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1. Introduction and notation. As usual we write s = σ + it, and

ζ(s) ≡
∞∑

n=1

(
n−s −

n+1∫
n

u−s du
)

+
1

s− 1
, σ > 0,

=
∞∑

n=1

n−s =
∏
p

(1− p−s)−1, σ > 1.

In the last product p runs over all primes 2, 3, 5, 7, 11, . . . The object of this
note is to prove the following theorem.

Theorem 1. There exist effective absolute positive constants C and C∗

with the following property. Let T ≥ 20, H = C log log log T and ζ(s) 6= 0 in
(1/2 + (10 log log T )−1 < σ ≤ 1, T −H ≤ t ≤ T + H). Then there is at least
one zero of ζ(s) in the disc of radius C∗(log log T )−1 with centre 1/2 + iT.

R e m a r k 1. The proof of this theorem depends on Theorem 1 of our ear-
lier paper [3], and a significant use of Ramachandra’s kernel function of the
third order, namely R3(z) ≡ Exp(e−Exp(cos z)). These kernels were known
to Ramachandra for a long time. Ramachandra’s kernel function of the sec-
ond order, namely R2(z) ≡ Exp((sin z)2), was used by him and his collabo-
rators in various papers. Besides these the proof uses Borel–Carathéodory
theorem and Hadamard’s three circles theorem (the application of these last
two theorems is similar to that explained in [4], pp. 210, 211).

R e m a r k 2. A more complicated application of Borel–Carathéodory
theorem and Hadamard’s three circles theorem was employed by E. C. Titch-
marsh to give an alternative (simpler) proof of a theorem of J. E. Littlewood
(see [4], Theorem 9.12, p. 224). Littlewood’s theorem asserts that given any
t > 0 there exists at least one zero % = β+iγ with |t−γ| ≤ D1(log log log(|t|+
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10100))−1. Our theorem asserts that |t − γ| ≤ D2(log log(|t| + 10100))−1 if
we assume Riemann hypothesis. Of course the result just mentioned is not
difficult to prove. But Theorem 1 is not so easy to prove and is also of
sufficient interest in itself.

R e m a r k 3. It is possible to generalize Theorem 1 to functions F (s)
which have an Euler product and a functional equation. But the fact that
there is at least one zero-free region for F (s) required by Theorem 1 is
not known for any such F (s). Hence we have to restrict F (s) to ordinary
L-functions and L-functions of quadratic fields. In these cases we can prove
that

1
U

2U∫
U

|F (1/2 + it)|2 dt ≤ (log U)A (U ≥ 3)

where A > 0 is some constant. This last condition on the mean-value ensures
such a zero-free region for F (s). In fact under this condition the number of
zeros of F (s) in (Re s ≥ σ0, |Im s| ≤ U) is ≤ U4(3−2σ0)

−1
(log U)B where

B > 0 is a constant which depends on A.

R e m a r k 4. While dealing with applications of Theorem 1 for U ≤
T ≤ 2U it is convenient to prove it with (10 log log U)−1 in place of
(10 log log T )−1. This follows from the method of our proof. Also deeper
results like

1
U ′

U+U ′∫
U

|ζ(1/2 + it)|2 dt ≤ (log U)A (U ≥ 3)

with U ′ = U1/3 due to R. Balasubramanian [1] and U ′ = U7/22+ε due to
D. R. Heath-Brown and M. N. Huxley [2] are known. These results imply the
existence of intervals of the type T ≤ t ≤ T +H contained in [U,U +U ′] for
which σ > 1/2 + (10 log log U)−1 are zero free. Theorem 1 has applications
to such cases also.

R e m a r k 5. The following result may be of some interest. Let D3 be
any positive constant. Let ζ(s) 6= 0 in the region σ ≥ 1/2 + D3(log log(|t|
+ 100))−1. Then given any real number t > 0 there exists a zero % of ζ(s)
such that

|1/2 + it− %| ≤ D4(log log(|%|+ 100))−1

where D4 is a constant which depends only on D3. This is a hypothetical
result, the hypothesis being weaker than Riemann’s hypothesis. It is possible
to obtain this result (by our method) by employing Ramachandra’s kernel
of the second order, namely Exp((sin z)2).

R e m a r k 6. In Section 2 we prove an estimate for Ramachandra’s kernel
of the third order, namely R3(z) mentioned in Remark 1. In Section 3 we
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state a special case of Theorem 1 of our previous paper [3]. In Section 4 we
complete the proof of Theorem 1 by using the Borel–Carathéodory theorem
and Hadamard’s three circles theorem.

Notation. We use A,B, D1, D2, D3, D4, C, C∗, C1, . . . , C9 to denote ef-
fective positive numerical constants. The letter a will denote an effective
large positive constant to be chosen at the end. We write α = 1/2 +
(10 log log T )−1.

2. An estimate for Ramachandra’s kernel of the third order.
The kernel in question is R3(z) = Exp(e−Exp(cos z)) where z = x+ iy. We
prove the following theorem.

Theorem 2. Let R = |R3(z)| and |x| ≤ 2e−|y|. Then for all y we have
R ≤ ee. Also if |x| ≤ 2e−|y| and |y| ≥ 1, we have

R ≤ Exp
(
e− 1

2 Exp
(

1
2e|y| − e−|y|

))
.

In particular , if |y| = log log log T + 2 and |x| ≤ 2e−2(log log T )−1 we have
R ≤ eeT−(log T )/4.

R e m a r k. Note that 2e−2 ≥ 1/5.

P r o o f. We have

R = Exp{e− Re ecosh y cos x−i sinh y sin x}
= Exp{e− ecosh y cos x cos(sinh y sinx)};

since this expression depends only on |x| and |y| we may suppose that x > 0
and y > 0. Put θ = (sinh y sinx) and let x ≤ 2e−y. Then 0 ≤ θ ≤ 1

2xey ≤ 1
and so

cos θ = 1− θ2

2!
+

θ4

4!
− . . . ≥ 1− θ2

2
≥ 1

2
.

Thus

R ≤ Exp
(
e− 1

2ecosh y cos x
)
.

Next

cosh y cos x = (cosh y)
(

1− x2

2!
+

x4

4!
− . . .

)
= (cosh y)

(
1− x2

2!
+

x4

4!

(
1− x2

5.6

)
+

x8

8!

(
1− x2

9.10

)
+ . . .

)
> (cosh y)

(
1− x2

2

)
≥ 1

2
ey

(
1− 1

2
(2e−y)2

)
≥ 1

2
ey − e−y.

This proves the first two assertions. To prove the last assertion let |y| =
log log log T + 2 and |x| ≤ 2e−|y| = 2e−2 log log T. Then by the second as-
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sertion of Theorem 2 we have
R ≤ Exp

(
e− 1

2 Exp
(

1
2e2 log log T − e−2(log log T )−1

))
= Exp

(
e− 1

2 (log T )e2/2 Exp(−e−2(log log T )−1)
)

≤ Exp
(
e− 1

4 (log T )e2/2
)

= eeT−(log T )/4.

This proves Theorem 2 completely.

R e m a r k. To prove Theorem 1 we may assume that T exceeds any large
positive constant since we may increase C∗ to cover smaller values of T.

3. An application of our previous results to ζ(s). In this section
we record a special case of Theorem 1 of [3], as Theorem 3.

Theorem 3. Suppose ζ(s) 6= 0 in (σ > α = 1
2 +(10 log log T )−1, T−H ≤

t ≤ T + H). Then for (σ ≥ α, T −H/2 ≤ t ≤ T + H/2) we have

|ζ(σ + it)| ≤ Exp(C1(log T )(log log T )−1)

and for (α + C2(log log T )−1 ≤ σ ≤ 3/4, T −H/2 ≤ t ≤ T + H/2) we have

|log ζ(σ + it)| ≤ C3(log T )2−2σ(log log T )−1.

Also for (σ ≥ 3/4, T −H/2 ≤ t ≤ T + H/2) we have

|log ζ(σ + it)| ≤ C4(log T )1/4(log log T )−1.

Corollary. For (σ ≥ 1/2, T −H/4 ≤ t ≤ T + H/4) we have

|ζ(σ + it)| ≤ Exp(C5(log T )(log log T )−1).

P r o o f o f t h e C o r o l l a r y. To get the inequality of the Corollary in
(1−α−10(log log T )−1 ≤ σ ≤ 1−α, T −H/2 ≤ t ≤ T +H/2) we can apply
the first assertion of Theorem 3 and the functional equation. After this we
have simply to apply the maximum modulus principle to

ζ(s + z)R3(z)

where s = σ + it (1 − α ≤ σ ≤ α, T − H/4 ≤ t ≤ T + H/4) is any point
in question and z = x + iy is on the boundary of the rectangle defined
by |x| ≤ (5 log log T )−1 and |y| = log log log T + 2. We have only to apply
Theorem 2.

4. Completion of the proof. We borrow the Borel–Carathéodory
theorem from page 174 of Titchmarsh’s book [5].

Theorem 4. Let f(z) be an analytic function regular for |z| ≤ R and
let M(r) and A(r) denote as usual the maximum of |f(z)| and R{f(z)} on
|z| = r. Then for 0 < r < R,

M(r) ≤ 2r

R− r
A(R) +

R− r

R + r
|f(0)|.
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R e m a r k. We have stated the theorem in the notation of Titchmarsh’s
book. The letter R should not be confused with our notation in Section 2.
In Theorem 4, R{f(z)} denotes the real part of f(z).

We also borrow Hadamard’s three circles theorem from the same book
(see [5], p. 172).

Theorem 5. Let f(z) be an analytic function regular for r1 ≤ |z| ≤ r3.
Let r1 < r2 < r3 and let M1,M2,M3 be the maximum of |f(z)| on the three
circles |z| = r1, r2, r3 respectively. Then

M
log(r3/r1)
2 ≤ M

log(r3/r2)
1 M

log(r2/r1)
3 .

From now on we write L1 = log T , L2 = log log T, and we assume that
ζ(s) 6= 0 in (σ ≥ 1/2 − 10aL−1

2 , ‖t − T | ≤ 10aL−1
2 ). We obtain a contra-

diction by a suitable application of Theorems 4 and 5. We put z0 = α +
(C2 + a)L−1

2 + iT.

Lemma 1. Let f(z) = log ζ(z+z0). Then with R = 6aL−1
2 and r = 4aL−1

2

we have
M(r) ≤ C6aL1L

−1
2 .

P r o o f. By using the asymptotic properties of the conversion factor in
the functional equation for ζ(s), we see that A(R) does not exceed a constant
times aL1L

−1
2 . Certainly |f(0)| ≤ C7e

−aL1L
−1
2 . This completes the proof.

It is to be noted here that we have used Theorem 3 and its corollary to get
the bounds for A(R) and |f(0)| required for the application of Theorem 4.

Lemma 2. As before let f(z) = log ζ(z + z0), r1 = L−1
2 , r2 = 2aL−1

2 and
r3 = 4aL−1

2 . We have

(M(2aL−1
2 ))log(4a) ≤ (C8e

−aL1L
−1
2 )log 2(C6aL1L

−1
2 )log(2a).

P r o o f. We have M2 = M(2aL−1
2 ) and M1 ≤ C8e

−aL1L
−1
2 by Theo-

rem 3 and M3 ≤ C6aL1L
−1
2 by Lemma 1. Hence the lemma follows from

Theorem 5.

Lemma 3. We have log |ζ(z0 − 2aL−1
2 )| ≥ C9aL1L

−1
2 and so

M(2aL−1
2 ) ≥ C9aL1L

−1
2 .

P r o o f. The proof follows by the functional equation and the lower
bound for log |ζ(s)| in (α + C2L

−1
2 ≤ σ ≤ 3/4, T − H/2 ≤ t ≤ T + H/2)

provided by Theorem 3. This proves the lemma.

The proof of Theorem 1 is now complete since the inequalities asserted
by Lemmas 2 and 3 contradict each other, if we choose for a a large constant.

Acknowledgements. The authors are indebted to the referee for a
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