A remark on B_{2}-sequences in $\mathrm{GF}[p, x]$

by
John R. Burke (Spokane, Wash.)

In the classical case, a B_{2}-sequence $A=\left\{a_{i}\right\}_{i=1}^{\infty}$ is an increasing sequence of non-negative integers for which the equation $a_{i}+a_{j}=n, i \leq j$, has at most one solution for any positive integer n. Let $A(n)=|A \cap[1, n]|$. A question posed by Sidon was, in essence, what is the maximum growth rate of $A(n)$ subject to A being a B_{2}-sequence? It has proven to be a quite difficult problem with one of the major results, due to Erdős and Turán [3], being $A(n)<n^{1 / 2}+O\left(n^{1 / 4}\right)$.

In the following the concept of a B_{2}-sequence in a polynomial ring over a finite field, denoted by GF $[p, x]$, will be made precise and a result analogous to the Erdős-Turán result in the integers will be established.

To begin with, we need some kind of ordering on $\operatorname{GF}[p, x]$. Order $\operatorname{GF}(p)$ by $0<1<\ldots<p-1$. For any $f(x) \in \mathrm{GF}[p, x]$, define the norm of $f(x)$ to be the value of $f(p)$, viewing $f(x)$ as an element of $\mathbb{Z}[x]$. Denote this by $\|f(x)\|$.

Now for $A \subset \operatorname{GF}[p, x]$ and $f(x) \in \operatorname{GF}[p, x]$ let

$$
R_{A}(f)=\sum_{f(x)=a_{i}(x)+a_{j}(x)} 1,
$$

where $\left\|a_{i}(x)\right\| \leq\left\|a_{j}(x)\right\|, \operatorname{deg}\left(a_{j}(x)\right) \leq \operatorname{deg}(f(x)), a_{i}(x), a_{j}(x) \in A$.
Thus $R_{A}(f)$ is the number of ways a given polynomial $f(x)$ can be written as the sum of elements of A with smaller degree.

Definition. Let $A \subseteq \mathrm{GF}[p, x]$ be an increasing (in norm) sequence. A is said to be a B_{2}-sequence if $R_{A}(f) \leq 1$ for all $f(x) \in \mathrm{GF}[p, x]$. (In general, A is a $B_{h}(g)$-sequence if the number of solutions to $a_{i_{1}}(x)+\ldots+a_{i_{h}}(x)=f(x)$, $\left\|a_{i_{1}}(x)\right\| \leq \ldots \leq\left\|a_{i_{h}}(x)\right\|, \operatorname{deg}\left(a_{i_{j}}(x)\right) \leq \operatorname{deg}(f(x))$, is no more than g.)

For a sequence $A \subseteq \mathrm{GF}[p, x]$, define

$$
A(n)=\sum_{\substack{a(x) \in A \\ 0 \leq \operatorname{deg}(a(x)) \leq n}} 1 \quad \text { where } \operatorname{deg}(0)=-\infty .
$$

Our goal is to study the behavior of $A(n)$ for large n subject to the condition that $R_{A}(f) \leq 1$ for all $f(x) \in \mathrm{GF}[p, x]$. In particular, what is the maximum growth rate of $A(n)$ if A is a B_{2}-sequence?

Definition. Let $F_{h}(n)$ be the maximum number of elements in a set $A \subseteq \mathrm{GF}[p, x]$ of degree less than or equal to n such that the sums $a_{1}(x)+$ $\ldots+a_{h}(x), a_{i}(x) \in A$, are all distinct.

The main purpose of this article is to establish the upper bound for $F_{2}(n)$. To this end we have the following analogue to the result obtained by Erdős and Turán [3].

Theorem 1. $F_{2}(n)<p^{(n+1) / 2}+O\left(p^{(n+1) / 4}\right)$.
Proof. Let $r=F_{2}(n)$ and let $A=\left\{a_{i}(x)\right\}_{i=1}^{r}$ be a set of polynomials for which $\operatorname{deg}\left(a_{i}(x)\right) \leq n$ for $1 \leq i \leq r$ and $R_{A}(f) \leq 1$ for all $f(x) \in \mathrm{GF}[p, x]$. Let u be a positive integer, $u<p^{n+1}$, and consider the sets

$$
I_{m}=\{f(x):\|f(x)\| \in[-u+m,-1+m]\}, \quad 1 \leq m \leq p^{n+1}+u .
$$

Let $A_{m}=\left|A \cap I_{m}\right|$. Since each $a_{i}(x)$ occurs in exactly u of the sets of the type I_{m}, it follows that

$$
\sum_{m=1}^{p^{n+1}+u} A_{m}=r u
$$

The number of pairs $\left(a_{i}(x), a_{j}(x)\right)$ with $\left\|a_{i}(x)\right\|<\left\|a_{j}(x)\right\|$ in a given I_{m} is $\frac{1}{2} A_{m}\left(A_{m}-1\right)$ so that the total number of such pairs, each lying in some I_{m}, is

$$
\frac{1}{2} \sum_{m=1}^{p^{n+1}+u} A_{m}\left(A_{m}-1\right)
$$

Thus
$(r u)^{2}=\left(\sum_{m=1}^{p^{n+1}+u} A_{m}\right)^{2} \leq\left(\sum_{m=1}^{p^{n+1}+u} 1\right)\left(\sum_{m=1}^{p^{n+1}+u} A_{m}^{2}\right)=\left(p^{n+1}+u\right) \sum_{m=1}^{p^{n+1}+u} A_{m}^{2}$,
so that

$$
\text { (*) } \begin{aligned}
\frac{1}{2} \sum_{m=1}^{p^{n+1}+u} A_{m}\left(A_{m}-1\right) & =\frac{1}{2}\left(\sum_{m=1}^{p^{n+1}+u} A_{m}^{2}\right)-\frac{1}{2}\left(\sum_{m=1}^{p^{n+1}+u} A_{m}\right) \\
& \geq \frac{(r u)^{2}}{2\left(p^{n+1}+u\right)}-\frac{1}{2} r u=\frac{r u}{2}\left(\frac{r u}{p^{n+1}+u}-1\right) .
\end{aligned}
$$

Now for each pair $\left(a_{i}(x), a_{j}(x)\right)$ with $\left\|a_{i}(x)\right\|<\left\|a_{j}(x)\right\|$ it follows that the differences $a_{i}(x)-a_{j}(x)$ are all distinct. If not, there exist distinct i, j, k, l such that $a_{i}(x)-a_{j}(x)=a_{k}(x)-a_{l}(x)$ so that $a_{i}(x)+a_{l}(x)=a_{k}(x)+a_{j}(x)$, contrary to $R_{A}(f) \leq 1$ for all $f(x) \in \mathrm{GF}[p, x]$.

There is little that can be said about the polynomial $a_{i}(x)-a_{j}(x)$ although it may be noted that each pair $\left(a_{i}(x), a_{j}(x)\right)$ satisfying the condition
$\left\|a_{j}(x)\right\|-\left\|a_{i}(x)\right\|=d$ must occur in $u-d$ of the sets I_{m}. There are at most $\sum_{d=1}^{u-1}(u-d)=\frac{1}{2} u(u-1)$ such pairs. From (*) it now follows that

$$
\frac{1}{2} u(u-1) \geq \frac{1}{2} \sum_{m=1}^{p^{n+1}+u} A_{m}\left(A_{m}-1\right) \geq \frac{r u}{2}\left(\frac{r u}{p^{n+1}+u}-1\right)
$$

or

$$
u(u-1)\left(p^{n+1}+u\right) \geq r u\left(r u-\left(p^{n+1}+u\right)\right)>r\left(r u-2 p^{n+1}\right) .
$$

Thus

$$
0>r^{2} u-2 r p^{n+1}-u\left(p^{n+1}+u\right) .
$$

Solving the inequality for r yields

$$
r<\frac{p^{n+1}}{u}+\left(\left(\frac{p^{n+1}}{u}\right)^{2}+u+p^{n+1}\right)^{1 / 2}
$$

Letting $u=p^{3(n+1) / 4}$ we have $r<p^{(n+1) / 2}+O\left(p^{(n+1) / 4}\right)$ as claimed.
Another natural question to consider is the minimal growth rate of $A(n)$ under the restriction that $R_{A}(f) \geq 1$.

Definition [1]. A set $B \subset \mathrm{GF}[p, x]$ is a basis of order h if for any $f(x) \in \mathrm{GF}[p, x]$ one has

$$
f(x)=\sum_{i=1}^{k} b_{i}(x), \quad b_{i}(x) \in B, \operatorname{deg}\left(b_{i}(x)\right) \leq \operatorname{deg}(f(x)), \text { for some } k \leq h
$$

Asking that $R_{A}(f) \geq 1$ for all $f(x) \in \mathrm{GF}[p, x]$ is equivalent to asking that A be a basis of order 2 . There are results on the density of bases for $\mathrm{GF}[p, x]$ as well as essential components ([1], [2]), but not on the minimal growth of the function $A(n)$. To this end, let
$A=\left\{\sum_{i=0}^{k} a_{i} x^{2 i}: k \in \mathbb{Z}_{0}, a_{i} \in \mathrm{GF}(p)\right\} \cup\left\{\sum_{j=0}^{l} a_{j} x^{2 j+1}: l \in \mathbb{Z}_{0}, a_{j} \in \mathrm{GF}(p)\right\}$.
By the construction of A, one observes that the growth rate of $A(n)$ is essentially $p^{(n+1) / 2}$. From a combinatoric point of view, the number of elements in $A+A$ of degree n or less is at most $\frac{1}{2} A(n)(A(n)+1)$. Thus $\frac{1}{2} A(n)(A(n)+1) \geq p^{n+1}-1$ if $R_{A}(f) \geq 1$. For our particular example it is easily seen that $A(2 k+1)=2\left(p^{k+1}-1\right)$ and $A(2 k)=p^{k}(p+1)$ so that $A(n) \leq 2 p^{(n+1) / 2}$. Thus we have

Theorem 2. There exists a basis of order 2 such that $A(n) \ll p^{(n+1) / 2}$ where the implied constant is no larger than 2.

A similar question may be asked about the growth rate of $A(n)$ if $R_{A}(f)$ ≥ 1 without the restriction that $\operatorname{deg}\left(a_{i}(x)\right) \leq \operatorname{deg}(f(x))$. That is, what can be said about the minimal growth rate of $A(n)$ when A is a "weak basis" of order 2 where a weak basis is defined below.

Definition [1]. A set $B \subset \mathrm{GF}[p, x]$ is a weak basis of order h if for any $f(x) \in \mathrm{GF}[p, x]$ one can write

$$
f(x)=\sum_{i=1}^{k} b_{i}(x), \quad b_{i}(x) \in B, \text { for some } k \leq h
$$

In this direction we have
Theorem 3. For each $\varepsilon>0$ there exists a weak basis A of order 2 such that

$$
\liminf _{n \rightarrow \infty} \frac{A(n)}{\ln (n) p^{\ln (n)}}<\varepsilon
$$

Proof. Let k be an arbitrary but fixed integer, $k \geq 2$. Define

$$
A^{(n)}=\left\{x^{k^{n}}+f(x): \operatorname{deg}(f(x)) \leq n\right\} \cup\left\{(p-1) x^{k^{n}}\right\} \quad \text { and } \quad A=\bigcup_{n=1}^{\infty} A^{(n)}
$$

To show A is a weak basis of order 2 , let $f(x) \in \mathrm{GF}[p, x]$ with $\operatorname{deg}(f(x)) \leq$ n. Then $f(x)=\left(x^{k^{n}}+f(x)\right)+(p-1) x^{k^{n}} \in A+A$. To compute the growth rate of $A(n)$, note that $A\left(k^{n}\right) \leq n+\sum_{i=1}^{n} p^{i} \leq n p^{n}$. Let $N=k^{n}$ so that

$$
A(N) \leq \frac{\ln (N) p^{\ln (N)} p^{1 / \ln (k)}}{\ln (k)}
$$

or

$$
\frac{A(N)}{\ln (N) p^{\ln (N)}}<\frac{p^{1 / \ln (k)}}{\ln (k)} .
$$

As the limit of the right hand side is 0 as $k \rightarrow \infty$, the theorem is established.

References

[1] J. R. Burke, A notion of density and essential components in GF[$p, x]$, Acta Arith. 44 (1984), 299-306.
[2] J. Cherly et J.-M. Deshouillers, Un théorème d'addition dans $\mathbb{F}_{q}[x]$, J. Number Theory 34 (1990), 128-131.
[3] P. Erdős and P. Turán, On a problem of Sidon in additive number thory and some related problems, J. London Math. Soc. 16 (1941), 212-215; Addendum (by P. Erdős), ibid. 19 (1944), 208.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

GONZAGA UNIVERSITY
SPOKANE, WASHINGTON 99258
U.S.A.

