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1. Introduction. Our starting point is the study of systems of numer-
ation with respect to a general base from an arithmetical and a dynamical
point of view. Let G = (Gn)n≥0 be a strictly increasing sequence of positive
integers with G0 = 1. In the following such a sequence is called G-scale.
Any positive integer n can be represented in G-scale as follows:

Let L be the unique integer satisfying GL ≤ n < GL+1. Then there exist
integers εL(n) and nL with n = εL(n)GL + nL and 0 ≤ nL < GL. This is
the greedy algorithm (see for example [Fr]) and by iteration we finally get
the G-expansion of n

(1.1) n = ε0(n)G0 + . . . + εL(n)GL,

where the digits εj(n) satisfy 0 ≤ εj(n) < Gj+1/Gj . It is well-known that
the expansion (1.1) is uniquely determined provided that

(1.2) ε0(n)G0 + . . . + εj(n)Gj < Gj+1, 0 ≤ j ≤ L.

A lot of special examples of such expansions have been studied in the
literature. The classical case is the q-ary number system with respect to an
integral base q ≥ 2. A well-known extension is Cantor’s number system,
where Gn is given as the product q0. . .qn of positive integers; see [HW] and
[KT]. Another important number system was introduced by Ostrowski [Os].
In that case Gn is the denominator of the nth convergent in the continued
fraction expansion of an irrational real number θ. Later this expansion
played an important rôle in proving precise estimates and exact formulas for
the discrepancy of the sequence (nθ); cf. [Dup], [Sg], and [S/os]. A particular
case is the golden ratio θ = (

√
5−1)/2 which leads to the Fibonacci sequence.

This example can also be viewed as a special linear recurring sequence for
G. This class of expansions has been studied extensively from a number-
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theoretic point of view. The investigations in this direction were initiated
by J. Coquet (see for example [Co] and the survey [Li1] on his work). One
motivation is the study of discrepancy estimates for sequences of the type
(s(n)θ) where s(n) = sG(n) denotes the sum of digits of n to base G, i.e.

sG(n) =
∑
j≤L

εj(n).

Another motivation is the problem to find the asymptotic behaviour of the
moments of the sum of digits function. The most recent papers in this
direction are [GT1], [GT2], [FGKPT], [GKPT] and [Be]. In connection
with substitution automata we refer to the very recent article [DT1], [DT2]
by Dumont and Thomas.

The most popular sequence in this area is the Thue–Morse sequence t,
which can be defined as the sum of digits to base 2 viewed mod 2. From a
dynamical point of view this sequence was first investigated by M. Keane.
The function f(n) = e2πiθs(n) (θ ∈ R) is G-multiplicative, which means in
general

(1.3) f(n) =
L∏

j=0

f(εj(n)Gj), f(0) = 1.

Let us consider a sequence u = (un) in a compact metric space X. Let Ω
be the infinite product space XN and let σ be the usual shift transformation
on Ω and for u ∈ Ω define the orbit closure Ou = {σnu : n ≥ 0}. Then the
dynamical system

K(u) = (Ou, σ|O)

can be associated with the sequence u. One of the most natural questions
is to ask for the properties of such dynamical systems. For example, in
the case of the Thue–Morse sequence K(t) is metrically isomorphic to a
two-point group extension of the classical 2-adic machine. For Cantor ex-
pansions a similar result can be proved replacing the two-point group by a
closed subgroup of the circle (see [Li2]). In this paper we introduce the gen-
eral concept of a G-adic machine (we will also call it a G-odometer) which
serves us to understand the dynamics of G-multiplicative sequences. There
is a strong connection to the Bratteli diagram introduced by A. M. Ver-
shik [Ve]. Recently B. Solomyak [So1]–[So3] used this approach to give a
full description of G-odometers in the case where G comes from a special
expansion based on a linear recurring sequence.

In Section 2 we will define the general G-odometer and we will establish
a necessary and sufficient condition for the continuity. In Section 3 we
will investigate in detail expansions with respect to linear recurrences. In
particular, for second-order linear recurring sequences we identify the G-
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odometer to a rotation on the circle. In the final Section 4 we study the
discrepancy of some related sequences.

2. General G-odometers. Let Ej = {k ∈ N : 0 ≤ k < Gj+1/Gj} be
endowed with the discrete topology. The G-expansion of positive integers
leads to a natural injective mapping n 7→ n from N to the infinite product
space

∏
j≥0 Ej given by

(2.1) n = ε0(n) . . . εL(n)0∞

according to the G-expansion (1.1) of n (here the string n ends with an
infinite sequence of digits 0). Now we consider the closure of the image N
in E which is the set

(2.2) KG = {x = (x0x1x2 . . .) ∈ E : ∀ j ≥ 0, x0G0 + . . . + xjGj < Gj+1}.
The infinite strings in KG will be called G-admissible and we extend this
definition to any finite string X = x0 . . . xn, if X0∞ is G-admissible.

Obviously, KG is compact and it will be called the G-compactification of
N. In the following we use the notation x(j) = x0G0 + . . . + xjGj . Now we
want to extend the translation n 7→ n + 1 on N to KG. For this purpose we
introduce the set

(2.3) K0
G = {x ∈ KG : ∃Mx,∀ j ≥ Mx x(j) < Gj+1 − 1}.

For x ∈ K0
G and j ≥ Mx let us set

(2.4) τ(x) = (ε0(x(j) + 1) . . . εj(x(j) + 1))xj+1xj+2 . . .

A straightforward computation shows that this definition does not depend
on the choice of j ≥ Mx. In fact, let l be the greatest integer such that
x(l− 1) + 1 = Gl provided that such an l exists; otherwise there is no carry
and we just add one to the first digit. Then for all j ≥ l we have

(x(j) + 1) = (ε0(x(l) + 1) . . . εl(x(l) + 1))xl+1 . . . xj(2.5)
= 0l(xl + 1)xl+1 . . . xj .

We extend the definition of τ by τ(x) = 0 (= 000 . . .) for x ∈ KG \ K0
G.

Now the transformation τ is well defined on the space KG and it is called
the G-odometer . We need to give a precise description of the G-expansion.
Let x ∈ KG and let D(x) = (dn)n≥0 denote the increasing sequence of all
integers d such that x(d) = Gd+1 − 1. Note that D(x) may be empty, finite
or infinite. The number of elements in the sequence D(x) will be called its
length. From the definition we easily obtain

(2.6) x ∈ K0
G ⇔ D(x) is finite or empty.

Proposition 1. (i) If D(x) = (d0, . . . , ds) is finite, then x = B0B1 . . .
. . . BsX

(ds+1) with the notation X(m) = xmxm+1 . . . , where the strings Bj



106 P. J. Grabner et al.

are given by :

B00∞ = Gd0+1 − 1, B0 . . . Bj0∞ = Gdj+1 − 1,
(2.7)

0dj−1+1Bj0∞ = Gdj+1 −Gdj−1+1

for 0 < j ≤ s. Moreover ,

(2.8) τ(x) = 0(ds+1)(xds+1 + 1)X(ds+2).

(ii) If D(x) = (d0, d1, . . .) is infinite then x = B0B1 . . . , where the Bj

satisfy (2.7) for all j ≥ 0 and τ(x) = 0.
(iii) The map τ is injective on K0

G.
(iv) The map τ is surjective if and only if τ−1(0) 6= ∅.
P r o o f. (i) If 0 ≤ n < d0 then clearly, x(n) = x0 . . . xn and x(n) + 1 =

(x0 + 1)x1 . . . xn. If dm ≤ n < dm+1, then

x(n) = x0G0 + . . . + xdm
Gdm

+ . . . + xnGn = (Gdm+1 − 1) +
∑

dm<j≤n

xjGj .

Therefore

(2.9) x(n) + 1 = (xdm+1 + 1)Gdm+1 +
∑

dm+1<j≤n

xjGj .

We claim that (2.9) is a G-expansion. If this were not the case there would
exist an integer k with dm + 1 ≤ k ≤ n such that

x(k) + 1 = (xdm+1 + 1)Gdm+1 +
∑

dm+1<j≤k

xjGj ≥ Gk+1.

But in fact x(k)+1 < Gk+1, a contradiction, and so (2.9) is a G-expansion.
It follows that

(2.10) Gdj+1 −Gdj−1+1 =
∑

dj−1<l≤dj

xlGl.

This expansion is a G-expansion and corresponds to the string 0(dj−1+1)Bj0∞

which serves us to define the string Bj = xdj−1+1 . . . xdj
and we get

x(n) = B0 . . . Bdm
xdm+1xdm+2 . . . xn0∞.

In particular, B0 . . . Bj0∞ = Gdj+1 − 1. The same computation works for
n ≥ ds and in that case we also obtain

τ(x)(n) = 0(ds+1)(xds+1 + 1)xds+2 . . . xn0∞.

From this (2.8) follows immediately.
(ii) follows by the same arguments as (i) by taking into account that

D(x) is an infinite string.
For (iii) let x = B0B1 . . . BsX

(ds+1) and x′ = B′0B
′
1 . . . B′s′X

′(d′s′+1) be
given such that τ(x) = τ(x′). From (2.8) we have ds = d′s′ , X(ds+1) =
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X ′(d′s′+1), and since B0B1 . . . Bs0∞ corresponds to the G-expansion of Gds+1

− 1 we obtain
B0B1 . . . Bs = B′0B

′
1 . . . B′s′ .

Thus injectivity is proved.
To show (iv) we only have to prove sufficiency. Let x ∈ KG \ K0

G. Then
x = B0B1 . . . where B00∞ corresponds to the G-expansion of Gd0+1 − 1.
Let B′00

∞ be the G-expansion of Gd0+1− 2 and take x′ = B′0B1B2 . . . ∈ KG

(clearly this is a G-expansion). Thus by construction τ(x′) = x.
Now let x ∈ K0

G. If D(x) is not empty then according to (i) we can
write x = B0B1 . . . BsX

(ds+1). Define B′0 as above and take x′ = B′0B1 . . .
. . . BsX

(ds+1) and we get τ(x′) = x. It remains to consider the case where
D(x) is empty. For x = 0 just notice that τ−1(0) is not empty by assump-
tion. If x 6= 0 then x has the form

x = 0(k)xkxk+1 . . . , xk > 0.

Now take x = X ′(xk − 1)xk+1 . . . where Gk − 1 = X ′0∞. Then again
τ(x′) = x, which yields surjectivity and the proof of the proposition is
complete.

Example 1. In the classical case of the q-adic number system Gn = qn

it is easy to see that KG corresponds to the group of q-adic integers and τ
is just addition of 1 in this group. Note that D(−1) = {0, 1, 2, . . .} since the
G-expansion of −1 is (q − 1)∞.

Example 2. Take Gn = 2n+1−1. Then Gn+1−1 = 2Gn and Gn+1 − 1 =
0(n)2. Then the cardinality of D(x) is not greater than 1. If D(x) = d then

x = 0(d)2xd+1xd+2 . . .

with xj 6= 2 for all j ≥ d + 1. If D(x) = ∅ then x = x0x1 . . . with xj 6= 2 for
all j.

Thus, for this example we have K0
G = KG and τ−1(0) = ∅.

Example 3. In the Cantor expansions Gn = q0 . . . qn the set KG cor-
responds to the group of general G-adic integers (cf. for example [HR]). In
that case we have

τ−1(0) = {(q1 − 1)(q2 − 1) . . .}.

Example 4. In Ostrowski’s number system with respect to an irrational
θ given in continued fraction expansion θ = [0; a1, a2, . . .] we have

G1 = a1, Gn+1 = an+1Gn + Gn−1.

This yields G2n− 1 = (G2−G0) + (G4−G2) + . . . + (G2n−G2n−2) and we
obtain

G2n − 1 = 0a20 . . . a2n−20a2n.
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Similarly we get

G2n+1 − 1 = (a1 − 1)0a30 . . . a2n−10a2n+1.

This odometer is extensively studied in [Li3]. In particular, it is proved that
τ−1(0) contains two points θ1 and θ2 satisfying D(θi) = {2n + i : n ≥ 0} for
i = 1, 2.

We compare the G-odometer with the adding shift introduced by Vershik
[Ve]. These notions are both similar and quite identical in some special
case. In particular, Example 4 could also be understood via the adding
shift. We define the partial ordering ≺ on KG as follows. Let x = x0x1 . . .
and y = y0y1 . . . be elements in KG. Then x ≺ y if and only if x = y or
there exists an integer k ≥ 0 such that xk < yk and xj = yj for all j > k.

Lemma 1. For positive integers m, n one has:

m ≤ n ⇔ m ≺ n.

P r o o f. Let m and n be two different positive integers. Let k be the
integer defined by εk(m) 6= εk(n) and εj(m) = εj(n) for all j > k. By the
greedy algorithm one has ε0(m)G0 + . . . + εk(m)Gk < (εk(m) + 1)Gk. Then
it easily follows that m < n if and only if εk(m) < εk(n). This completes
the proof.

Now we may replace (2.2) by

(2.2a) x = x0x1 . . . ∈ KG ⇔ ∀ k ∈ N, x0 . . . xk0∞ ≺ Gk+1 − 1.

Lemma 2. Let x = x0x1 . . . and y = y0y1 . . . be in KG such that x 6= y
but x ≺ y. Let k be the integer defined by xk < yk and xj = yj for all j > k.
Then the interval [x, y] = {z ∈ KG : x ≺ z ≺ y} contains y(k) − x(k) + 1
points given by all infinite G-admissible strings z defined by x(k) ≤ z(k) ≤
y(k) and zj = xj for all j > k.

P r o o f. Essentially, we have to prove that if z is an infinite string such
that z0 . . . zk is G-admissible, x(k) ≤ z(k) ≤ y(k) and zj = xj for all j > k
then z is G-admissible. But z(j) ≤ y(j) < Gj+1 for all j > k. Therefore
z(j) < Gj+1 for all j ≥ 0, as expected.

By the above lemma, if x is not maximal in KG then the interval [x,→)
= {z ∈ KG : x ≺ zx 6= z} is not empty, totally ordered and we can define
the successor x+ of x, namely x+ = min{z ∈ [x,→) : x 6= z}.

Proposition 2. τ−1(0) is the set of maximal points of (KG,≺) and each
x ∈ K0

G has a successor given by x+ = τ(x).

P r o o f. Clearly if x ≺ y in KG with x 6= y then x(j) < y(j) for all j large
enough. This implies that D(x) is finite, x+ = τ(x) and elements in τ−1(0)
are maximal. It remains to prove that if x is a maximal element, then D(x)
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is infinite. Assume otherwise; then directly from the above lemma we have
x ≺ τ(x), a contradiction.

Our main results in this section concern a criterion for the continuity of
the odometer and its minimality, the latter meaning that the only closed
subsets F of KG such that τ(F ) ⊂ F are the empty set and the full space
KG. Let ∆ be the set of finite (or empty) sequences δ such that there exists
x ∈ K0

G satisfying D(x) = δ.

Theorem 1. The G-odometer τ is continuous if and only if for all
(d0, d1, . . . , dk) ∈ ∆ the set {d > dk : (d0, d1, . . . , dk, d) ∈ ∆} is finite.

P r o o f. First we prove the sufficiency of the above condition. Using the
notation of Proposition 1 let x = B0B1 . . . be in τ−1(0) and let y be close
to x. Then y = B0B1 . . . BsYs with large s and τ(y) = 0(j) . . . with j ≥ ds.
Therefore τ is continuous at the points of τ−1(0).

Now we take x ∈ K0
G. Using again the notation of Proposition 1,

D(x) = (d0, . . . , ds) and x = B0B1 . . . BsX
(ds+1) or D(x) is empty. If y is

close enough to x and D(x) 6= ∅ then the sequence D(y) starts with d0, . . .
. . . , ds, d(y), where d(y) can be omitted. If D(x) = ∅ then either D(y) = ∅
or D(y) = (d(y), . . .). In the latter case d(y) is bounded by assumption,
uniformly in y. Therefore we can choose y close enough to x such that
D(x) = D(y), and the continuity at x follows easily.

The necessity is proved by contradiction. Assume that there exists (d0,. . .
. . . , dk) in ∆ (this sequence is possibly empty) and an infinity of integers d
such that (d0, . . . , dk, d) ∈ ∆. Thus we can choose a sequence of elements
y(n) in KG such that

D(y(n)) = (d0, . . . , ds, δn)

with δn < δn+1 for all n and y(n) converges to an element y. By construc-
tion D(y) = D(x), so that τ(y) 6= 0 but limn→∞ τ(y(n)) = 0. This is a
contradiction and Theorem 1 is proved.

R e m a r k 1. In our examples above the odometer is always continuous
except in Example 2 where it is also not surjective. In the next section we
give another example of a non-continuous odometer which is surjective (its
set τ−1(0) is not empty).

Theorem 2. Assume that the G-odometer is continuous. Then it is also
surjective and minimal.

P r o o f. Let σ : ∆ → NN be defined by σ(δ) = (0, 0, . . .) if the length
of δ ∈ ∆ is ≤ 1, and σ(d0, d1, . . . , dk) = (d1 − d0, . . . , dk − dk−1, 0, 0, . . .)
if k ≥ 2. Assume that the G-odometer τ is continuous. The criterion of
continuity in Theorem 1 implies the following: For all integers k ≥ 0, there
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exists an integer mk ≥ 0 such that

∀δ ∈ ∆, σ(δ)k ≤ mk.

This means that σ(∆) ⊂ Ω =
∏∞

k=0{0, 1, . . . ,mk}. By a compactness ar-
gument there exists a convergent sequence y(n) in KG such that the length
of D(y(n)) tends to infinity, all sequences D(y(n)) begin with the same two
consecutive values d0, d1 and the sequence n 7→ σ(D(y(n))) converges in
Ω, say to s = (sk)k≥0, with sk ≥ 1 for all k ≥ 0. This implies that if
y = limn→∞ y(n) then D(y) = (d0, d0 + s0, . . . , d0 + s0 + . . . + sk, . . .). In
other words, y ∈ τ−1(0) and the surjectivity follows from Proposition 1(iv).

It remains to prove the minimality. To this end we show that for all
x ∈ KG, the orbit {x, τ(x), τ2(x), . . .} is dense. Let the interval [x,→) be
finite. By Lemma 2 there exists y ∈ KG such that [x,→) = [x, y]. But y
must be maximal and by Proposition 2, τm(x) = y for an integer m ≥ 1.
Therefore τm+1(x) = 0 and the orbit of x under τ contains the dense set
N. Now assume that [x,→) is infinite. Then for any L ≥ 0 there exists
z ∈ [x,→) such that the integer l(z) = l defined by xl < zl and xj = zj for
all j > l satisfies l ≥ L. It is clear that we can construct a sequence y(n) in
[x,→) with l(y(n)) < l(y(n+1)). Put ln = l(y(n)) for short. Then the infinite
string

z(n) = Gln − 1 xlnx1+ln . . . xk+ln . . .

is G-admissible and in fact x ≺ z(n) ≺ y(n). Taking a subsequence if neces-
sary we may assume, by the same argument as above, that both sequences
σ(D(z(n))) and z(n) converge and the limit of z(n) belongs to τ−1(0). From
this fact and the continuity of τ we derive the existence of a non-decreasing
sequence of integers kn such that

lim
n→∞

τkn(x) = 0.

Again by continuity, for any given positive integer m the sequence τm+kn(x)
converges to m (= τm(0)). This proves that the orbit closure of x contains
N and finally the orbit is dense.

3. Systems of numeration with respect to linear recurrences.
Let α > 1 be a real number. Then Parry’s α-expansion (cf. [Pa]) of an
arbitrary real number x is given by

(3.1) x = ξ0 +
ξ1

α
+

ξ2

α2
+ . . . ,

where ξ0 = [x], the greatest integer ≤ x, and the other digits ξ1, ξ2, . . . can be
computed in the usual way with the help of the transformation Tx = {αx}
({x} = x − [x]). The uniqueness of the representation (3.1) is guaranteed
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by the following requirements on the digits ξj :

(3.2) (ξn, ξn+1, . . .) < (a0, a1, . . .) for n ≥ 1,

where the aj are the digits of α in α-expansion, i.e.

α = a0 +
a1

α
+

a2

α2
+ . . .

(in the case of ambiguity we take the infinite representation of α) and “<”
denotes the lexicographical order (cf. [Pa]). A more general version of digit
expansions was already studied by A. Rényi [Ré]. Furthermore, we note
that digital properties such as periodicity and finiteness of expansions were
extensively studied in the literature (cf. [Be], [F1], [F2], [F3], [FS], [Sch]).

We consider the digit expansion of integers with respect to the linear
recurrence

(3.3) Gn+1 =
n∑

k=0

an−kGk + 1, G0 = 1.

As in [GT2] we introduce the generating functions

A(z) =
∞∑

n=0

anzn, G(z) =
∞∑

n=0

Gnzn

satisfying

G(z) =
1

(1− z)(1− zA(z))
.

Note that by the theorem of Pólya–Carlson A(z) is either rational and there-
fore the string (a0, a1, . . .) is finally periodic or has the unit circle as its
natural boundary. We obtain the asymptotic formula

Gn ∼ Cαn,

where C can be easily computed by residue calculus. Hence the sequence of
integers Gn is strongly connected with the α-expansion. Let

n =
L∑

j=0

εjGj

be the G-expansion. Then the digits εj = εj(n) satisfy

(3.4) (εk, εk−1, . . . , ε0, 0, 0, . . .) < (a0, a1, . . .) for k = 0, . . . , L,

where L = L(n) is chosen such that GL ≤ n < GL+1. These are just
the finite admissible blocks as defined in the previous section. From (3.4)
it immediately follows that the inequalities (1.2) are satisfied in this case.
Thus the blocks of digits given by the (uniquely determined) G-expansion
correspond to the admissible blocks. In this paper we will show that for our
purposes only the case of periodic sequences (a0, a1, . . .) is interesting. In
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this case the sequence Gn is generated by a finite linear recurrence of order
d + 1, where d + 1 is the period length:

(3.5) Gn+d+1 = a0Gn+d + a1Gn+d−1 + . . . + (ad + 1)Gn for n ≥ 0

and the initial values are given by (3.3). This follows immediately from the
generating functions since finite recurrences correspond to rational func-
tions; of course it also follows from the recurrence (3.3). For a detailed
discussion concerning the initial values of such finite recurrences we refer to
our earlier paper [GT1].

The main aim of this section is the investigation of this G-odometer. Let
us recall that the set of all infinite admissible sequences is given by

K = KG = {(x0, x1, . . .) ∈ E : x0G0 + . . . + xjGj < Gj+1 ∀j ≥ 0},

and for short we put K0 = K0
G.

Now we present a special G-expansion with non-continuous odometer.

Example 5. Let (a0, a1, . . .) = (2, 1, 1, . . .) define the sequence Gn and

ξn = (1, . . . , 1︸ ︷︷ ︸
n

, 2, 0, 0, . . .) → (1, 1, . . .),

τ(ξn) = (0, . . . , 0︸ ︷︷ ︸
n+1

, 1, 0, 0, . . .) → (0, 0, . . .),

τ((1, 1, . . .)) = (2, 1, 1, . . .).

Thus τ is not continuous.

The above example shows that it is necessary to establish conditions
that ensure continuity. In the following we establish a continuity criterion
for this special type of expansions which restates Theorem 1 in a different
form.

Theorem 3. Let ξn = anan−1 . . . a00∞. Then τ is continuous if and
only if all accumulation points of ξn are in K \ K0.

P r o o f. Let τ be continuous. Then obviously all accumulation points
of ξn are contained in K \ K0 (see the above example). For the converse
direction we assume that all accumulation points of ξn are in K \ K0. First
we prove the continuity of τ in K0. Let x ∈ K0, τ(x) = z = (z0z1 . . .) and
consider

τ−1({(z0, z1, . . . , zn, yn+1, yn+2, . . .) ∈ K}),
where n > Mx and yn+1, yn+2, . . . are arbitrary. This set is open since the
digits yj are not affected by τ−1 and there is no accumulation point in K0.
Thus τ is continuous on K0. To prove continuity on K \K0 we only have to
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consider neighbourhoods of 0. As

τ−1({(0k+1, yk+1, . . .)}) =
∞⋃

l=k

{(al, . . . , a0, yl+1, . . .) ∈ K}

is open, τ is continuous on K \ K0.

Theorem 4. τ is continuous if and only if (a0, a1, . . .) is periodic (i.e.
the sequence Gn is a finite recurrence).

P r o o f. Applying Theorem 3 we have to show that in the case of an ape-
riodic string (a0, a1, . . .) at least one accumulation point of ξn = anan−1 . . .
. . . a00∞ is in K0. Define kn to be the minimal integer such that an−kn

= a0,
an−kn+1 = a1, . . . , an = akn

. If kn takes arbitrarily large values we consider
a subsequence nj such that knj

→∞. Then ξnj
has an accumulation point

in K0.
Suppose now that kn is bounded. Then we have subsequences n

(i)
j with

i = 0, . . . ,K such that k
n

(i)
j

= i. At least one of these sequences has to

have an infinity of terms. Let l be the maximal index of a sequence with
an infinity of terms. We write nj = n

(l)
j for short. Then we have anj−l =

a0, . . . , anj = al. By our hypothesis we have knj+1 ≤ l for j sufficiently large.
Thus we have anj+1 < al+1 (knj+1 > 0) or anj+1 = a0 (knj+1 = 0). The first
case would imply that anj−knj+1+1 = a0, . . . , anj+1 = aknj+1 < al+1 which
is a contradiction to the lexicographic condition. Repeating this procedure
yields the periodicity of the sequence (a0, a1, . . .).

R e m a r k 2. If d + 1 is the period length, then ξn has exactly d + 1
accumulation points:

al . . . a0(ad, . . . , a0)∞ for l = 0, . . . , d.

These are the elements of τ−1(0).

R e m a r k 3. The proof of Theorem 4 shows that all accumulation points
of ξn are contained in K0 provided that one is contained in K0. To give an
example, we construct such a string: start with some string a0a1 . . . ak, add
one digit 0 and repeat the whole string, then add two digits 0 and repeat
the whole string, add three digits 0 and so on.

From now on we only consider recurrences Gn leading to continuous τ ,
i.e. the case of finite recurrences.

Proposition 3. The sequence D(x) is non-empty iff

x = alal−1 . . . a0(ad . . . a0)kB,

where l = 0, . . . , d, k ∈ N0 and B is a block not starting with ad . . . a0. In
this case we have

D(x) = {l, l + d + 1, . . . , l + k(d + 1)}.
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In the case of the accumulation points we have

D(al . . . a0(ad . . . a0)∞) = {l + k(d + 1) : k = 0, 1, . . .}.
P r o o f. Simple computations.

Next we will prove that the odometer is a uniquely ergodic transforma-
tion. For this purpose we need the following lemma, the proof of which is
given later in a slightly different context (cf. Section 4, Proposition 4).

Lemma 3. Let fl : N → C be arbitrary number-theoretic functions and
let f : K → C be a function satisfying

f
( L∑

l=0

εlGl

)
=

K∏
l=0

fl(εl),

where (in the case L < K) leading 0’s are considered in the evaluation of f .
Then

(3.6) lim
N→∞

1
N

N+m−1∑
n=m

f(n) = Cf

uniformly in m.

S k e t c h p r o o f. Let

Fk =
∑

n<Gk

f(n).

Then it is easy to see that

(3.7) Fk+d+1 = a0Fk+d + . . . + (ad + 1)Fk

for k > K, which is the recurrence of Gk. Therefore the limit limk→∞ Fk/Gk

exists, since by the positivity of coefficients and simple estimates there exists
one positive dominating root. By an argument used in Proposition 4 of
Section 4 this implies the existence of

lim
N→∞

1
N

∑
n<N

f(n)

and also the uniformity in (3.6).
Theorem 5. The odometer τ is a uniquely ergodic transformation, i.e.

there is a unique invariant measure µ given by
µ(Z) =

FK+1αd + (FK+2 − a0FK+1)αd−1 + . . . + (FK+d+1 − a0FK+d − . . . − ad−1FK+1)
αK(αd + αd−1 + . . . + 1)

,

where
Fk =

∑
n<Gk

χZ(n),
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Z is a cylinder with fixed digits ε0 . . . εK and χZ denotes the characteristic
function of Z.

P r o o f. Using the fact that the functions f considered in Lemma 3 are
dense in the space of continuous functions on K and a criterion for unique
ergodicity (cf. [Wa, Theorem 6.19]) yields the first part of the theorem.
Inserting the function χZ , where Z is a cylinder set, in Lemma 3 yields the
same recurrence for Fk as for Gk (compare (3.7)). An easy application of
generating functions can be used to compute limk→∞ Fk/Gk which is µ(Z)
by Lemma 3.

In the following we prove that under a certain hypothesis the odometer
has purely discrete spectrum. For linear recurrences with decreasing co-
efficients Solomyak [So2] proved that result. Our approach is related but
somewhat different and we use the following two lemmata.

Lemma 4. Let

B =
(

1 1
1 C

)
be a matrix with positive entries such that all entries of the first row and
column are equal to 1. Let β be the maximun eigenvalue of B and γ the
maximum eigenvalue of C. Assume that there exists n > 0 with Bn > 0
(componentwise). Then γ < β.

P r o o f. This is a standard application of the Perron–Frobenius theo-
rem.

Lemma 5. For integers b, k and l with 0 ≤ k < l, b > 0 define the set

Ek(l, b)
:= {x ∈ KG : ∃s with k ≤ s ≤ l and xs(b+1) . . . x(s+1)(b+1)−1 = 0(b+1)}.

Then there exist absolute constants c and % with 0 < % < 1 such that for all
k and l (0 ≤ k < l) we have

µ(Ek(l, b)) ≥ 1− c%l,

where µ denotes the measure given in Theorem 5.

P r o o f. It follows from the periodicity of the sequence (an) and (2.2a)
that a point x = (x0x1 . . .) belongs to KG if and only if for all k ≥ 0 the
strings xk . . . xk+b are G-admissible (see [Pa] for details). Let W be the set
of G-admissible strings W = w0 . . . wb of length b + 1. Let W be ordered by
the lexicographic order and let B be the matrix whose entries are

BWiWj
=

{ 1 if WiWj0∞ ∈ KG,
0 otherwise.

Thus any string x in KG can be written as an infinite string x=(X0X1X2 . . .)
over the alphabet W such that BXjXj+1 = 1 for j = 0, 1, 2, . . . The matrix
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B has the form
(

1 1
1 C

)
. Let Ll(C) be the set of finite strings X = X0 . . . Xl

over the alphabet W such that CWjWj+1 = 1 for j = 0, . . . , l − 1. By the
unique ergodicity of the odometer the µ-measure of KG \E0(l, b) is given by

lim
N→∞

#{n : 0 ≤ n < G(N+1)(b+1) and e0(n) . . . e(l+1)(b+1)−1(n) ∈ Ll(C)}
G(N+1)(b+1)

.

Let |A| =
∑

i,j |aij | denote the 1-norm of a matrix A. Then with the nota-
tions of Lemma 4 we have G(N+1)(b+1) = |BN | and for N ≥ l,

#{n : 0 ≤ n < GN(b+1) and e0(n) . . . e(l+1)(b+1)−1(n) ∈ Ll(C)}
≤ |Cl| · |BN−l|.

The matrix B satisfies the assumptions of Lemma 4. Let β and γ be the
maximal eigenvalues of B and C respectively and let K ≥ 1, L > 0 be
constants such that K−1βm ≤ |Bm| ≤ Kβm and |Cm| ≤ Lγm. Then

µ(KG \ E0(l, b)) ≤ LK2(γ/β)l.

But µ(Ek(l, b)) ≥ µ(E0(l, b)) = 1− µ(KG \E0(l, b)) ≥ 1−LK2(γ/β)l. This
proves the lemma with % = γ/β and c = LK2.

We now state a combinatorial assumption concerning the backward car-
ries in digit expansions with respect to linear recurrences.

Hypothesis B. There is an integer b > 0 such that for all k and

Ñ = (ε0, . . . , εk, 0(b+1), εk+b+2, . . .),

addition of Gm to N (with m ≥ k + b + 2) does not change the digits
ε0, . . . , εk, i.e.

Ñ + Gm = (ε0, . . . , εk, . . .).

A simple consideration shows that for instance the Multinacci sequence
defined by Mk+d = Mk+d−1 + . . . + Mk has this property. It seems to
be quite clear that this hypothesis is closely related to the finiteness of
α-expansions. In a recent paper [FS] it is shown that for recurrences with
decreasing coefficients all positive integers have finite α-expansions with
respect to the dominating characteristic root α. An immediate consequence
of the hypothesis is the following

Lemma 6. Let x = (x0x1 . . .) be in Ek(l, b) (for some block-length b,
as above). Then for all m ≥ (l + 1)(b + 1) we have xj = (τGm(x))j for
j = 0, . . . , k(b + 1)− 1.

Theorem 6. KG is (measure-theoretically) isomorphic to a group ro-
tation with purely discrete spectrum given by the countable group

Γ := {z ∈ C : lim
n→∞

zGn = 1}

provided that Hypothesis B is satisfied.
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R e m a r k 4. Notice that for α = 1
2 (a +

√
a2 + 4) the corresponding

sequence (a0, a1, . . .) is (a, 0, a, 0, . . .). In this case the odometer is metrically
isomorphic to the translation x 7→ x+α mod 1. This is well-known for a = 1;
the general case follows from [Li3].

P r o o f o f T h e o r e m 6. F i r s t s t e p. Let z ∈ Γ and write z = e2iπλ.
By definition limn→∞ ‖λGn‖ = 0 (‖ · ‖ denoting the distance to the nearest
integer) and in the following we give a short argument showing the (well-
known) fact that the convergence is indeed geometric.

We can write λGn = un + ηn, where un is an integer and limn→∞ ηn =
0. This last condition implies the sequence (un) satisfies the same linear
recurrence as (Gn) (for sufficiently large n) so that the same is true for (ηn).
Thus ηn = A1(n)αn

1 + . . . + As(n)αn
s with α1 = α and the other αj are less

than α in absolute values. Moreover, the Aj(n) denote polynomials. Taking
into account the growth of each term it essentially remains to consider the
case of sequences ηn = B1β

n
1 + . . . + Brβ

n
r with |βj | = 1 for all j. At this

moment we have to distinguish two cases. First assume that all βj are roots
of unity. Therefore there exists an integer K such that ηn+mK = ηn for all
integers m and this implies ηn = 0. In the other case the closed subgroup
generated by the (β1, . . . , βr) contains a torus. From this it follows that ηn

is identically 0.
Let ζ ∈ Γ . Let x ∈ KG. Then by the above, the series

∑
k |ζxkGk − 1|

converges. Thus the limit

ζx := lim
k→∞

ζx(k)

exists. Note that the map ζ̂ : x → ζx is continuous on KG. Now we easily
get ζ̂ · (τ(x)) = ζζ̂(x). This means that each element ζ of Γ is an eigenvalue
of τ with continuous eigenfunction ζ̂, thus Γ ⊂ Spec(τ).

S e c o n d s t e p. We claim that for all maps f as considered in Lemma 3
we have

(3.8)
∑

n

∫
KG

|f ◦ τGn − f |2 dµ < ∞,

where µ is the τ -invariant measure given explicitly in Theorem 5. From this,
by standard arguments (see e.g. [So1]–[So3]) τ has a purely discrete spectrum
which is contained in Γ . Concluding the proof, we use the notations of
Lemma 5 and split the integral

∫
KG

|f ◦ τGn − f |2 dµ into two integrals
assuming (l + 1)(b + 1)≤n<(l + 2)(b + 1). First

∫
En(l,b)

|f ◦ τGn − f |2 dµ=
0 because of Lemma 6 and the remaining integral can be estimated by
2||f ||2∞µ(KG\Ek(l, b)). Thus by Lemma 5, the series (3.8) is convergent.

T h i r d s t e p. It remains to show the countability of Γ . This is a well-
known fact due to Pisot [Pi] which can be proved using the same argument



118 P. J. Grabner et al.

as in the first step. In fact, using the generating functions U(z) and Y (z)
of un and ηn, respectively, we get the relation

λ

(1− z)(1− zA(z))
= U(z) + Y (z),

where G(z) and A(z) are given at the beginning of Section 3. Notice that (an)
is purely periodic, thus A(z)= Q(z)/(1− zd+1), where Q(z)= a0 + a1z +. . .
. . . + adz

d. But (un) satisfies the same linear recurrence (for sufficiently
large n) as Gn; hence U(z) = P (z)/((1 − z)(1 − zA(z))), where P (z) is a
polynomial with integral coefficients. Moreover, the series Y has no pole in
the closed unit disk. Therefore

λ =
P (θ−1)(1− θ−1)

1− θ−(d+1)
,

where θ is any of the characteristic roots of (Gn) with modulus ≤ 1. This
shows the countability of Γ and the proof is complete.

R e m a r k 5. Notice that for all ζ ∈ Γ the map ζ̂ is continuous and we
can define the following factor:

F : Kα → Π =
∏
ζ∈Γ

Uζ , x 7→ (ζx)ζ∈Γ ,

where Uζ is the closed group generated by ζ. The transformation T on Π
corresponding to τ is T : (uζ) 7→ (ζUζ) and the image F (Kα) is the closed
subgroup Π(Γ ) of Π generated by (ζ)ζ∈Γ .

R e m a r k 6. The above theorem was also proved in [So2] for recurrences
with decreasing coefficients. In that paper also a more general theorem is
proved under the assumption that all numbers in Z+[α−1] have finite α-
expansions. Iti is an open problem whether this is equivalent toHypothesis B.

4. Exponential sums and applications. In [GT2] we considered
sequences of the type sG(n)x, where x is a given irrational number and sG(n)
denotes the G-ary sum-of-digits function. A basic tool for investigating the
distribution behaviour of such sequences is the following proposition.

Proposition 4. Let f be G-multiplicative, |f(n)| ≤ 1 and∣∣∣∣ 1
Gk

∑
n<Gk

f(n)
∣∣∣∣ ≤ 1

g(Gk)

for an increasing function g with g(x) ≤ x. Then for some constant D only
depending on G we have∣∣∣∣ 1

N

N+m−1∑
n=m

f(n)
∣∣∣∣ ≤ D

g(
√

N)
uniformly in m.
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P r o o f. It has been proved in [GT2] that under the hypotheses of the
proposition ∣∣∣∣ 1

N

N−1∑
n=0

f(n)
∣∣∣∣ ≤ D1

g(
√

N)
.

We now have to consider some cases:

(a) m < GL(N)+1. Here we have∣∣∣∣ 1
N

N+m−1∑
n=m

f(n)
∣∣∣∣ =

1
N

∣∣∣ N+m−1∑
n=0

f(n)−
m−1∑
n=0

f(n)
∣∣∣ ≤ D2

g(
√

N)
.

(b) m ≥ GL(N)+1. In this case we write

m =
L(m)∑
k=0

δkGk =
L(N)∑
k=0

δkGk︸ ︷︷ ︸
m1

+
L(m)∑

k=L(N)+1

δkGk︸ ︷︷ ︸
m2

.

Now there are two subcases.

(b1) L(N + m1) = L(N). In this case we have

N+m−1∑
n=m

f(n) = f(m2)
N+m1−1∑

n=m1

f(n)

and this last sum was estimated in case (a).
(b2) L(m1+N) = L(m1)+1. In this case we split the range of summation

into two parts
m2+GL(N)−1∑

n=m

f(n) +
N+m−1∑

n=m2+GL(N)

f(n)

and both of these parts are of the type considered in case (b1).

Definition. A sequence xn is called pseudo-random if the following
three conditions are satisfied for all integers k 6= 0:

(i) lim
N→∞

1
N

∑
n<N

e2kπixn = 0,

(ii) γ(h) = lim
N→∞

1
N

∑
n<N

e2kπi(xn+h−xn) exists,

(iii) lim
H→∞

1
H

H∑
h=0

|γ(h)|2 = 0.
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A sequence xn is called well-distributed if for all integers k 6= 0,

lim
N→∞

1
N

N+l∑
n=l+1

e2kπixn = 0

uniformly in l.

Theorem 7. The sequence xsG(n)+yn is well-distributed if at least one
of the numbers x and y is irrational.

P r o o f. Upon setting f(n) = e2πik(xsG(n)+yn) and observing that this is
a G-multiplicative function, Proposition 4 immediately yields the result.

R e m a r k 7. It is an open conjecture if the sequence considered above
is pseudo-random. For the dyadic expansion this was proved by K. Mahler
[Ma] using a general approach by N. Wiener [Wi]. The main problem is
to establish (iii) since (i) follows from the above proposition and (ii) can
be managed by Wiener’s approach. M. Mendès France [Me1] has extended
this (elaborate) method to q-ary expansions. Finally, we note that in [Li2] a
dynamic approach is developed which may lead to a proof of this conjecture.

R e m a r k 8. In the theory of pseudo-random sequences a stronger ver-
sion of condition (iii) is known:

(iii′) limh→∞ γ(h) = 0

(cf. [Ba1, Ba2]). By arguments as in [Ma] it follows easily that in our case
this stronger condition is not satisfied.

R e m a r k 9. The sequence xsG(n) has empty spectrum in the sense
of Mendès France (cf. [Me3]). We note here that pseudo-randomness and
spectrum of sequences were studied in a sequence of papers by different
authors, e.g. Bass [Ba1, Ba2], Bertrandias [Ber] and Mendès France [Me1,
Me2].

A quantitative measure for distribution behaviour of a sequence xn of
real numbers is the discrepancy

(4.1) DN (xn) = sup
J

∣∣∣∣ 1
N

N−1∑
n=0

χJ({xn})− λ(J)
∣∣∣∣,

where the supremum is taken over all intervals J of length λ(J) and {·}
denotes the fractional part. A measure for the well-distribution of a sequence
is the uniform discrepancy

(4.2) TN (xn) = sup
h∈N0

DN (xn+h).

In a series of papers [TT1], [GT2], [KLTT], [TT2] estimates for the dis-
crepancy and uniform discrepancy of the sequence xsG(n), where x denotes
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an irrational number, were established. A major tool for establishing such
estimates is the Erdős–Turán inequality

(4.3) DN (xn) ≤ 6
(

1
H

+
H∑

h=1

1
h

∣∣∣∣ 1
N

N−1∑
n=0

e2hπixn

∣∣∣∣)
for every positive integer H.

R e m a r k 10. By using Proposition 4 and choosing a suitable H in (4.3),
estimates for the uniform discrepancy of xn + ysG(n) can be established.
However, the estimates seem to be quite weak, so that we do not work them
out in detail. The different method of [GT2] cannot be applied directly to
that type of sequences. It remains an open problem to find sharp bounds
for the discrepancy and the uniform discrepancy of xn + ysG(n).

R e m a r k 11. In [KLTT] the discrepancy of the sequence xsG(n) was
estimated in the case of Ostrowski expansions with respect to the continued
fraction expansion of a given real number. We note here that in the recent
PhD thesis [Ko] some further results concerning such expansions are proved
under special assumptions on the growth of the partial quotients.

Acknowledgements. The third author is indebted to Y. Lacroix for
valuable discussions concerning the spectral properties of the odometer.
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