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A remark on B2-sequences in GF[p, x]

by

John R. Burke (Spokane, Wash.)

In the classical case, a B2-sequence A = {ai}∞i=1 is an increasing sequence
of non-negative integers for which the equation ai + aj = n, i ≤ j, has at
most one solution for any positive integer n. Let A(n) = |A ∩ [1, n]|. A
question posed by Sidon was, in essence, what is the maximum growth rate
of A(n) subject to A being a B2-sequence? It has proven to be a quite
difficult problem with one of the major results, due to Erdős and Turán [3],
being A(n) < n1/2 +O(n1/4).

In the following the concept of a B2-sequence in a polynomial ring over a
finite field, denoted by GF[p, x], will be made precise and a result analogous
to the Erdős–Turán result in the integers will be established.

To begin with, we need some kind of ordering on GF[p, x]. Order GF(p)
by 0 < 1 < . . . < p − 1. For any f(x) ∈ GF[p, x], define the norm of f(x)
to be the value of f(p), viewing f(x) as an element of Z[x]. Denote this by
‖f(x)‖.

Now for A ⊂ GF[p, x] and f(x) ∈ GF[p, x] let

RA(f) =
∑

f(x)=ai(x)+aj(x)

1,

where ‖ai(x)‖ ≤ ‖aj(x)‖, deg(aj(x)) ≤ deg(f(x)), ai(x), aj(x) ∈ A.
Thus RA(f) is the number of ways a given polynomial f(x) can be

written as the sum of elements of A with smaller degree.

Definition. Let A ⊆ GF[p, x] be an increasing (in norm) sequence. A is
said to be a B2-sequence if RA(f) ≤ 1 for all f(x) ∈ GF[p, x]. (In general, A
is a Bh(g)-sequence if the number of solutions to ai1(x)+. . .+aih(x) = f(x),
‖ai1(x)‖ ≤ . . . ≤ ‖aih(x)‖, deg(aij (x)) ≤ deg(f(x)), is no more than g.)

For a sequence A ⊆ GF[p, x], define

A(n) =
∑

a(x)∈A
0≤deg(a(x))≤n

1 where deg(0) = −∞.

[93]
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Our goal is to study the behavior of A(n) for large n subject to the
condition that RA(f) ≤ 1 for all f(x) ∈ GF[p, x]. In particular, what is the
maximum growth rate of A(n) if A is a B2-sequence?

Definition. Let Fh(n) be the maximum number of elements in a set
A ⊆ GF[p, x] of degree less than or equal to n such that the sums a1(x) +
. . .+ ah(x), ai(x) ∈ A, are all distinct.

The main purpose of this article is to establish the upper bound for
F2(n). To this end we have the following analogue to the result obtained by
Erdős and Turán [3].

Theorem 1. F2(n) < p(n+1)/2 +O(p(n+1)/4).

P r o o f. Let r = F2(n) and let A = {ai(x)}ri=1 be a set of polynomials for
which deg(ai(x)) ≤ n for 1 ≤ i ≤ r and RA(f) ≤ 1 for all f(x) ∈ GF[p, x].
Let u be a positive integer, u < pn+1, and consider the sets

Im = {f(x) : ‖f(x)‖ ∈ [−u+m,−1 +m]}, 1 ≤ m ≤ pn+1 + u.

Let Am = |A ∩ Im|. Since each ai(x) occurs in exactly u of the sets of the
type Im, it follows that

pn+1+u∑
m=1

Am = ru.

The number of pairs (ai(x), aj(x)) with ‖ai(x)‖ < ‖aj(x)‖ in a given Im
is 1

2Am(Am − 1) so that the total number of such pairs, each lying in some
Im, is

1
2

pn+1+u∑
m=1

Am(Am − 1).

Thus

(ru)2 =
( pn+1+u∑

m=1

Am

)2
≤
( pn+1+u∑

m=1

1
)( pn+1+u∑

m=1

A2
m

)
= (pn+1 +u)

pn+1+u∑
m=1

A2
m,

so that

1
2

pn+1+u∑
m=1

Am(Am − 1) =
1
2

( pn+1+u∑
m=1

A2
m

)
− 1

2

( pn+1+u∑
m=1

Am

)
(∗)

≥ (ru)2

2(pn+1 + u)
− 1

2
ru =

ru

2

(
ru

pn+1 + u
− 1
)
.

Now for each pair (ai(x), aj(x)) with ‖ai(x)‖ < ‖aj(x)‖ it follows that
the differences ai(x)−aj(x) are all distinct. If not, there exist distinct i, j, k,
l such that ai(x)−aj(x) = ak(x)−al(x) so that ai(x)+al(x) = ak(x)+aj(x),
contrary to RA(f) ≤ 1 for all f(x) ∈ GF[p, x].

There is little that can be said about the polynomial ai(x) − aj(x) al-
though it may be noted that each pair (ai(x), aj(x)) satisfying the condition
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‖aj(x)‖−‖ai(x)‖ = d must occur in u− d of the sets Im. There are at most∑u−1
d=1 (u− d) = 1

2u(u− 1) such pairs. From (∗) it now follows that

1
2
u(u− 1) ≥ 1

2

pn+1+u∑
m=1

Am(Am − 1) ≥ ru

2

(
ru

pn+1 + u
− 1
)

or
u(u− 1)(pn+1 + u) ≥ ru(ru− (pn+1 + u)) > r(ru− 2pn+1).

Thus
0 > r2u− 2rpn+1 − u(pn+1 + u).

Solving the inequality for r yields

r <
pn+1

u
+
((

pn+1

u

)2

+ u+ pn+1
)1/2

.

Letting u = p3(n+1)/4 we have r < p(n+1)/2 +O(p(n+1)/4) as claimed.

Another natural question to consider is the minimal growth rate of A(n)
under the restriction that RA(f) ≥ 1.

Definition [1]. A set B ⊂ GF[p, x] is a basis of order h if for any
f(x) ∈ GF[p, x] one has

f(x) =
k∑

i=1

bi(x), bi(x) ∈ B, deg(bi(x)) ≤ deg(f(x)), for some k ≤ h.

Asking that RA(f) ≥ 1 for all f(x) ∈ GF[p, x] is equivalent to asking
that A be a basis of order 2. There are results on the density of bases for
GF[p, x] as well as essential components ([1], [2]), but not on the minimal
growth of the function A(n). To this end, let

A =
{ k∑

i=0

aix
2i : k ∈ Z0, ai ∈ GF(p)

}
∪
{ l∑

j=0

ajx
2j+1 : l ∈ Z0, aj ∈ GF(p)

}
.

By the construction of A, one observes that the growth rate of A(n)
is essentially p(n+1)/2. From a combinatoric point of view, the number of
elements in A + A of degree n or less is at most 1

2A(n)(A(n) + 1). Thus
1
2A(n)(A(n) + 1) ≥ pn+1 − 1 if RA(f) ≥ 1. For our particular example it
is easily seen that A(2k + 1) = 2(pk+1 − 1) and A(2k) = pk(p + 1) so that
A(n) ≤ 2p(n+1)/2. Thus we have

Theorem 2. There exists a basis of order 2 such that A(n) � p(n+1)/2

where the implied constant is no larger than 2.

A similar question may be asked about the growth rate of A(n) if RA(f)
≥ 1 without the restriction that deg(ai(x)) ≤ deg(f(x)). That is, what can
be said about the minimal growth rate of A(n) when A is a “weak basis” of
order 2 where a weak basis is defined below.
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Definition [1]. A set B ⊂ GF[p, x] is a weak basis of order h if for any
f(x) ∈ GF[p, x] one can write

f(x) =
k∑

i=1

bi(x), bi(x) ∈ B, for some k ≤ h.

In this direction we have

Theorem 3. For each ε > 0 there exists a weak basis A of order 2 such
that

lim inf
n→∞

A(n)
ln(n)pln(n)

< ε.

P r o o f. Let k be an arbitrary but fixed integer, k ≥ 2. Define

A(n) = {xkn + f(x) : deg(f(x)) ≤ n} ∪ {(p− 1)xk
n} and A =

∞⋃
n=1

A(n).

To show A is a weak basis of order 2, let f(x) ∈ GF[p, x] with deg(f(x)) ≤
n. Then f(x) = (xk

n

+ f(x)) + (p− 1)xk
n ∈ A+A. To compute the growth

rate of A(n), note that A(kn) ≤ n+
∑n
i=1 p

i ≤ npn. Let N = kn so that

A(N) ≤ ln(N)pln(N)p1/ ln(k)

ln(k)
or

A(N)
ln(N)pln(N)

<
p1/ ln(k)

ln(k)
.

As the limit of the right hand side is 0 as k → ∞, the theorem is
established.
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