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1. Introduction and notation. As usual we write s = o + it, and

(o) B n+1 B 1
C(S)E;(n - nf U du)+8_71, o >0,
:in_s :H(l—p_s)_l, o> 1
n=1 P

In the last product p runs over all primes 2,3,5,7,11,... The object of this
note is to prove the following theorem.

THEOREM 1. There exist effective absolute positive constants C' and C*
with the following property. Let T > 20, H = C'logloglogT and ((s) # 0 in
(1/2+ (10loglogT)™ <0 <1, T—H <t < T+ H). Then there is at least
one zero of ((s) in the disc of radius C*(loglogT)~! with centre 1/2 + iT.

Remark 1. The proof of this theorem depends on Theorem 1 of our ear-
lier paper [3], and a significant use of Ramachandra’s kernel function of the
third order, namely R3(z) = Exp(e —Exp(cos z)). These kernels were known
to Ramachandra for a long time. Ramachandra’s kernel function of the sec-
ond order, namely Ry (z) = Exp((sin 2)?), was used by him and his collabo-
rators in various papers. Besides these the proof uses Borel-Carathéodory
theorem and Hadamard’s three circles theorem (the application of these last
two theorems is similar to that explained in [4], pp. 210, 211).

Remark 2. A more complicated application of Borel-Carathéodory
theorem and Hadamard’s three circles theorem was employed by E. C. Titch-
marsh to give an alternative (simpler) proof of a theorem of J. E. Littlewood
(see [4], Theorem 9.12, p. 224). Littlewood’s theorem asserts that given any
t > 0 there exists at least one zero ¢ = f+iy with [t—v| < D1 (log log log(|t|+
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10%99))=1. Our theorem asserts that |t —v| < Ds(loglog(|t| + 10109))~1 if
we assume Riemann hypothesis. Of course the result just mentioned is not
difficult to prove. But Theorem 1 is not so easy to prove and is also of
sufficient interest in itself.

Remark 3. It is possible to generalize Theorem 1 to functions F'(s)
which have an Euler product and a functional equation. But the fact that
there is at least one zero-free region for F'(s) required by Theorem 1 is
not known for any such F(s). Hence we have to restrict F'(s) to ordinary
L-functions and L-functions of quadratic fields. In these cases we can prove

that
2U

[ 1F(1/2+it)? dt < (logU)* (U > 3)
U

1

U

where A > 0 is some constant. This last condition on the mean-value ensures

such a zero-free region for F(s). In fact under this condition the number of

zeros of F(s) in (Res > o9, |Ims| < U) is < U329 (1og U)B where
B > 0 is a constant which depends on A.

Remark 4. While dealing with applications of Theorem 1 for U <

T < 2U it is convenient to prove it with (10loglogU)~! in place of

(10loglog T)~t. This follows from the method of our proof. Also deeper
results like

1 U+U’
o lea/2rinPd< (o)t (U 23)
U

with U’ = U'/? due to R. Balasubramanian [1] and U’ = U7/22*¢ due to
D. R. Heath-Brown and M. N. Huxley [2] are known. These results imply the
existence of intervals of the type T' <t < T'+ H contained in [U, U + U’] for
which 0 > 1/2 + (10loglog U)~! are zero free. Theorem 1 has applications
to such cases also.

Remark 5. The following result may be of some interest. Let D3 be
any positive constant. Let ((s) # 0 in the region ¢ > 1/2 4+ D3(log log(|t|
+100))~1. Then given any real number ¢t > 0 there exists a zero o of ((s)
such that

1/2 + it — o] < D4(loglog(|e| + 100))~"
where Dy is a constant which depends only on Ds. This is a hypothetical
result, the hypothesis being weaker than Riemann’s hypothesis. It is possible
to obtain this result (by our method) by employing Ramachandra’s kernel
of the second order, namely Exp((sin 2)?).

Remark 6. In Section 2 we prove an estimate for Ramachandra’s kernel
of the third order, namely Rs3(z) mentioned in Remark 1. In Section 3 we
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state a special case of Theorem 1 of our previous paper [3]. In Section 4 we
complete the proof of Theorem 1 by using the Borel-Carathéodory theorem
and Hadamard’s three circles theorem.

Notation. We use A, B, D1, D5, D3, D4, C,C*,C4,...,Cy to denote ef-
fective positive numerical constants. The letter a will denote an effective

large positive constant to be chosen at the end. We write o = 1/2 +
(10loglog T) 1.

2. An estimate for Ramachandra’s kernel of the third order.
The kernel in question is R3(z) = Exp(e — Exp(cos z)) where z = z +1iy. We
prove the following theorem.

THEOREM 2. Let R = |R3(2)| and |z| < 2e1¥I. Then for all y we have
R < ef. Also if |z| < 2e1¥ and |y| > 1, we have

R < Exp(e — 3 Exp (%elyl - e_|y|)).

In particular, if |y| = logloglogT + 2 and |z| < 2e~2(loglog T) ™! we have
R< eeTf(logT)/Zl‘

Remark. Note that 2¢72 > 1/5.
Proof. We have
R = EXp{e — Re ecoshycosxfisinhysinx}
— Exp{e — MY cog(sinh y sin ) };

since this expression depends only on |z| and |y| we may suppose that z > 0
and y > 0. Put § = (sinhysinx) and let < 2e™ Y. Then 0 < 0 < %xey <1
and so

62 o4 2 1
C089:1—§+I—...21—525.
Thus
RSEXp(e— %ecoshycosr).
Next
(E2 x4
coshycosx = (coshy)(l o + TR )

$2 SU4 .’EQ 568 .TQ
—(coshy)(1- L s 2 (1o )42 (-2 )4
(cos y)< 21 ( 5.6) T3 ( 9.10> * )

a? 1 1 1
2 ) > ey —Z2(2e7Y)2 ) > Ze¥Y — 7Y,
> (coshy)<1 2> 2 e (1 2(26 ) > z el —e

This proves the first two assertions. To prove the last assertion let |y| =
logloglog T + 2 and |z| < 2e~1¥l = 2e=2?loglog T. Then by the second as-
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sertion of Theorem 2 we have
R< Exp(e — % Exp(%e2 loglog T — e~ 2(loglog T)_l))
= Exp(e — 1 (log T)62/2 Exp(—e *(loglogT)™ "))
< Exp(e — §(log T)GQ/Q) = e~ (o T)/4,
This proves Theorem 2 completely.

Remark. To prove Theorem 1 we may assume that 1" exceeds any large
positive constant since we may increase C* to cover smaller values of T.

3. An application of our previous results to ((s). In this section
we record a special case of Theorem 1 of [3], as Theorem 3.

THEOREM 3. Suppose ((s) # 0 in (o0 > a = £+ (10loglog T)~!, T—H <
t<T+ H). Then for (0 >a, T —H/2<t<T+ H/2) we have

(C(o + it)] < Exp(Cy(log T)(loglog T)™)
and for (a + Co(loglogT) ™t <o <3/4, T — H/2 <t < T+ H/2) we have
llog ¢(o + it)| < C3(log T)?>~27 (loglog T) .
Also for (60 > 3/4, T — H/2 <t <T + H/2) we have
log (o + it)| < Ca(log T)"/*(loglog T)~*.
COROLLARY. For (0 >1/2, T— H/4 <t <T+ H/4) we have
|¢(o +it)| < Exp(Cs(log T)(loglog T) ™).

Proof of the Corollary. To get the inequality of the Corollary in
(1—a—10(oglogT)"! <o <1-a,T—H/2<t<T+ H/2) we can apply
the first assertion of Theorem 3 and the functional equation. After this we
have simply to apply the maximum modulus principle to

C(s+ 2z)Rs(z)
where s =0 +it (1—a<oc<a, T —-H/4<t<T+ H/4) is any point
in question and z = x + iy is on the boundary of the rectangle defined
by |z| < (5loglogT)~! and |y| = logloglogT + 2. We have only to apply
Theorem 2.

4. Completion of the proof. We borrow the Borel-Carathéodory
theorem from page 174 of Titchmarsh’s book [5].

THEOREM 4. Let f(z) be an analytic function regular for |z| < R and
let M(r) and A(r) denote as usual the mazimum of |f(z)| and R{f(z)} on
|z| = r. Then for 0 <r < R,

2r R—r
AR
R—r ( )+R+7’

M(r) <

£ (0)]-
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Remark. We have stated the theorem in the notation of Titchmarsh’s
book. The letter R should not be confused with our notation in Section 2.
In Theorem 4, R{f(z)} denotes the real part of f(z).

We also borrow Hadamard’s three circles theorem from the same book
(see [5], p. 172).

THEOREM 5. Let f(z) be an analytic function regular for ri < |z| < rs.
Let ry < ro < r3 and let My, M, M3 be the maximum of |f(2)| on the three
circles |z| = r1,ra, r3 respectively. Then

Méog(Tg/rl) < Miog(rg/rg) Méog(rz/m) )

From now on we write Ly = logT', Lo = loglogT, and we assume that
¢(s) # 0in (0 > 1/2 —10aL; ", ||t — T| < 10aL,"'). We obtain a contra-
diction by a suitable application of Theorems 4 and 5. We put zg = a +
(CQ =+ a,)L2_1 +4T.

LEMMA 1. Let f(2) = log ((2+420). Then with R = 6aLy" andr = 4aLy"
we have

M(r) < CsalyLy".

Proof. By using the asymptotic properties of the conversion factor in
the functional equation for ((s), we see that A(R) does not exceed a constant
times aL; Ly '. Certainly |f(0)] < C7e=*L;L;*. This completes the proof.

It is to be noted here that we have used Theorem 3 and its corollary to get
the bounds for A(R) and |f(0)| required for the application of Theorem 4.

LEMMA 2. As before let f(z) =log((z + 20), r1 = Ly ', ro = 2aL; " and
r3 =4aly". We have
(M(20L3))/%840) < (CyemoL, L3118 (CaalL Ly1)o5Co).

Proof. We have My = M(2aL;"') and M; < Cge™®LyL;" by Theo-
rem 3 and M3 < CgaliL; ! by Lemma 1. Hence the lemma follows from
Theorem 5.

LEMMA 3. We have log |((z0 — 2aLy")| > Coal Ly and so
M(2aL;") > Coaly Ly

Proof. The proof follows by the functional equation and the lower
bound for log |¢(s)] in (o + CoLy' <0 < 3/4, T —H/2 <t <T+ H/2)
provided by Theorem 3. This proves the lemma.

The proof of Theorem 1 is now complete since the inequalities asserted
by Lemmas 2 and 3 contradict each other, if we choose for g a large constant.

Acknowledgements. The authors are indebted to the referee for a
comment which helped them to correct many typographical errors.
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