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1. In 1964, H. Gupta [2] showed the equality

(1.1)
∞∑

b=1

∑
1≤d≤b
(b,d)=1

1
b2(b+ d)

=
3
4

by using the well-known properties of the Farey series (see, for example,
G. H. Hardy and E. M. Wright [3, Chapter III]). Later J. Lehner and M.
Newman [5] obtained a formula which reduces a sum involving Farey frac-
tions to one which does not.

The aim of this note is to give another method to evaluate this kind of
infinite sums by applying the construction of Farey fractions to Schauder
expansions for continuous functions. For example, we will show that

∞∑
b=1

∑
1≤d≤b
(b,d)=1

1
bd(b+ d)

=
5
4
,(1.2)

∞∑
b=1

∑
1≤d≤b
(b,d)=1

1
bd(b+ d)2

=
3
8

(1.3)

and
∞∑

b=1

∑
1≤d≤b
(b,d)=1

1
(bd(b+ d))2

=
7
24
.(1.4)

Moreover, it will be shown that Euler’s constant

(1.5) γ = lim
n→∞

(
1 +

1
2

+ . . .+
1
n
− log n

)
= 0.57721 56649 . . .

can also be expressed by a similar sum (Theorem 4.1), which is probably a
new formula for γ as far as the author knows. It is not known whether γ is
rational or irrational. (For the history of γ, see J. W. L. Glaisher [1].)

[149]
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2. Let G1 = {0/1, 1/1} and define Gn+1 inductively by the union of
Gn and all their mediants, arranged in ascending order. For example, G4

consists of {
0
1
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
1
1

}
.

We call Gn a modified Farey series of order n. The series Gn can also be
regarded naturally as a finite subset of [0, 1]. Since the greatest denominator
of the terms in Gn is the (n+ 1)th term of Fibonacci’s series {un}, we have
Fn ⊂ Gn ⊂ Fun+1 , where Fn is the usual Farey series of order n. Let Fn

be the collection of intervals I = [a/b, c/d], where a/b and c/d run over all
successive terms of Gn. We call Fn the collection of fundamental intervals
of order n. Note that ∑

I∈Fn

1
bd

=
∑

I∈Fn

|I| = 1,

where |I| denotes the length of I and that b+d ≥ n+1 since Fn ⊂ Gn. It is
known that, for any relatively prime positive integers b and d, there exists a
unique fundamental interval I of the form [a/b, c/d] (1). Put F =

⋃∞
n=1 Fn

for brevity. The collection of open intervals {int I}I∈F forms a net , that
is, any two such intervals are either disjoint or else one is contained in the
other.

3. We now define our Schauder expansions associated with the modified
Farey series {Gn}. For a different type of Schauder bases associated with
dyadic rationals, see M. Hata and M. Yamaguti [4]. For any fundamental
interval I = [a/b, c/d], define a piecewise linear function SI(x) by

SI(x) =
b+ d

2
(|a− bx|+ |c− dx| − |a+ c− (b+ d)x|),

which we call a Schauder base. Note that supp(SI) = I and ‖SI‖ = 1,
where ‖f‖ denotes the usual uniform norm for f ∈ C[0, 1]. It is easily seen
that the system {S′I(x)}I∈F satisfies the orthogonality property:

1∫
0

S′I(x)S
′
J(x) dx =

{
(b+ d)2 if I = J = [a/b, c/d],
0 otherwise.

Define also a linear functional cI(f) on C[0, 1] by

cI(f) = f

(
a+ c

b+ d

)
− b

b+ d
f

(
a

b

)
− d

b+ d
f

(
c

d

)
.

It is obvious that cI(f + g) = cI(f) whenever g(x) is linear on I. Then we
have

(1) Throughout this paper we always assume that the small letters a and c are the
unique integral solutions of bc − ad = 1 satisfying 0 ≤ a < b and 1 ≤ c ≤ d.
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Lemma 3.1. Every f ∈ C[0, 1] can be uniquely expanded in Schauder
bases as follows:

(3.1) f(x) = f(0) +∆[0,1](f)x+
∞∑

n=1

∑
I∈Fn

cI(f)SI(x),

where ∆[0,1](f) = f(1)− f(0). This series converges uniformly in [0, 1].

P r o o f. Let

fn(x) = f(0) +∆[0,1](f)x+
n∑

i=1

∑
I∈Fi

cI(f)SI(x)

for n ≥ 1. It is easily seen that f(x) = fn(x) for every x ∈ Gn+1. By
the uniform continuity of f(x), for any ε > 0 there exists δ > 0 satisfying
|f(x)−f(y)| < ε whenever |x−y| < δ. Take n to be so large that |I| < δ for
every I ∈ Fn+1. Then, for any x ∈ [0, 1] there exists a fundamental interval
I = [a/b, c/d] of order n+ 1 satisfying x ∈ I; hence

|f(x)−fn(x)| ≤
∣∣∣∣f(x)−fn

(
a

b

)∣∣∣∣+ ∣∣∣∣fn

(
a

b

)
−fn(x)

∣∣∣∣ < ε+
∣∣∣∣fn

(
a

b

)
−fn(x)

∣∣∣∣.
Since fn(x) is linear on I, we get∣∣∣∣fn

(
a

b

)
− fn(x)

∣∣∣∣ ≤ ∣∣∣∣fn

(
a

b

)
− fn

(
c

d

)∣∣∣∣ =
∣∣∣∣f(

a

b

)
− f

(
c

d

)∣∣∣∣ < ε.

Therefore ‖f − fn‖ < 2ε, which completes the proof.

The next lemma will be useful for calculation of the coefficient cI(f).
For any r ∈ N we denote by Cr[0, 1] the set of all r times continuously
differentiable functions defined on some open neighborhood of [0, 1].

Lemma 3.2. For any g ∈ C2[0, 1] and any I = [a/b, c/d] ∈ F we have

cI(g) = − 1
(b+ d)2

∫
I

SI(x)g′′(x) dx.

The proof is easily supplied by partial integration. Thus, multiplying
both sides of (3.1) by g′′(x) and integrating term-by-term, we get, using
Lemma 3.2,

Theorem 3.3. For any f ∈ C[0, 1] and g ∈ C2[0, 1] we have
∞∑

n=1

∑
I∈Fn

(b+ d)2cI(f)cI(g)

= ∆[0,1](fg′)−∆[0,1](f)∆[0,1](g)−
1∫

0

f(x)g′′(x) dx.

As a corollary, we have immediately
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Corollary 3.4. For any f ∈ C2[0, 1],
1∫

0

(f ′(x))2 dx = (∆[0,1](f))2 +
∑
I∈F

(b+ d)2(cI(f))2.

Perhaps one would think that this is an analogue of Parseval’s formula
in Fourier analysis. Putting g(x) = x2, we get cI(g) = −1/(bd(b+d)2) from
Lemma 3.2. In this case the formula in Theorem 3.3 takes the following
simpler form.

Corollary 3.5. For any f ∈ C[0, 1] we have
∞∑

n=1

∑
I∈Fn

cI(f)
bd

= 2
1∫

0

f(x) dx− f(0)− f(1).

4. We give several examples of the summation formulae in the previous
section, in which the series converge absolutely. As the first example, we
take f(x) = x2 in Corollary 3.5; hence we get

(4.1)
∑

(b,d)=1

1
(bd(b+ d))2

=
1
3
,

from which the equality (1.4) follows easily.
As the second example, we take f(x) = y/(1+xy) and g(x) = z/(1+xz)

in Theorem 3.3, where y, z > −1 are real parameters. Then it follows that∑
(b,d)=1

1
(ay + b)(cy + d)((a+ c)y + b+ d)(az + b)(cz + d)((a+ c)z + b+ d)

=


1

(y − z)3

(
1 + y

1 + z
− 1 + z

1 + y
− 2 log

1 + y

1 + z

)
if y 6= z,

1
3(1 + y)3

if y = z.

For example, putting y = 1, z = 0 and y = z = 1, we get

(4.2)
∑

(b,d)=1

1
bd(b+ d)(a+ b)(c+ d)(a+ b+ c+ d)

=
3
2
− 2 log 2

and

(4.3)
∑

(b,d)=1

1
((a+ b)(c+ d)(a+ b+ c+ d))2

=
1
24

respectively.
As the third example, we take

ψ(x) = x

{
1
x

}(
1−

{
1
x

})
,
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where {x} denotes the fractional part of x. Then clearly cI(ψ) = 0 if
I ∈ F∗ = {[0/1, 1/n] : n ∈ N} and cI(ψ) = 1/(ac(a + c)(b + d)) otherwise.
Since

1∫
0

ψ(x) dx =
1∫

0

x(1− x)
∞∑

n=1

1
(n+ x)3

dx

= lim
N→∞

(
1 +

1
2

+ . . .+
1
N
− N + 1

2N
− logN

)
= γ − 1

2
,

we thus have from Corollary 3.5

Theorem 4.1. Euler’s constant γ, defined in (1.5), can be expressed as
follows:

γ =
1
2

+
1
2

∑
(b,d)=1

b≥2

1
abcd(a+ c)(b+ d)

.

Note that the mapping τ : F\F∗ → 4N defined by τ([a/b, c/d]) =
abcd(a+ c)(b+d) is not injective. For example, τ([2/7, 1/3]) = τ([5/6, 1/1])
and τ([2/3, 3/4]) = τ([1/2, 4/7]), etc. Probably one will find infinitely many
such pairs of fundamental intervals.

Similarly, taking

f(x) =
xψ(x)

1 + 1/x− {1/x}
and f(x) = xψ(x)

in Corollary 3.5, we get

(4.4)
∑

(b,d)=1

[d/c]
(bd(b+ d))2

=
1
3
ζ(3)

and

(4.5)
∑

(b,d)=1

[d/c] + [d/c]2

(bd(b+ d))2
=

2
3
ζ(2)

respectively, where ζ(z) is the Riemann zeta function. (Note that the left-
hand sides of (4.4) and (4.5) include the terms corresponding to F∗.)

5. To obtain another summation formula we need a few lemmas. For any
I = [a/b, c/d] ∈ F we put l(I) = a/b, r(I) = c/d and m(I) = (a+ c)/(b+d)
for brevity. For any Farey fraction σ ∈ G ≡

⋃
n≥1Gn, we denote by Gσ

the collection of all fundamental intervals I satisfying either l(I) = σ or
r(I) = σ. For example, G1/2 consists of all intervals of the form

[
n−1
2n−1 ,

1
2

]
and

[
1
2 ,

n
2n−1

]
for n ∈ N.

Then clearly each fundamental interval I belongs to precisely two col-
lections Gl(I) and Gr(I). In other words, we have
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Lemma 5.1. Let ν be a function on F such that
∑

I∈F ν(I) converges
absolutely. Then

2
∑
I∈F

ν(I) =
∑
σ∈G

∑
J∈Gσ

ν(J).

Let ω : F → R be a weight function defined by ω([a/b, c/d]) = 1/(b+d).
Then we have

Lemma 5.2. For any I ∈ F ,

(5.1) ω(I)SI(x) =
∑

J∈Gm(I)

ω(J)SJ(x),

where the right-hand side converges uniformly on any compact subset in
[0, 1]\{m(I)}.

P r o o f. Obviously I contains all J ∈ Gm(I) and any J ∈ Gm(I) contained
in I− = [l(I),m(I)] takes the form

Jn ≡
[
na+ (n− 1)c
nb+ (n− 1)d

,
a+ c

b+ d

]
, n ∈ N.

Put ξn(x) = ω(I)SI(x)−
∑n

i=1 ω(Ji)SJi
(x) for all n ≥ 1. Then it suffices to

show that

(5.2) ξn(x) =

 0 for l(I) ≤ x ≤ l(Jn+1),
1

ω(Jn)
(x− l(Jn+1)) for l(Jn+1) ≤ x ≤ m(I),

by induction on n, since SJi
(x) ≡ 0 on [l(I), l(Jn+1)] for all i ≥ n+ 1.

Clearly (5.2) holds for n = 1, since ω(I)SI(x) = bx − a on [l(I),m(I)].
Suppose now that (5.2) holds for n = k ≥ 1. Since

1
ω(Jk)

(l(Jk+2)− l(Jk+1)) =
1

(k + 2)b+ (k + 1)d
= ω(Jk+1),

it follows that ξk+1(x) ≡ 0 on [l(I), l(Jk+2)] and that ξk+1 is a linear func-
tion on [l(Jk+2),m(I)] through the two points (l(Jk+2), 0) and (m(I), ω(I)).
Hence (5.2) also holds for n = k + 1, since m(I)− l(Jk+2) = ω(I)ω(Jk+1).

The similar argument can be applied to the case I+ = [m(I), r(I)]. This
completes the proof.

Multiplying both sides of (5.1) by f ′′(x) and applying Lemma 3.2, we
get

ν(I) =
∑

J∈Gm(I)

ν(J),

where ν(I) = cI(f)/ω(I). Note that the series
∑

n≥1

∑
I∈Fn

ν(I) converges
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absolutely for any f ∈ C2[0, 1], since it follows from Lemma 3.2 that∑
I∈F

(b+ d)2−ε|cI(f)| ≤ ‖f ′′‖
∑

(b,d)=1

1
bd(b+ d)ε

≤ ‖f ′′‖
∞∑

m,n=1

1
mn(m+ n)ε

<∞

for any ε > 0. Hence, from Lemma 5.1,

2
∑
I∈F

ν(I) =
∑

J∈G0/1

ν(J) +
∑

J∈G1/1

ν(J) +
∑
I∈F

ν(I),

since for every Farey fraction σ ∈ G except for 0/1 and 1/1 there exists a
unique fundamental interval I satisfying m(I) = σ. We also have∑

J∈G0/1

ν(J) +
∑

J∈G1/1

ν(J) =
∞∑

n=1

(n+ 1)(c[0/1,1/n](f) + c[(n−1)/n,1/1](f))

=
∞∑

n=1

(An+1 −An),

where An = n(∆[0/1,1/n](f)−∆[(n−1)/n,1/1](f)), n ∈ N. Since An → f ′(0)−
f ′(1) as n→∞, we thus proved

Theorem 5.3. For any f ∈ C2[0, 1] we have
∞∑

n=1

∑
I∈Fn

(b+ d)cI(f) = −∆[0,1](f ′).

For example, taking f(x) = x2 in Theorem 5.3, we get

(5.3)
∑

(b,d)=1

1
bd(b+ d)

= 2,

from which the equality (1.2) follows easily. In particular, combining (1.1)
and (1.2), we obtain

(5.4)
∞∑

b=1

∑
1≤d≤b
(b,d)=1

1
b2d

= 2.

As another example, we take f(x) = y/(1 + xy) in Theorem 5.3. Then∑
(b,d)=1

1
(ay + b)(cy + d)((a+ c)y + b+ d)

=
2 + y

(1 + y)2
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for any y > −1. In particular, putting y = 1, we get

(5.5)
∑

(b,d)=1

1
(a+ b)(c+ d)(a+ b+ c+ d)

=
3
4
.

Compare with (4.3).

6. Let {Un}n≥1 be any sequence of collections of finite fundamental
intervals. For any function ν : F → R and n ≥ 1, we put

Sn =
∑

I∈Un

ν(I).

Then we have immediately

S1 − SN+1 =
N∑

n=1

(Sn − Sn+1) =
N∑

n=1

( ∑
I∈Un\Un+1

ν(I)−
∑

I∈Un+1\Un

ν(I)
)

for all N ≥ 1. Indeed, let En be the collection of intervals I = [a/b, c/d],
where a/b and c/d run over all successive terms of the usual Farey series Fn.
Then one has Lehner and Newman’s formula by applying the above simple
principle to the sequence {En}n≥1.

For our series {Fn}n≥1, we have clearly Fi ∩ Fj = ∅ for any i 6= j and

Sn − Sn+1 =
∑

I∈Fn

(ν(I)− ν(I+)− ν(I−)),

where I+ = [m(I), r(I)] and I− = [l(I),m(I)]. Thus we have

Theorem 6.1. Let ν be a function on F such that
∑

I∈Fn
ν(I) → 0 as

n→∞. Then
∞∑

n=1

∑
I∈Fn

(ν(I)− ν(I+)− ν(I−)) = ν([0, 1]).

For example, taking ν(I) = 1/(bd)2 in Theorem 6.1, we get

(6.1)
∑

(b,d)=1

1
bd(b+ d)2

=
1
2
,

from which the equality (1.3) follows easily. We get (4.1) again if we take
ν(I) = 1/(bd)3.

As another example, taking ν(I) = 1/(bd(b+ d)) in Theorem 6.1, we get

(6.2)
∑

(b,d)=1

1
(b+ d)(b+ 2d)(2b+ d)

=
1
6
.
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Note that Gupta’s equality (1.1) comes now from (6.2) and Theorem 6.1 if
one takes

ν(I) =
1

(b+ d) max{b2, d2}
,

since ν(I+) + ν(I−) = 3/((b+ d)(b+ 2d)(2b+ d)). Similarly, taking

ν(I) =
1

bdmax{b2, d2}
,

we get from (6.1),

(6.3)
∞∑

b=1

∑
1≤d≤b
(b,d)=1

1
b3d

=
5
4
.

Compare with (5.4).

7. Finally, we remark that

(7.1)
∑
I∈F

ω(I)SI(x) =
{

1− 1/q if x = p/q ∈ Q ∩ [0, 1] with (p, q) = 1,
1 if x ∈ [0, 1]\Q.

This is a typical example in elementary analysis, a function which is contin-
uous at every irrational point in (0, 1) but discontinuous at every rational
point in [0, 1]. For any rational x ∈ [0, 1], (7.1) is easily shown by induction
on the order of modified Farey series. Moreover, this implies that

N∑
n=1

∑
I∈Fn

ω(I)SI(x) < 1

for anyN ≥ 1, since the left-hand side is a linear function on each fundamen-
tal interval I ∈ FN+1. Thus the series

∑
I∈F ω(I)SI(%) converges absolutely

for each fixed irrational % ∈ (0, 1). Thus, putting ν(I) = ω(I)SI(%), we have

ν(I) =
∑

J∈Gm(I)

ν(J)

from Lemma 5.2, and the same argument as in the proof of Theorem 5.3
implies (7.1), as required. In particular, there exist no continuous functions
f satisfying cI(f) = 1/(b+ d) for any I ∈ F .

On the other hand, if we assume that
∑

I∈F |cI(f)| <∞ for f ∈ C[0, 1],
then f(x) must be absolutely continuous. To see this, we need a simple
lemma.

For any I ∈ F let HI be the collection of all fundamental intervals J
which contain I as a proper subset. For example, H[0,1] = ∅ and H[1/3,1/2]

consists of the two intervals [0/1, 1/1] and [0/1, 1/2]. Put ∆I(f) = f(r(I))−
f(l(I)) for all I ∈ F . Then
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Lemma 7.1. For any f ∈ C[0, 1] and any I ∈ F ,

(7.2) ∆I(f) = |I|∆[0,1](f) +
∑

J∈HI

cJ(f)
∫
I

S′J(x) dx.

P r o o f. We prove this by induction on the order of fundamental inter-
vals. Clearly (7.2) holds for I = [0, 1] ∈ F1. Suppose now that (7.2) holds
for every fundamental interval I of order less than or equal to k for some
k ≥ 1. Take any I ∈ Fk+1 and K ∈ Fk such that I is a proper subset of K.
Then HI = {K} ∪ HK and∑

J∈HK

cJ(f)
∫
I

S′J(x) dx =
|I|
|K|

∑
J∈HK

cJ(f)
∫

K

S′J(x) dx

=
|I|
|K|

∆K(f)− |I|∆[0,1](f),

since S′J(x) is constant on K for every J ∈ HK . Hence

|I|∆[0,1](f) +
∑

J∈HI

cJ(f)
∫
I

S′J(x) dx =
|I|
|K|

∆K(f) + cK(f)
∫
I

S′K(x) dx.

First we suppose that l(I) = l(K); that is, r(I) = m(K). We then have∫
I
S′K(x) dx = 1 and

|I|
|K|

∆K(f) + cK(f) = f(m(K))− f(l(K)) = ∆I(f).

Similarly we get the same conclusion in the case r(I) = r(K). Therefore
(7.2) holds for every I ∈ Fk+1 and this completes the proof.

Theorem 7.2. Suppose that
∑

I∈F |cI(f)| < ∞ for f ∈ C[0, 1]. Then
f(x) must be absolutely continuous and

f ′(x) = ∆[0,1](f) +
∞∑

n=1

∑
I∈Fn

cI(f)S′I(x)

holds almost everywhere.

P r o o f. Put

ϕ(x) = ∆[0,1](f) +
∞∑

n=1

∑
I∈Fn

cI(f)S′I(x).

Then ϕ(x) is an integrable function on [0, 1], since
∞∑

n=1

∑
I∈Fn

|cI(f)|
1∫

0

|S′I(x)| dx = 2
∑
I∈F

|cI(f)| <∞.
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Integrating term-by-term and using Lemma 7.1, we have∫
I

ϕ(x) dx = |I|∆[0,1](f) +
∞∑

n=1

∑
J∈Fn

cJ(f)
∫
I

S′J(x) dx

= |I|∆[0,1](f) +
∑

J∈HI

cJ(f)
∫
I

S′J(x) dx = ∆I(f)

for any I ∈ F , since
∫

I
S′J(x) dx = 0 if either J ⊂ I or int J ∩ int I = ∅ holds.

Thus
r(I)∫
0

ϕ(x) dx = f(r(I))− f(0)

for any I ∈ F . Since {r(I) : I ∈ F} = Q ∩ (0, 1] is dense in [0, 1], we have∫ x

0
ϕ(t) dt = f(x) − f(0) for all x ∈ [0, 1]. Therefore ϕ(x) = f ′(x) almost

everywhere. This completes the proof.

Added in proof. Professor S. Kanemitsu pointed out that L. J. Mordell (On the
evaluation of some multiple series, J. London Math. Soc. 33 (1958), 368–371) had eval-
uated the double sum M(s) =

∑
m,n≥1(mn(m + n))−s for s = 1 and every even integer

s ≥ 2. The identities (1.2) and (1.4) follow easily from the evaluation of M(1) and M(2),
respectively. The author would like to take this opportunity to thank Professor Kanemitsu
for this observation.
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