishing of p,(k*), hence, by assumption (i), (A})~ is cyclic for all
n > 0. It follows from the reflection theorem that (A%)* is cyclic, hence so
is A, for all n > 0. By Lemma 6, we also have the inequality |D,,| > |D;|
under assumption (ii), hence D,, # 1, for all n > n(()r). Therefore Theorem 1
immediately follows from Lemma 3. m

EXAMPLE 1. Let £ = Q(+/26893) and p = 3, for which we could not verify
that A\3(k) = ps(k) = 0 in [13]. Then ng = ny = ne = 4, and moreover,
A; (k*) = 1 and n[()l) =4 # nél) = 5 (see Table 2 of [13]). Therefore it
follows from Theorem 1 that A\3(k) = us(k) = 0.

EXAMPLE 2. Let k& = Q(v/4651) and p = 3. Then A\ (k*) = 1 and
ng = 1 # ny = ny = 2 (see Table 1). Therefore it follows from Theorem
1 that A3(k) = ps(k) = 0. Note that [Ag] = 3 > 1 = |Dgl|. In order to
conclude that As(k) = ps(k) = 0 for this k, we needed the information
on the initial layer k1 of ko /k before now (cf. [3], [7]). But we do not need
such information now, therefore it seems that the invariant ng is more useful
than nq.

5. The proof of Theorem 2. First, we prove the following lemma.
LEMMA 7. Let r and s be fived non-negative integers. If | D,y | = p'|D,|,
then
n[(f) > min{n((]r+s) - t,ng) —t}.

Proof. Note that s >t and d,. s = p'd,.. Then we have

s—t

(Brys ) = p:ﬂ; e = p;png =pdr = (B,) inkeys,
hence (Nyyor(Brss))? = (8,)7". S0 (Nyysr(Bris)) = (6,)7 in k,. There-
fore
/Bft = Nr+s7r(/8r+s)5r for some ¢, € E,.

Taking the norm and expanding it in the p-adic form, we obtain

+9)

(r) (r (r)
1+pn0 +tx;4:1+pn0 Lrts +pn2 yr+"'7 x;"?xr—i—sez;;a yTEZp-

This immediately implies Lemma 7. m
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From now on, we consider the case where Ag = Dg. Let ZZ be the
subgroup of A, consisting of ideal classes which contain an ideal invariant
under the action of Gal(k, /k). Then the genus formula (cf. [16]) says that

mn

_r D
A, l=1A .
| ’I’L| | 0|(EO . Nn’[)(En))

If Ag = Dy, then Af = D, for all n > 0 because Zli = ig,n(Ao)D,, where
i0,n denotes the natural map from the ideal group of k to the ideal group
of k, induced from the inclusion map. Hence we immediately obtain the
following lemmas.

LEMMA 8. Let r be a fized non-negative integer. Assume that Ag = Dy.
Then

(i) |Dy| = |Dolp= = | Do|pna*r=ns"
(ii) ng) =ng+71—u,

where wu, s the integer such that p*~ = (Eq : Ny o(E,)) and u is the integer
such that |D,| = p*|Dy|.

LEMMA 9. Let v be a fized non-negative integer. Assume that Ag = Dy.
Then |D,y1| = p|D,| if and only if ngurl) = ngr).

Proof. Let u, be as in Lemma 8. Then |D,11| = p|D,| if and only if
Ur4+1 = U,. Hence the result follows from the definition of n(;). n

LEMMA 10. Let r be a fixed non-negative integer. Assume that Ay = Dy
and that |Dy41| = p|D,|. Then n(()rﬂ) = n(()r) if and only if n(()r) = nér).
Namely, we have

(r+1) ny if ni”) =ny,
oo Ty ™ () ()
ng’ +1 if ng’ #Fmngy' .

Proof. This easily follows from Lemmas 4 and 9. m

Proof of Theorem 2. (iv)=-(iii)=-(i) and (iv)=-(ii)=(i) are trivial.
Therefore it is sufficient to prove that (i)=(v)=(iv).

(i)=(v). Let r be a non-negative integer such that n[(f) =1+ 1. Then

n(()rﬂ) = (r+1)+41 because (r+1)+1 < nérﬂ) and n(()rﬂ) < n((]r) + 1.
Repeating this process, we conclude that n(()rJrs) =r+s+1forall s >0.
We denote by u the integer such that |D,| = p*|Dy|. For s > ny — 1 — u, we

put
|Dyrys| = pt‘Dr| = pt+u‘D0|'
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Now suppose that £t +u < no — 1. Then we have
n{t —t=r st l—t>rtng—u—t>r+2,
ngr)—t:n2+r—u—t27“+2
by Lemma 8(ii). It easily follows from Lemma 7 that
n(()r) > min{néH_S) —t, ng) —t}>r+2,
which is a contradiction. Hence we must have t +u = ny — 1, so |Dy45| =
|Do|p™2~1 for all s > ny — 1 — u. Therefore Lemma 2 implies that AL = D,
for all n > ng) -1
(v)=(iv). By Lemma 2, we have
1D, = A7 ] = [Aolp™ ™ = [Dolp™ "

for all sufficiently large 7. Hence Lemma 8(i) shows that

| Dolp™27m2” = | Dolpm2 L,

which means that ng) = r + 1 for all sufficiently large r.

The last assertion immediately follows from Lemma 1. This completes
the proof of Theorem 2. =m

6. Other useful results and some examples. In this section we shall
give a few of easy results, which are useful when we cannot apply Theorems
1 and 2. First we prove the following.

LEMMA 11. If there exists an integer ro such that |AL | = |Dy,| and
ro > ng — 1, then A, ~ A, for all n > ry.

Proof. Note that Ny, ., : Ay, — Ay, and Ny, oy, @ Dy, — D,, are surjective
for all m > n > 0 because ko /k is totally ramified at p. It follows from the
assumption and Lemma 2 that N,,., : Al — AL is isomorphic for all
m > n > rg. Hence, Ny, p, : Ay, — Ay, is also isomorphic for all m > n > ro.
This completes the proof. m

PROPOSITION 1. Let k and p be as in Section 2. If |D,| = |Ag|p™2~2

and n(()T)

#* ngr) for some r >0, then A, ~ A () for all n > n(()r), hence in
particular \p(k) = pp(k) = 0. ’

Proof. It follows from Lemma 6 that |D,,| > |D,| = |Ag|p™2~2 for all
n > n(()r). Hence |AL| = |Ag|p™2~! = |D,,| for all n > nér) by Lemma 2.
Since n(()r) > ng — 1, the assertion immediately follows from Lemma 11. m

EXAMPLE 3. Let k = Q(\/7753) and p = 3. Then ng = 1 # ny = ny = 2,
Az (k*) =2 and |Ag| = 3 > 1 = |Dy|. Hence Theorems 1 and 2 cannot be
applied to this k. However, |D;| = 3 = |Ap| and n(gl) =2# ngl) = 3 (see
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Table 1). Therefore it follows from Proposition 1 that A,, ~ As for all n > 2,
in particular \3(k) = ps(k) = 0.

Lemma 6 asserts that nér) # ngr) implies |D,| < |D | However,
)

the converse does not always hold (cf. Example 4). Thus the following

proposition is sometimes useful. Here we note that, if A, is cyclic for all

n > 0 and if Ap is trivial, then the converse is also true. In fact, for

a fixed non-negative integer r, we see that n(()r) = r + s if and only if

|ID.| = ... = |Dygs—1| < |Dpgs| for 1 < s < ng) —r — 1 in this situa-
tion (cf. Theorem 1 of [12]).

PROPOSITION 2. Let k and p be as in Section 2. If A\ (k*) = 1, and
D, # 1 for some r > 0, then A\, (k) = p,(k) = 0.

Proof. This immediately follows from the proof of Theorem 1 (or
Lemma 3). =

EXAMPLE 4. Let £ = Q(+/1129) and p = 3. Then ng = ny = ng = 1,
n(()l) = nél) =2 and |Ag| =9 > 3 = |Dy| (see Table 1). Hence Theorem 1 for
r = 0,1 and Theorem 2 cannot be applied to this k. But, since A5 (k*) =1,
it follows from Proposition 2 that A\3(k) = ps(k) = 0. Now, by Table 1 and
Lemma 2, we see that |Al'| =9 = |Dy|, so |AL| = |D,,| = |Dy| for all n > 1.
Therefore Lemma 6 implies that ny’ = ngr =r+1forallr > 1, so all
r > 0. Hence we cannot apply Theorem 1 for all » > 0 to this k.

Finally we note that there exist some examples of k to which we cannot
apply our theorems and propositions, but nevertheless we can verify Green-
berg’s conjecture for them by Lemma 11. Such examples are k = Q(1/6601),
k = Q(v/6901) and so on.

7. Tables of basic numerical data of £k = Q(y/m) for p = 3. We shall
give a table of the fundamental data of k = Q(y/m) for p = 3 and positive
square-free integers m’s less than 10000 satisfying m = 1 (mod 3). The total
number of such m’s is exactly 2279. We find that there exist exactly 2042
m’s which satisfy Ay = Dg and ng = 1. Greenberg’s conjecture is valid for
these k’s by Corollary 2 to Theorem 2. Table 1 gives several useful data
for 237 remaining m’s. We can verify Greenberg’s conjecture for 185 k’s in
Table 1 by applying our results. The asterisks in the column of A3(k), the
number of which is exactly 52, mean that Greenberg’s conjecture cannot be
verified by these data.

Concerning our method of computation, we refer to [11] and [13] for
nél), nél), |A1| and |D1], to [14] for the 3-primary part Af~ of the ideal class
group of Q(v/—3m), and to [4] for A3 (k*). Note that A\;(k*) =
A3(Q(v/—3m)). The rest is easily computed.
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Addendum. Recently, after we have written this paper, we heard from
H. Sumida that he verified Greenberg’s conjecture for p = 3 and m
727, 2794, 4279, 4741, 5533, 7429, 7465, 7642, 9634 and 9691, which are
marked with the asterisks in Table 1, by computing the Iwasawa polynomials
associated with p-adic L-functions. He is now preparing the paper entitled

“Greenberg’s conjecture and the Iwasawa polynomial”.

Table 1. All m’s satisfying Ag # Dg or ng > 1: 1 < m < 10000

o [0 [

3
3
o
3
S
3
[\~]

—~
o

*
~

[ Do

[Ao|

| D1

|A1]

67
103
106
139
238
253
295
397
418
454
505
607
610
679
727
745
787
790
886
994

1102
1129
1153
1261
1294
1318
1333
1390
1462
1609
1642
1654
1669
1714
1726
1738
1753
1810

(V)
W~

NN NNNDNEFDNDDNDDNDWNNNDNDNDFDNDDNDDNDDNNDNDDNNDNDDNDDNDDNDDNDDNNNDNDNDNNN
NN NDNNDNEFDNDDNDDNDWNNNDNDNDFDNDDNDDNDDNDNDNDNDNDNDDNDDNDDNDDNDNNNDNDNDNNN
NN NDNNDNEFDNDDNDDNADNNDNDNDNFDNDDNDDNDDNDNDNDWN A& DNDDNDDNDDNDNDNDNWNDNDN W
RN WN WNNNNDNWNNNNNDNDDNDDNDDNDDNDDNDWWNNDNDDNDDDDDNDWWNDNNDNDIN
WWWHhN WWNNN WOU W WWNNNWWWN WWWHhNUWWWN WWWesNWN

el T T I N e e N B N e e T e I I e L e S e e e B SIS R

= W W R R e QO R R e e e e e e R e e e e e e e

el el e e el el e e e e T e e T e T 2= T O O e e S e e e e T T T e e e e e

= 0 W O W W W W WO L WOW W O

[\]

NN

V)
WWWJTOWTJTOWWWWWOOTWWWOWWOOWWWWOoOWWWwWwWowow

P
w
—

OO ¥ O %¥ OO0 ODODODODODODODODODODODODDODO ¥ ¥ OODODODOO ¥ ¥ ©OOOOC OO




287

Twasawa \-invariants

Table 1 (cont.)

A3 (k)

|Aq

| D1]

[ Aol

[ Dol

3
3

3

3

3

3

*—
0

A

(k)

3

2
2

2

3

1

2

2

ngl) A

()

n2

ni

2
2
1

3

4

2

2
2

2
2
2
2
2
3
1
2
2
2
3
1
2
2

3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

no

2
2
1
2
3
2
4
2
2
2
2
2
2
1
2
2
2
2
2
3
1
2
2
2
3
1
2
2

3
2
2

2
2
2

2
2
2

2
2
2

2
2

2
2
2

2

1867
1894
1954
2029
2059
2122
2149
2158
2221

2230
2263
2371

2410

2419

2431

2515

2521

2593
2659
2701

2713

2737
2743
2794
2917

2971

3001

3094
3133
3190
3199
3226

3235
3277
3355

3391

3469

3490

3571

3667

3673
3739

3781

3787

3847
3895
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Table 1 (cont.)

A3 (k)

|Aq

27

27

27

27

| D1

[ Aol

[ Dol

3

*—
0

A

(k)

3

2

1

ngl) A

()

n2

ni

2
2
3
2

2
2

3
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2

3
2

no

2
2
3
2
2
2
2
2
3
2
1
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
1
2
2
3
2
2
2
2
2
2
2
2
2
2
2
2

2
2
3
2

3979
3997

4081

4099

4207
4210

4222
4237
4279
4447
4471

4498

4519

4603

4615

4618

4651

4654

4681

4687

4711

4741

4789

4837

4867

4870
4954
4963

5005
5062

5083
5113
5149
5161
5182
5185
5365
5386

5407
5437
5458

5494
5530
5533
5611

5617
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Table 1 (cont.)

A3 (k)

|Aq

27

27

81

27

| D1]

27

[ Aol

[ Dol

9

3

9

*—
0

A

(k)

3

1

2

1

3

2

ngl) A

()

n2

ni

2
2

2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
2
2
3
3
2
2
1
2
2
2
2
2
2
1
2
3
2
2
2
2

no

2
2
2
1
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
1
2
2
2
2
1
2
2
2
3
3
2
2
1
2
2
2
2
2
2
1
2
3
2
2
2
2

5647
5749
5902
5938
5971

6001

6169
6187
6202

6238
6271

6286
6295

6355

6403

6430

6451

6502

6559

6601

6691

6730

6799

6871

6901

6907

6934
6949

6955

7006

7051

7078

7234
7246

7294

7303

7309

7315

7321

7387

7429

7465

7522

7582

7603

7621
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Table 1 (cont.)

A3 (k)

|Aq

81

27

27

27

27

| D1

[ Aol

[ Dol

3

3

*—
0

A

(k)

3

2

3

2

3

1
1

1

ngl) A

()

n2

ni

2
1
2
2
2
2
2
2
2
2
2
3
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
2
2

1
2
2

3
2
1
2
2
2

no

2
1
2
2
1
2
1
2
2
2
2
3
2
2
1
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
1

2
2
2

1
1
2

3
2
1

2
2

2

7633
7639

7642

7705

7711

7726

7753

7906

7951

7954
7957

7969

7978
8011

8017

8095

8101

8137
8155
8194
8203
8209
8245
8365

8374
8422

8545
8569
8599

8626

8713

8755

8758

8782

8785

8809

8821

8854

8863

8893

8965

9019

9034

9058

9097

9103
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Table 1 (cont.)

m | no | n1 | ng [ o8 [0S | A5 (%) | A5 | 1Dol | Aol | [D1] | A1) | As(k)
9115 | 2 2 3 2 4 1 3) 1 1 1 3 0
9145 | 2 2 2 2 3 1 3) 1 1 1 3 0
9202 | 2 2 2 2 3 1 3) 1 1 1 3 0
9274 | 4 | 4 | 5 4 6 1 3) 1 1 1 3 0
9427 | 2 2 2 2 3 3 (3) 1 1 1 9 0
9463 | 2 2 3 2 4 1 (3) 1 1 1 3 0
9586 | 1 1 1 2 2 3 3) 1 3 3 9 0
9634 | 3 | 3 | 4 3 5 2 9,3) 3 3 3 9 *
979 | 4 | 4 | 6 4 7 1 (3) 1 1 1 3 0
9691 | 2 2 3 3 3 2 9) 1 1 3 9 *
9754 | 2 2 | 4 2 5 1 (3) 1 1 1 3 0
9766 | 1 1 1 2 2 1 (3) 1 3 3 9 0
9790 | 2 2 2 2 3 4 (3,3) 3 3 3 27 0
9814 | 4 | 4 | 4 5 5 1 3) 1 1 1 3 *
9895 | 3 | 3 | 3 3 4 1 (3) 1 1 1 3 0
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