Algebraic independence of the values of generalized Mahler functions

by

THOMAS TÖPFER (Köln)

1. Introduction and results. In the last years arithmetic properties of holomorphic functions were studied which satisfy a functional equation of the shape

(1)
$$P(z, f(z), f(T(z))) = 0,$$

where P(z, u, w) is a polynomial with coefficients in $\overline{\mathbb{Q}}$, the field of all algebraic numbers, and T(z) is an algebraic function. This generalizes investigations of Mahler [M1], [M2], [M3], which dealt with functional equations of the form

$$(2) f(z^d) = R(z, f(z))$$

with $d \in \mathbb{N}$, $d \geq 2$, and a rational function R(z,u) (resp. generalizations of these functional equations to several variables and several functions). Certain cases of (1) were studied extensively by different authors. For a survey of results about the transformations considered by Mahler see [M4], [K1], [L], [LP]. If T(z) is a polynomial, the transcendence of $f(\alpha)$ for algebraic α was proved by Nishioka [Ni1]. This was generalized to algebraic functions T(z) by Becker in [B3]. Applications to Böttcher functions were given by Becker and Bergweiler [BB], and transcendence measures for these functions can be found in [B4] (see also [NT]). The algebraic independence of several values $f_1(\alpha), \ldots, f_m(\alpha)$ was proved by Becker [B2] for certain rational transformations T(z) under additional technical assumptions.

Since a general zero order estimate for functions satisfying (2) with z^d replaced by rational functions T(z) was proved in [T3], we will give an application of the zero order estimate in this paper and derive measures for the algebraic independence of the values of the functions considered by Becker in [B2]. Furthermore we give lower bounds for the transcendence degree of $\mathbb{Q}(f_1(\alpha), \ldots, f_m(\alpha))$ over \mathbb{Q} , if f_1, \ldots, f_m satisfy functional equations with more general rational transformations T(z).

THEOREM 1. Let $f_1, \ldots, f_m : U \to \mathbb{C}$ be holomorphic in a neighborhood U of $\omega \in \widehat{\mathbb{C}}$, algebraically independent over $\mathbb{C}(z)$, and suppose the power series coefficients of f_1, \ldots, f_m in the expansion at ω are algebraic. Suppose that $T(z) = T_1(z)/T_2(z)$ with $T_1, T_2 \in \overline{\mathbb{Q}}[z]$, $\deg T = \max\{\deg T_1, \deg T_2\} = d \geq 2$, ω is a fixed point of T of order $\operatorname{ord}_{\omega} T = d$, and $\underline{f} = (f_1, \ldots, f_m)$ satisfies the functional equation

(3)
$$a(z)f(z) = A(z)f(T(z)) + \underline{B}(z),$$

where A(z) is a regular $m \times m$ matrix with entries in $\overline{\mathbb{Q}}[z]$, $\underline{B}(z) \in (\overline{\mathbb{Q}}[z])^m$, and $a(z) \in \overline{\mathbb{Q}}[z]$. Let $\alpha \in U$ be an algebraic number with $\lim_{k \to \infty} T^k(\alpha) = \omega$, where $T^k(\alpha)$ denotes the k-th iterate of T at α , and suppose for $k \in \mathbb{N}_0$ that $T^k(\alpha) \in U \setminus \{\omega, \infty\}$, and $T^k(\alpha)$ is neither a zero of a(z) nor a zero of $\det A(z)$. Then for each polynomial $Q \in \mathbb{Z}[y_1, \ldots, y_m] \setminus \{0\}$ with $\deg Q \leq D$, where $\deg Q$ denotes the total degree of Q in all variables, and $H(Q) \leq H$, where H(Q) denotes the height of Q, i.e. the maximum of the moduli of the coefficients of Q, the inequality

$$|Q(\underline{f}(\alpha))| > \exp(-c_1 D^m (D^{m+2} + \log H))$$

holds with a constant $c_1 \in \mathbb{R}_+$ depending only on f and α .

Remarks. (i) For $\omega = 0$, $T(z) = p(z^{-1})^{-1}$ with a polynomial $p \in \overline{\mathbb{Q}}[z]$, and a diagonal matrix A(z), Theorem 1 is the quantitative analogue of the theorem in [B2], where the algebraic independence of the function values under consideration was proved.

(ii) With $T(z) = z^d$, $d \in \mathbb{N}$, $d \geq 2$, and $\omega = 0$, Theorem 1 includes an earlier result of Becker (Theorem 1 in [B1]) and the improvement of Nishioka (Theorem 1 in [Ni2]).

THEOREM 2. Let $f_1, \ldots, f_m : U \to \mathbb{C}$ be holomorphic in a neighborhood U of $\omega \in \widehat{\mathbb{C}}$, algebraically independent over $\mathbb{C}(z)$, and suppose the power series coefficients of f_1, \ldots, f_m in the expansion at ω are algebraic. Suppose that $T(z) = T_1(z)/T_2(z)$ with $T_1, T_2 \in \overline{\mathbb{Q}}[z]$, $\deg T = d$, ω is a fixed point of T with $\operatorname{ord}_{\omega} T = \delta \geq 2$, and $\underline{f} = (f_1, \ldots, f_m)$ satisfies

$$a(z)\underline{f}(z) = A(z)\underline{f}(T(z)) + \underline{B}(z),$$

where A(z) is a regular $m \times m$ matrix with entries in $\overline{\mathbb{Q}}[z]$, $\underline{B}(z) \in (\overline{\mathbb{Q}}[z])^m$, and $a(z) \in \overline{\mathbb{Q}}[z]$. Let $\alpha \in U$ be an algebraic number with $\lim_{k \to \infty} T^k(\alpha) = \omega$, and suppose for $k \in \mathbb{N}_0$ that $T^k(\alpha) \in U \setminus \{\omega, \infty\}$, and $T^k(\alpha)$ is neither a zero of a(z) nor a zero of $\det A(z)$. Let m_0 be the greatest integer satisfying

$$m_0 < m \left(\frac{2\log \delta}{\log d} - 1 \right) + \frac{\log \delta}{\log d}.$$

Then

$$\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(\underline{f}(\alpha)) \geq m_0.$$

COROLLARY 1. Suppose the assumptions of Theorem 2 are fulfilled with $d < \delta^{1+1/2m}$. Then $f_1(\alpha), \ldots, f_m(\alpha)$ are algebraically independent. In particular, for m = 1 and $d < \delta^{3/2}$ we have $f(\alpha) \notin \overline{\mathbb{Q}}$.

Remark. The case m=1 is Becker's result in [B3] in the special case of rational transformations and the functional equation (3).

THEOREM 3. Let $f_1, \ldots, f_m : U \to \mathbb{C}$ be holomorphic in a neighborhood U of $\omega \in \mathbb{C}$, algebraically independent over $\mathbb{C}(z)$, and suppose $f_1(\omega), \ldots, f_m(\omega)$ are algebraic. Suppose that $T \in \overline{\mathbb{Q}}[z]$, $\deg T = d$, ω is a fixed point of T with $\operatorname{ord}_{\omega} T = \delta \geq 2$, and $f = (f_1, \ldots, f_m)$ satisfies

(4)
$$f(z) = A(z)f(T(z)) + \underline{B}(z),$$

where A(z) is a regular $m \times m$ matrix with entries in $\overline{\mathbb{Q}}[z]$, and $\underline{B}(z) \in (\overline{\mathbb{Q}}[z])^m$. Let $\alpha \in U$ be an algebraic number with $\lim_{k\to\infty} T^k(\alpha) = \omega$, and suppose for $k \in \mathbb{N}_0$ that $T^k(\alpha) \in U \setminus \{\omega\}$, and $\det A(T^k(\alpha)) \neq 0$. Let m_0 be the greatest integer satisfying

$$m_0 < (m+1) \frac{\log \delta}{\log d}.$$

Then

$$\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(f(\alpha)) \geq m_0.$$

COROLLARY 2. Suppose the assumptions of Theorem 3 are fulfilled and $d < \delta^{1+1/m}$. Then $f_1(\alpha), \ldots, f_m(\alpha)$ are algebraically independent. In particular, for m = 1 and $d < \delta^2$ we get $f(\alpha) \notin \overline{\mathbb{Q}}$.

Remark. Since the condition $d < \delta^{3/2}$ in Corollary 1 coincides with the condition given in the theorem of Becker in [B3] in the special case of rational transformations and functional equations of type (3), the weaker condition of Corollary 2 for polynomial transformations and the more restricted functional equations of type (4) gives a first answer to a question posed by Becker (p. 119 in [B3]). He asked for weaker technical assumptions of this form to extend the range of applications of Mahler's method.

 ${\bf 2.~Examples}$ and applications. Our first example deals with series of the form

$$\chi_i(z) = \sum_{h=0}^{\infty} q_i(T^h(z)) \quad (i = 1, \dots, m),$$

where $T(z) = T_1(z)/T_2(z) \in \overline{\mathbb{Q}}(z)$, $d_j = \deg T_j$ (j = 1, 2), $\omega \in \mathbb{C}$ is a fixed point of T of order $\delta \geq 2$, $q_i \in \overline{\mathbb{Q}}[z]$ with $\deg q_i \geq 1$ and $q_i(\omega) = 0$ for $i = 1, \ldots, m$. Then all χ_i are holomorphic in a neighborhood U of ω and satisfy the functional equation

$$\chi_i(z) = \chi_i(T(z)) + q_i(z) \quad (i = 1, ..., m).$$

COROLLARY 3. Suppose q_1, \ldots, q_m are \mathbb{C} -linearly independent, $0 < d_2 < d_1 = d$, and $\alpha \in \overline{\mathbb{Q}}$ satisfies $\lim_{k \to \infty} T^k(\alpha) = \omega$ and $T^k(\alpha) \neq \omega$ for $k \in \mathbb{N}_0$. Then

$$\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(\chi_1(\alpha), \dots, \chi_m(\alpha)) \geq m_0,$$

where m_0 denotes the greatest integer satisfying

$$m_0 < (m+1)\frac{\log \delta}{\log d} - \left(1 - \frac{\log \delta}{\log d}\right)m.$$

Proof. For the application of Theorem 2 we have to show that χ_1, \ldots, χ_m are algebraically independent. In the next paragraph this will be derived from Lemma 6 of Section 3.

Suppose that χ_1, \ldots, χ_m are algebraically dependent. By Lemma 6 there exist $g_i \in \mathbb{C}(z)$ with deg $g_i = \gamma_i$ $(i = 1, 2), \gamma = \max\{\gamma_1, \gamma_2\}, \text{ and } s_1, \ldots, s_m \in \mathbb{C}$, not all zero, such that

$$\frac{g_1(z)}{g_2(z)} = \frac{g_1(T(z))}{g_2(T(z))} + \sum_{i=1}^m s_i q_i(z).$$

Since the sum on the right is nonzero, we know that $\gamma \geq 1$. From this equation we get the polynomial identity

$$g_1(z)h_2(z) = g_2(z)h_1(z) + g_2(z)h_2(z)\sum_{i=1}^m s_iq_i(z)$$

with $h_i(z) = T_2(z)^{\gamma} g_i(T(z)) \in \mathbb{C}[z]$ (i = 1, 2). Since g_1, g_2 resp. T_1, T_2 are coprime, we see that h_1, h_2 are also coprime. Thus $h_2 \mid g_2$, and the condition $d_2 < d_1$ implies

$$\deg h_2 = (\gamma - \gamma_2)d_2 + \gamma_2 d_1 \le \gamma_2 = \deg g_2.$$

But $d_2 \geq 1$, $d_1 \geq 2$ and $\gamma \geq 1$. Hence we get a contradiction, and so χ_1, \ldots, χ_m must be algebraically independent. Then application of Theorem 2 completes the proof. \blacksquare

COROLLARY 4. Suppose that $1, q_1, \ldots, q_m$ are \mathbb{C} -linearly independent, $T(z) \in \overline{\mathbb{Q}}[z]$ with $2 \leq \delta \leq d$, $d \nmid \deg(\sum_{i=1}^m s_i q_i(z))$ for arbitrary $(s_1, \ldots, s_m) \in \mathbb{C}^m \setminus \{\underline{0}\}$, and $\alpha \in \overline{\mathbb{Q}}$ satisfies $\lim_{k \to \infty} T^k(\alpha) = \omega$ and $T^k(\alpha) \neq \omega$ for $k \in \mathbb{N}_0$. Then

$$\operatorname{trdeg}_{\mathbb{O}} \mathbb{Q}(\chi_1(\alpha), \dots, \chi_m(\alpha)) \geq m_0,$$

where m_0 denotes the greatest integer satisfying

$$m_0 < (m+1) \frac{\log \delta}{\log d}.$$

Proof. Under the assumption that χ_1, \ldots, χ_m are algebraically dependent, we get analogously to the proof of Corollary 3 the polynomial identity

(notice that $T_2 = 1$, hence $h_2 = g_2$)

(5)
$$g_1(z)g_2(T(z)) = g_2(z)g_1(T(z)) + g_2(z)g_2(T(z)) \sum_{i=1}^m s_i q_i(z).$$

The coprimality of g_1, g_2 implies $g_2(T(z)) | g_2(z)$, hence $\gamma_2 = 0$. Now we compare the degrees in (5). The degree on the left side is γ_1 , and the two terms on the right have degrees $\gamma_1 d$ and $\deg(\sum_{i=1}^m s_i q_i(z)) = \Delta$, respectively. Since $d \geq 2$, this forces $\gamma_1 d = \Delta$. But Δ is not divisible by d except for $\Delta = 0$. Then $\gamma_1 = 0$, and we get the contradiction $\sum_{i=1}^m s_i q_i(z) = 0$. Therefore χ_1, \ldots, χ_m are algebraically independent. Now application of Theorem 3 yields the assertion.

COROLLARY 5. Suppose q_1, \ldots, q_m are \mathbb{C} -linearly independent, $T(z) = T_1(z)/T_2(z) \in \overline{\mathbb{Q}}(z)$, $0 < d_2 < d_1 = d = \delta$, and $\alpha \in \overline{\mathbb{Q}}$ satisfies $\lim_{k \to \infty} T^k(\alpha) = \omega$ and $T^k(\alpha) \in U \setminus \{\omega\}$ for $k \in \mathbb{N}_0$. Then for each polynomial $Q \in \mathbb{Z}[\underline{y}] \setminus \{0\}$ with $\deg Q \leq D$ and $H(Q) \leq H$,

$$|Q(\chi_1(\alpha),\ldots,\chi_m(\alpha))| > \exp(-c_1 D^m (D^{m+2} + \log H)).$$

Proof. From the proof of Corollary 3 we know that χ_1, \ldots, χ_m are algebraically independent. Since $\delta = d$, the assertion follows from Theorem 1. \blacksquare

Remark. The same quantitative result can be derived under the assumptions of Corollary 4 for $\delta = d$.

Now we consider certain Cantor series introduced by Tamura [Ta]. Let

(6)
$$\theta_i(z) = \sum_{h=0}^{\infty} \frac{1}{q_i(z)q_i(T(z))\dots q_i(T^h(z))} \quad (i = 1, \dots, m)$$

with $T(z) = T_1(z)/T_2(z) \in \overline{\mathbb{Q}}(z)$, $\deg T_j = d_j$ (j = 1, 2), $\omega \in \widehat{\mathbb{C}}$ is a fixed point of T of order $\delta \geq 2$, $q_i \in \overline{\mathbb{Q}}[z]$ with $\deg q_i \geq 1$ and $|q_i(\omega)| > 1$ for $i = 1, \ldots, m$ (notice that $\omega = \infty$ and $q_i(\infty) = \infty$ is possible). The functions θ_i are holomorphic in a neighborhood of $\omega \in \widehat{\mathbb{C}}$ and satisfy the functional equation

$$\theta_i(T(z)) = q_i(z)\theta_i(z) - 1 \quad (i = 1, \dots, m).$$

Tamura proved the transcendence of $\theta(\alpha)$ for certain α in the special case $q(z) = z, T(z) \in \mathbb{Z}[z]$ and $\deg T \geq 3$. The more general case of polynomials $q_i, T \in \overline{\mathbb{Q}}[z]$ (i = 1, ..., m) was treated by Becker [B2]. He derived algebraic independence results for $\theta_1(\alpha), ..., \theta_m(\alpha)$ at algebraic points α and discussed in detail the transcendence of $\theta(\alpha)$ for linear polynomials q and algebraic α . Here we study rational transformations and give qualitative and quantitative generalizations of Becker's results.

COROLLARY 6. Suppose q_1, \ldots, q_m are pairwise distinct, $\max\{2, d_2\} < d_1 = d$, $1 \le \deg q_i < d-1$ for $i = 1, \ldots, m$. Let α be an algebraic number with $\lim_{k \to \infty} T^k(\alpha) = \omega$ and $q_i(T^k(\alpha)) \ne 0$, $T^k(\alpha) \ne \omega$ for $k \in \mathbb{N}_0$ and $i = 1, \ldots, m$. If m_0 is the greatest integer satisfying

$$m_0 < (m+1)\frac{\log \delta}{\log d} - \left(1 - \frac{\log \delta}{\log d}\right)m,$$

then

$$\operatorname{trdeg}_{\mathbb{Q}} \mathbb{Q}(\theta_1(\alpha), \dots, \theta_m(\alpha)) \geq m_0.$$

If $\delta = d$, then $\theta_1(\alpha), \ldots, \theta_m(\alpha)$ are algebraically independent, and for all polynomials $Q \in \mathbb{Z}[y] \setminus \{0\}$ with deg $Q \leq D$ and $H(Q) \leq H$,

$$|Q(\theta_1(\alpha),\ldots,\theta_m(\alpha))| > \exp(-c_1 D^m (D^{m+2} + \log H)).$$

Proof. The assertions are obvious consequences of Theorems 1 and 2, if the algebraic independence of $\theta_1, \ldots, \theta_m$ is verified. Thus we assume that $\theta_1, \ldots, \theta_m$ are algebraically dependent, and apply Lemma 6. First we must show that $q_i(z)/q_j(z)$ for $i \neq j$ is not of the form g(T(z))/g(z) for some $g \in \mathbb{C}(z)$. With $g(z) = g_1(z)/g_2(z)$, deg $g_i = \gamma_i$ (i = 1, 2), and $\gamma = \max\{\gamma_1, \gamma_2\}$ we suppose on the contrary that

$$q_i(z)g_1(z)h_2(z) = q_j(z)g_2(z)h_1(z),$$

where $h_i(z) = T_2(z)^{\gamma} g_i(T(z)) \in \mathbb{C}[z]$. Since g_1, g_2 resp. T_1, T_2 are coprime, we see that h_1, h_2 are also coprime. Thus $h_1 | q_i g_1, h_2 | q_j g_2$, and this implies (notice that $d_2 < d_1$)

$$\deg h_i = \gamma d_2 + \gamma_i (d_1 - d_2) = \gamma_i d_1 + (\gamma - \gamma_i) d_2 \le d_1 - 2 + \gamma_i \quad (i = 1, 2).$$

Since $d_1 \geq 3$, we must have $\gamma_1 = \gamma_2 = 0$, but this leads to the contradiction $q_i = q_j$. Now all conditions of Lemma 6 are fulfilled, and then there exist $i \in \{1, \ldots, m\}$ and a rational function g (with $g_i, h_i, \gamma_i, \gamma$ as above) such that

(7)
$$g_2(z)h_1(z) = h_2(z)g_2(z) + q_i(z)g_1(z)h_2(z).$$

Hence $h_2 \mid g_2$, and this yields

$$\deg h_2 = \gamma_2 d_1 + (\gamma - \gamma_2) d_2 \le \gamma_2.$$

But $d_1 \geq 3$, and so $\gamma_2 = d_2 = 0$. Now we compare the degrees on both sides of (7) and get $d_1\gamma_1 \leq \gamma_1 + d_1 - 2$. Since $d_1 \geq 3$, we must have $\gamma_1 = 0$, but then $q_i(z)$ is a constant, and this is excluded. Thus $\theta_1, \ldots, \theta_m$ cannot be algebraically dependent. \blacksquare

COROLLARY 7. Suppose that $T \in \overline{\mathbb{Q}}[z]$ is a polynomial with $d \geq 2$, and $q \in \overline{\mathbb{Q}}[z]$ is a linear polynomial with $q(T(z))^2 \neq q(z)^2 - 2$. Let α be an algebraic number with $\lim_{k\to\infty} T^k(\alpha) = \infty$ and $q(T^k(\alpha)) \neq 0$ for $k \in \mathbb{N}_0$.

Then for each polynomial $Q \in \mathbb{Z}[y] \setminus \{0\}$ with $\deg Q \leq D$, $H(Q) \leq H$ the inequality

$$|Q(\theta(\alpha))| > \exp(-c_1 D(D^3 + \log H))$$

holds for $\theta(z)$ as in (6). In particular, $\theta(\alpha)$ is an S-number in Mahler's classification of transcendental numbers.

Proof. In Corollary 2 of [B2] Becker showed that $\theta(z)$ is a transcendental function for q(z), T(z) as above. Then Theorem 1 with $\omega = \infty$ yields the assertion (notice that $\deg T = d = \operatorname{ord}_{\infty} T$).

The next example deals with the series

$$\Omega(z) = \sum_{h=0}^{\infty} \frac{(-1)^h}{q(T^h(z))}$$

with $q, T \in \overline{\mathbb{Q}}[z]$ and $\deg q \geq 1$, $d \geq 2$, which was introduced by Becker [B2]. Then $\Omega(z)$ is holomorphic in a neighborhood of $\omega = \infty$ and satisfies

$$\Omega(T(z)) = -\Omega(z) + 1/q(z).$$

COROLLARY 8. Suppose $q(T(z)) \neq \lambda^{-1}q(z)^2 + q(z) - \lambda$ for any $\lambda \in \mathbb{C} \setminus \{0\}$, and α is an algebraic number with $\lim_{k \to \infty} T^k(\alpha) = \infty$ and $q(T^k(\alpha)) \neq 0$ for $k \in \mathbb{N}_0$. Then for each $Q \in \mathbb{Z}[y] \setminus \{0\}$ with $\deg Q \leq D$ and $H(Q) \leq H$,

$$|Q(\Omega(\alpha))| > \exp(-c_1 D(D^3 + \log H)).$$

In particular, this transcendence measure is valid for Cahen's constant

$$C = \sum_{h=0}^{\infty} \frac{(-1)^h}{S_h - 1},$$

where $S_0 = 2$ and $S_{h+1} = S_h^2 - S_h + 1$ for $h \ge 0$.

Remark. The transcendence of C was proved by Davison and Shallit [DS] with continued fractions and later by Becker in [B2] using the identity $C = \Omega(2)$ for q(z) = z - 1, $T(z) = z^2 - z + 1$. Corollary 8 implies that C is a S-number in Mahler's classification of transcendental numbers.

Proof of Corollary 8. In Corollary 3 of [B2] the transcendence of the function $\Omega(z)$ was proved. Then Theorem 1 yields the assertion.

The last example was studied by Becker in [B3], Corollary 1. Let

$$\sigma(z) = \prod_{h=0}^{\infty} q(T^h(z)),$$

where $q \in \overline{\mathbb{Q}}[z]$, $\deg q \geq 1$, and $T(z) = T_1(z)/T_2(z) \in \overline{\mathbb{Q}}(z)$, $\deg T_i = d_i$ (i = 1, 2), and $\omega \in \widehat{\mathbb{C}}$ is a fixed point of T of order δ . Assume that $q(\omega) = 1$.

Then $\sigma(z)$ is holomorphic in a neighborhood of ω and satisfies the functional equation

$$\sigma(z) = q(z)\sigma(T(z)).$$

COROLLARY 9. Suppose $0 < d_2 < d_1 = \delta$, and α is an algebraic number with $\lim_{k\to\infty} T^k(\alpha) = \omega$ and $q(T^k(\alpha)) \neq 0$, $T^k(\alpha) \neq \omega$, ∞ for $k \in \mathbb{N}_0$. Then for any polynomial $Q \in \mathbb{Z}[y] \setminus \{0\}$ with $\deg Q \leq D$, $H(Q) \leq H$,

$$|Q(\sigma(\alpha))| > \exp(-c_1 D(D^3 + \log H)).$$

Proof. The transcendence of $\sigma(z)$ was proved in Corollary 1 of [B3]. Then the assertion follows from Theorem 1. \blacksquare

3. Preliminaries and auxiliary results. Throughout the paper let K denote an algebraic number field, and O_K is the ring of integers in K. Define $\overline{\alpha}$, the *house* of the algebraic number α , as the maximum of the moduli of the conjugates of α . A *denominator* of an algebraic number α is a positive integer d such that $d\alpha \in O_K$. For a polynomial P with algebraic coefficients the *height* H(P) is defined as the maximum of the houses of the coefficients, and the *length* L(P) is the sum of the houses of the coefficients.

LEMMA 1. Suppose the rational function $g(z) = r(z)/s(z) \in K(z)$ is holomorphic in a neighborhood of z = 0. Then for each $h \in \mathbb{N}_0$ the power series coefficients g_h of

$$g(z) = \sum_{h=0}^{\infty} g_h z^h$$

satisfy

- (i) $g_h \in K(g_0)$,
- (ii) $|\overline{g_h}| \leq \exp(c_2(h+1)),$
- (iii) $D^{[c_2(h+1)]}g_h \in O_K$

with suitable $D \in \mathbb{N}$ and $c_2 \in \mathbb{R}_+$ depending only on g.

Proof. From $r(z) = s(z) \sum_{h=0}^{\infty} g_h z^h$ with $r(z) = \sum_{i=0}^{l} r_i z^i$, $s(z) = \sum_{i=0}^{l} s_i z^i$ we get the following recurrence relation for the coefficients g_h (with $r_h = 0$ for h > l), $h \in \mathbb{N}_0$:

$$g_h = \frac{r_h}{s_0} - \sum_{\mu=1}^{\min\{l,h\}} \frac{s_\mu}{s_0} g_{h-\mu}.$$

This implies the assertion.

LEMMA 2. Suppose $T(z) = T_1(z)/T_2(z)$ is a rational function with $\delta = \operatorname{ord}_0 T \geq 2$, and $\alpha \in \mathbb{C}$ satisfies $T^k(\alpha) \neq 0$ for $k \in \mathbb{N}_0$ and $\lim_{k \to \infty} T^k(\alpha) = 0$. Then for all $k \geq \overline{k}$,

$$-c_3\delta^k \le \log |T^k(\alpha)| \le -c_4\delta^k$$

with $c_3, c_4 \in \mathbb{R}_+, \overline{k} \in \mathbb{N}$ depending on T and α .

Proof. Since 0 is a zero of T of order $\delta \geq 2$, we have $T(z) = z^{\delta}g(z)$, where g(z) is holomorphic in a neighborhood of z = 0 and $g(0) \neq 0$. Then there exists a constant $\varepsilon \in \mathbb{R}_+$ depending only on T such that for all $\beta \in \mathbb{C}$ with $0 < |\beta| < \varepsilon$ (< 1),

$$\gamma_0 |\beta|^{\delta} \le |T(\beta)| \le \gamma_1 |\beta|^{\delta},$$

where $\gamma_0, \gamma_1 \in \mathbb{R}_+$ depend on T. Thus

(8)
$$\exp(-\gamma_2 \delta^k) \le \gamma_0^k |\beta|^{\delta^k} \le |T^k(\beta)| \le \gamma_1^k |\beta|^{\delta^k} \le \exp(-\gamma_3 \delta^k)$$

with $\gamma_2, \gamma_3 \in \mathbb{R}_+$ depending on T and β . Since $\lim_{k\to\infty} T^k(\alpha) = 0$, we know $0 < |T^k(\alpha)| < \varepsilon$ for $k \ge \overline{k}$ with $\overline{k} \in \mathbb{N}$ depending on T and α , and together with (8) this yields the assertion.

The proofs of the theorems depend on the following results from elimination theory.

LEMMA 3. Suppose $\underline{\omega} \in \mathbb{C}^m$. Then there exists a constant $c_5 = c_5(\underline{\omega}, K)$ $\in \mathbb{R}_+$ with the following property: If there exist increasing functions Ψ_1, Ψ_2 : $\mathbb{N} \to \mathbb{R}_+$, numbers $\Phi_1, \Phi_2, \Lambda \in \mathbb{R}_+$, positive integers k_0, k_1 with $k_0 < k_1$, $m_0 \in \{0, \ldots, m\}$ and polynomials $(Q_k)_{k_0 \leq k \leq k_1}$, such that the following assumptions are satisfied:

- (i) $\Phi_2 \ge \Phi_1 \ge c_5$, $\Lambda \ge \Psi_1(k+1)/\Psi_2(k) \ge 1$ for $k \in \{k_0, \dots, k_1\}$,
- (ii) $\Psi_2(k) \ge c_5(\log H(Q_k) + \deg Q_k)$ for $k \in \{k_0, \dots, k_1\}$,
- (iii) the polynomials $Q_k \in O_K[y_1, \dots, y_m]$ $(k_0 \le k \le k_1)$ satisfy
 - (a) $\deg Q_k \leq \Phi_1$,
 - (b) $\log H(Q_k) \leq \Phi_2$,
 - (c) $\exp(-\Psi_1(k)) \le |Q_k(\underline{\omega})| \le \exp(-\Psi_2(k)),$
- (iv) $\Psi_2(k_1) \ge c_5 \Lambda^{m_0-1} \Phi_1^{m_0-1} \max\{\Psi_1(k_0), \Phi_2\},$

then

$$\operatorname{trdeg}_{\mathbb{O}} \mathbb{Q}(\underline{\omega}) \geq m_0.$$

Proof. This is Theorem 1 in [T1] with slight modifications. ■

LEMMA 4. Suppose $\underline{\omega} \in \mathbb{C}^m$. Then there exists a constant $c_6 = c_6(\underline{\omega}, K)$ $\in \mathbb{R}_+$ with the following property: If there exist functions $\Psi_1, \Psi_2 : \mathbb{N}^2 \to \mathbb{R}_+$, which are increasing in the first variable, numbers $\Phi_1, \Phi_2, \Lambda, U, \tau \in \mathbb{R}_+$, positive integers N_0, N_1 with $N_0 \leq N_1$, for each $N \in \{N_0, \ldots, N_1\}$ positive integers $k_0(N), k_1(N)$ with $k_0(N) \leq k_1(N)$, and polynomials $Q_{k,N}$ for

170 T. Töpfer

 $N \in \{N_0, \ldots, N_1\}$ and $k \in \{k_0(N), \ldots, k_1(N)\}$, such that the following assumptions are satisfied for positive integers D, H and all $N \in \{N_0, \dots, N_1\}$, $k \in \{k_0(N), \dots, k_1(N)\}:$

- (i) (a) $\Phi_2 \ge \Phi_1 \ge c_6$, $\Lambda \ge \Psi_1(k+1,N)/\Psi_2(k,N) \ge 1$,
 - (b) $\Psi_1(k_1(N), N) \ge \Psi_1(k_0(N+1), N+1)$,
 - (c) $U \leq \max\{\Psi_2(k, N) \mid N_0 \leq N \leq N_1, k_0(N) \leq k \leq k_1(N)\},\$ $\tau \ge \min\{\Psi_1(k, N) \mid N_0 \le N \le N_1, k_0(N) \le k \le k_1(N)\},\$
- (ii) $\Psi_2(k, N) \ge c_6(\log H(Q_{k,N}) + \deg Q_{k,N}),$
- (iii) the polynomials $Q_{k,N} \in O_K[y_1,\ldots,y_m]$ satisfy
 - (a) $\deg Q_{k,N} \leq \Phi_1$,
 - (b) $\log H(Q_{k,N}) \leq \Phi_2$,
- $\begin{array}{l} (\mathrm{c}) \, \exp(-\Psi_1(k,N)) \leq |Q_{k,N}(\underline{\omega})| \leq \exp(-\Psi_2(k,N)), \\ (\mathrm{iv}) \, \, U \geq c_6 \varLambda^{m-1} \varPhi_1^{m-1} \max\{\tau D, \varLambda(\varPhi_1 \log H + \varPhi_2 D)\}, \end{array}$

then for all polynomials $R \in \mathbb{Z}[y_1, \dots, y_m] \setminus \{0\}$ with $\deg R \leq D$, $H(R) \leq H$,

$$|R(\underline{\omega})| \ge \exp(-U)$$
.

Proof. Lemma 4 can be derived from Jabbouri's criterion [J] analogous to the proof of the proposition in [T2].

LEMMA 5. Let $f_1, \ldots, f_m \in \mathbb{C}[[z]]$ be formal power series which satisfy

$$A_0(z,\underline{f}(z))\underline{f}(T(z)) = \underline{A}(z,\underline{f}(z)),$$

where $f(z) = (f_1(z), \dots, f_m(z)), T(z) = T_1(z)/T_2(z)$ is a rational function with $T_1, T_2 \in \mathbb{C}[z]$, $d = \max\{\deg T_1, \deg T_2\}$, $\delta = \operatorname{ord}_0 T \geq 2$, $\underline{A}(z, y) =$ $(A_1(z,y),...,A_m(z,y)), \ and \ A_i(z,y) \in \mathbb{C}[z,y_1,...,y_m] \setminus \{0\} \ (0 \le i \le m)$ are polynomials with $\deg_z A_i \leq s$ and $\deg_{y_1,\dots,y_m} A_i \leq t$. Suppose that $t^m < t$ δ and $Q \in \mathbb{C}[z, y_1, \dots, y_m]$ with $\deg_z Q \leq M$, $\deg_{y_1, \dots, y_m} Q \leq N$ and $M \geq 0$ $N \ge 1$. If $Q(z, f(z)) \ne 0$, then

$$\operatorname{ord}_0 Q(z, \underline{f}(z)) \le c_7 M N^{m \log d/(\log \delta - m \log t)}$$

with a constant $c_7 \in \mathbb{R}_+$ depending on f.

Proof. See Theorem 1 in [T3].

The following result of Kubota is often useful to verify the algebraic independence of the functions f_1, \ldots, f_m .

LEMMA 6. Suppose $f_{i,j} \in \mathbb{C}[[z]]$ $(1 \leq i \leq m, 1 \leq j \leq n(i))$ are formal power series satisfying the functional equations

$$f_{i,j}(z) = a_i(z)f_{i,j}(T(z)) + b_{i,j}(z) \quad (1 \le i \le m, 1 \le j \le n(i))$$

with $a_i, b_{i,j} \in \mathbb{C}(z)$, $T \in \mathbb{C}(z)$ is not constant, $a_i \neq 0$, and a_{i_1}/a_{i_2} is not of the form g(T(z))/g(z) with $g \in \mathbb{C}(z)$ for $i_1 \neq i_2$. If $f_{1,1}, \ldots, f_{m,n(m)}$ are algebraically dependent, then there exist indices $1 \leq i_1 < \ldots < i_R \leq m$, complex numbers $c_{i_r,j}$ for $1 \leq r \leq R$ and $1 \leq j \leq n(i_r)$, not all zero, and functions $g_1, \ldots, g_R \in \mathbb{C}(z)$ with the following properties:

(i)
$$g_r(z) = a_{i_r}(z)g_r(T(z)) + \sum_{j=1}^{n(i_r)} c_{i_r,j}b_{i_r,j}(z)$$
 for $1 \le r \le R$, (ii) there exist $m_1, \ldots, m_R \in \mathbb{Z}$, not all zero, such that

$$\prod_{r=1}^R \left(\sum_{j=1}^{n(i_r)} c_{i_r,j} f_{i_r,j}(z) - g_r(z)\right)^{m_r} \in \mathbb{C}(z).$$

Proof. See Theorem 2 in [K2].

4. Proof of Theorem 1. The first step in the proof of the theorems is the reduction to the case $\omega = 0$, as shown in [B3]. This is done by means of a suitable Möbius transformation $\Phi(z)$, which is defined as

$$\Phi(z) = \begin{cases} z - \omega & \text{for } \omega \in \mathbb{C}, \\ \frac{1}{z - \beta} & \text{for } \omega = \infty \text{ with an algebraic number } \beta \neq T^k(\alpha) \text{ for } k \in \mathbb{N}_0. \end{cases}$$

Then we consider the functions $f_i^*(z) = f_i(\Phi^{-1}(z))$ and the transformation $T^*(z) = \Phi(T(\Phi^{-1}(z)))$ (notice that $\deg T^* = \deg T$ and $\operatorname{ord}_0 T^* = \operatorname{ord}_\omega T$). Since the functional equations

$$a^*(z)f^*(z) = A^*(z)f^*(T^*(z)) + \underline{B}^*(z)$$

with $a^*(z) = a(\Phi^{-1}(z)), A^*(z) = A(\Phi^{-1}(z)), \underline{B}^*(z) = \underline{B}(\Phi^{-1}(z))$ hold, the assumptions of Theorem 1 are fulfilled for f^* , $d(z)a^*(z)$, $d(z)A^*(z)$, $d(z)\underline{B}^*(z)$, where $d(z) \in \mathbb{Q}[z]$ is a common denominator for the rational functions in A^* , \underline{B}^* , a^* , and further $\omega = 0$.

The next step in the proof of Theorem 1 is the estimate of the power series coefficients of the functions f_i and the construction of an auxiliary function with high vanishing order at z = 0. This yields a sequence of auxiliary polynomials in $f_1(\alpha), \ldots, f_m(\alpha)$. Application of Lemmas 3 and 5 and a suitable choice of the parameters completes the proof.

For the proof of Lemmas 7-9 we suppose that $T(z) = T_1(z)/T_2(z)$ with $T_1, T_2 \in \overline{\mathbb{Q}}[z]$, $\omega = 0$, $d = \deg T \geq \delta = \operatorname{ord}_0 T \geq 2$. Further we define for $f_i(z) = \sum_{h=0}^{\infty} f_{i,h} z^h$ the power series coefficients of the *j*th power $f_i^j(z)$ by

(9)
$$f_i^j(z) = \sum_{h=0}^{\infty} \left(\sum_{h_1 + \dots + h_j = h} f_{i,h_1} \dots f_{i,h_j} \right) z^h = \sum_{h=0}^{\infty} f_{i,h}^{(j)} z^h$$

and for $j = (j_1, \ldots, j_m) \in \mathbb{N}_0^m$,

(10)
$$\underline{f}(z)^{\underline{j}} = f_1^{j_1}(z) \dots f_m^{j_m}(z)$$

$$= \sum_{h=0}^{\infty} \left(\sum_{h_1 + \dots + h_m = h} f_{1,h_1}^{(j_1)} \dots f_{m,h_m}^{(j_m)} \right) z^h = \sum_{h=0}^{\infty} f_{\underline{h}}^{(\underline{j})} z^h.$$

LEMMA 7. Suppose the above mentioned assumptions are fulfilled, and \underline{f} satisfies (3). Then for all $h \in \mathbb{N}_0$ and $j \in \mathbb{N}$, $j \in \mathbb{N}_0^m$ with $|j| = j_1 + \ldots + j_m$,

- (i) $f_{i,h} \in K$,
- (ii) $|f_{i,h}| \le \exp(c_8(1+h)), D^{[c_8(1+h)]} f_{i,h} \in O_K,$
- (iii) $|f_{i,h}^{(j)}| \le \exp(c_9(j+h)), D^{[c_9(j+h)]} f_{i,h}^{(j)} \in O_K,$

(iv)
$$|f_h^{(\underline{j})}| \le \exp(c_{10}(|\underline{j}|+h)), D^{[c_{10}(|\underline{j}|+h)]} f_h^{(\underline{j})} \in O_K,$$

where $D \in \mathbb{N}$, $c_8, c_9, c_{10} \in \mathbb{R}_+$, and the algebraic number field K depend on f_1, \ldots, f_m .

Proof. Without loss of generality we may assume that $f_i(0) = 0$ for all i (otherwise we consider $f_i(z) - f_i(0)$), and the entries of $a(z)^{-1}A(z)$ (hence of $a(z)^{-1}\underline{B}(z)$) are regular in z = 0. If there exist entries of $a(z)^{-1}A(z)$ which are not regular in z = 0, and the pole order is at most s, we put

$$R_i(z) = \sum_{h=0}^{s-1} f_{i,h} z^h$$
 $(1 \le i \le m),$ $\underline{R}(z) = (R_1(z), \dots, R_m(z)),$

and consider the functions $g_i(z) = (f_i(z) - R_i(z))z^{-s}$, which satisfy the functional equation

$$\underline{g}(z) = T(z)^s z^{-s} a(z)^{-1} A(z) \underline{g}(T(z))$$
$$- z^{-s} (\underline{R}(z) - a(z)^{-1} (A(z) \underline{R}(T(z)) + \underline{B}(z))),$$

and then $T(z)^s z^{-s} a(z)^{-1} A(z)$ is regular in z=0 because of $\delta \geq 2$. Now let K denote the algebraic number field which is generated by the coefficients of the power series expansion of the entries of $a(z)^{-1} A(z)$ and $a(z)^{-1} \underline{B}(z)$, the fixed point ω (remember the Möbius transformation Φ), the coefficients of T, finitely many power series coefficients of f_1, \ldots, f_m (if necessary, see above), and the point β from the beginning of this section (if necessary). With $a(z)^{-1} A(z) = (a_{i,j}(z))_{1 \leq i,j \leq m}$, $a(z)^{-1} \underline{B}(z) = (b_i(z))_{1 \leq i \leq m}$ and

$$a_{i,j}(z) = \sum_{h=0}^{\infty} a_{i,j,h} z^h, \quad b_i(z) = \sum_{h=0}^{\infty} b_{i,h} z^h,$$
$$T(z) = \sum_{h=0}^{\infty} p_h z^h, \quad (T(z))^l = \sum_{h=0}^{\infty} p_h^{(l)} z^h,$$

the functional equation implies

$$\sum_{h=1}^{\infty} f_{i,h} z^h = \sum_{j=1}^{m} \left(\sum_{h=0}^{\infty} a_{i,j,h} z^h \right) \left(\sum_{l=1}^{\infty} f_{j,l} \left(\sum_{h=\delta^l}^{\infty} p_h^{(l)} z^h \right) \right) + \sum_{h=0}^{\infty} b_{i,h} z^h$$

$$= \sum_{h=\delta}^{\infty} \left(\sum_{j=1}^{m} \sum_{k=\delta}^{h} a_{i,j,h-k} \binom{\log k/\log \delta}{2} f_{j,l} p_k^{(l)} \right) z^h + \sum_{h=0}^{\infty} b_{i,h} z^h,$$

and we get the identity

(11)
$$f_{i,h} = \sum_{k=\delta}^{h} \sum_{j=1}^{m} a_{i,j,h-k} \left(\sum_{l=1}^{\lceil \log k/\log \delta \rceil} f_{j,l} \, p_k^{(l)} \right) + b_{i,h}.$$

Now assertion (i) is obvious. According to Lemma 1(ii) the power series coefficients p_h of T are bounded by $\overline{p_h} \leq \exp(\gamma_0(h+1))$ with $\gamma_0 \in \mathbb{R}_+$, and then

$$\overline{|p_h^{(l)}|} \le \sum_{h_1 + \dots + h_l = h} \overline{|p_{h_1}| \dots |p_{h_l}|} \le \exp(\gamma_1(l+h)).$$

Together with (11) and the bounds of Lemma 1(ii) for the power series coefficients of the $a_{i,j}(z)$ and $b_i(z)$ this yields the first part of (ii) by induction, and with suitable $D \in \mathbb{N}$ the second part of (ii) follows from Lemma 1(iii).

Assertions (iii) and (iv) are consequences of (ii) and the identities (9), (10) (notice that the number of $\underline{h} \in \mathbb{N}_0^j$ with $|\underline{h}| = h$ is bounded by $\binom{h+j-1}{j-1} \le 2^{h+j}$).

LEMMA 8. For $N \in \mathbb{N}$ there exists a polynomial $R_N(z, \underline{y}) \in O_K[z, y_1, \dots, y_m] \setminus \{0\}$ with the following properties:

- (i) $\deg_z R_N \leq N$, $\deg_y R_N \leq N$,
- (ii) $H(R_N) \le \exp(c_{11}\bar{N}^{1+m}),$
- (iii) $c_{12}N^{1+m} \le \nu(N) = \operatorname{ord}_0 R_N(z, f(z)) \le c_{13}N^{1+m\log d/\log \delta}$.

Proof. Put

$$R_N(z,\underline{y}) = \sum_{\nu=0}^{N} \sum_{|\underline{\mu}| \le N} r_{\nu,\underline{\mu}} z^{\nu} \underline{y}^{\underline{\mu}}$$

with unknown coefficients $r_{\nu,\mu}$. Then

$$R_N(z,\underline{f}(z)) = \sum_{\nu=0}^N \sum_{|\mu| \le N} r_{\nu,\underline{\mu}} z^{\nu} \underline{f}(z)^{\underline{\mu}} = \sum_{h=0}^\infty \beta_h z^h$$

with

(12)
$$\beta_h = \sum_{\nu=0}^{\min\{h,N\}} \sum_{|\mu| \le N} r_{\nu,\underline{\mu}} f_{h-\nu}^{(\underline{\mu})}.$$

The left-hand inequality of assertion (iii) is equivalent to the condition $\beta_h = 0$ for $0 \le h < c_{12}N^{1+m}$. This yields at most $[c_{12}N^{1+m}]+1$ linear equations in the $(N+1)\binom{N+m}{m}$ unknowns $r_{\nu,\underline{\mu}}$. After multiplication with $D^{[c_{12}N^{1+m}]}$ (see Lemma 7) the coefficients of the linear equations are algebraic integers, and the houses are bounded by $\exp(\gamma_0 N^{1+m})$. Since $(N+1)\binom{N+m}{m} \ge \frac{1}{m!}N^{1+m} > 2c_{12}N^{1+m}+1$ for suitable $c_{12} \in \mathbb{R}_+$, Siegel's lemma yields the assertion of Lemma 8 apart from the upper bound for the zero order $\nu(N)$ in (iii), but this is a consequence of Lemma 5.

LEMMA 9. For $k \in \mathbb{N}$ with $\delta^k \geq c_{14}\nu(N)$,

$$\exp(-c_{15}\nu(N)\delta^k) \le |R_N(T^k(\alpha), f(T^k(\alpha)))| \le \exp(-c_{16}\nu(N)\delta^k),$$

where the constants $c_{14}, c_{15}, c_{16} \in \mathbb{R}_+$ depend only on f and α .

Proof. From Lemma 7 and (12) we get (notice that $h \ge c_{12}N^{1+m}$)

(13)
$$|\beta_h| \le \overline{|\beta_h|} \le \exp(\gamma_0 h), \quad D^{[\gamma_0 h]} \beta_h \in O_K.$$

Then we consider

$$R_N(T^k(\alpha), \underline{f}(T^k(\alpha))) = \beta_{\nu(N)}(T^k(\alpha))^{\nu(N)} \left(1 + \sum_{k=1}^{\infty} \frac{\beta_{h+\nu(N)}}{\beta_{\nu(N)}} (T^k(\alpha))^h\right).$$

Since

$$(14) |\beta_{\nu(N)}| \ge (D^{[\gamma_0 \nu(N)]} \overline{|\beta_{\nu(N)}|})^{-[K:\mathbb{Q}]}$$

and

$$\left| \frac{\beta_{h+\nu(N)}}{\beta_{\nu(N)}} \right| \le \exp(\gamma_1(h+\nu(N)))$$

for $h \in \mathbb{N}$, Lemma 2 implies for $k \in \mathbb{N}$ with $\delta^k \geq \gamma_2 \nu(N)$,

$$\left| \sum_{h=1}^{\infty} \frac{\beta_{h+\nu(N)}}{\beta_{\nu(N)}} (T^k(\alpha))^h \right| \le \sum_{h=1}^{\infty} \exp(\gamma_1 (h+\nu(N)) - \gamma_3 h \delta^k) < \frac{1}{2},$$

hence

$$\frac{1}{2}|\beta_{\nu(N)}||T^k(\alpha)|^{\nu(N)} \leq |R_N(T^k(\alpha),\underline{f}(T^k(\alpha)))| \leq \frac{3}{2}|\beta_{\nu(N)}||T^k(\alpha)|^{\nu(N)}.$$

Now (13), (14) together with Lemma 2 complete the proof. ■

From now on we suppose in addition that $\delta = \operatorname{ord}_0 T = \operatorname{deg} T = d$, i.e. the assumptions of Theorem 1 are fulfilled with $\omega = 0$. For the application of Lemma 4 we define polynomials $R_{k,N} \in K[z,\underline{y}]$ for $k,N \in \mathbb{N}$ with $\delta^k \geq c_{14}\nu(N)$ by

$$R_{0,N}(z,\underline{y}) = R_N(z,\underline{y}),$$

$$R_{k+1,N}(z,y) = (\det A(z))^N T_2(z)^{d_k N} R_{k,N}(T(z), A(z)^{-1}(a(z)y - \underline{B}(z))),$$

where the degree of the entries of A(z) and $\underline{B}(z)$ is at most $s \in \mathbb{N}$, and $d_k = c_{17}(d^k - 1)/(d - 1) + d^k$ with $c_{17} = ms$.

Lemma 10. Suppose $k, N \in \mathbb{N}$. Then

- (i) $R_{k,N} \in K[z,y]$,
- (ii) $\deg_z R_{k,N} \le d_k N \le 2c_{17}d^k N$, $\deg_y R_{k,N} \le N$,
- (iii) $H(R_{k,N}) \le \exp(c_{18}N(d^k + N^m)),$

and if $d^k \geq c_{19}\nu(N)$, then

(iv)
$$\exp(-c_{20}\nu(N)d^k) \le |R_{k,N}(\alpha, f(\alpha))| \le \exp(-c_{21}\nu(N)d^k).$$

Proof. (i), (ii) are proved by induction; (i) follows from the fact that the matrix $\det A(z)A(z)^{-1}$ has entries in K[z], and (ii) is a consequence of $\det T = d$ and the definition of c_{17} . Suppose that L is an upper bound for the length of a(z) and the entries of A(z) and $\underline{B}(z)$. Then assertion (iii) follows from

$$H(R_{k+1,N}) \le L(R_{k+1,N})$$

$$\le L(R_{k,N}) \max\{1, L\}^{mN} \max\{1, L(T_1), L(T_2)\}^{d_k N}$$

$$\le L(R_N) \exp\left(\gamma_0 \sum_{l=0}^k d_l N\right) \le \exp(\gamma_1 d^{k+1} N + \gamma_2 N^{1+m}).$$

The last assertion is a consequence of $d = \delta$, Lemma 8, and

$$R_{k,N}(\alpha, \underline{f}(\alpha)) = \prod_{j=0}^{k-1} (\det A(T^{j}(\alpha)))^{N} \prod_{j=0}^{k-1} (T_{2}(T^{j}(\alpha)))^{d_{k-1-j}N} R_{N}(T^{k}(\alpha), \underline{f}(T^{k}(\alpha))),$$

since

(15)
$$\exp(-\gamma_3 d^k N) \le \prod_{j=0}^{k-1} |\det A(T^j(\alpha))|^N \le \exp(\gamma_4 d^k N)$$

and

(16)
$$\exp(-\gamma_5 d^k N) \le \prod_{j=0}^{k-1} |T_2(T^j(\alpha))|^{d_{k-1-j}N} \le \exp(\gamma_6 d^k N). \blacksquare$$

Suppose that D_1 is a denominator of α , D_2 is a common denominator of the coefficients of T(z), and D_3 is a common denominator of the coefficients of a(z) and the entries of A(z) and $\underline{B}(z)$. Then we put

(17)
$$Q_{k,N}(\underline{y}) = (D_1 D_2)^{[2c_{17}d^k N] + 1} D_3^{mkN} R_{k,N}(\alpha, \underline{y}).$$

Thus for $N \geq N_0$ and $k \in \mathbb{N}$ with $d^k \geq c_{22}N^{1+m}$ (cf. Lemma 8(iii)),

$$Q_{k,N} \in O_K[\underline{y}], \quad \deg Q_{k,N} \le N, \quad H(Q_{k,N}) \le \exp(c_{23}d^kN),$$

 $\exp(-c_{24}d^kN^{1+m}) \le |Q_{k,N}(\underline{f}(\alpha))| \le \exp(-c_{25}d^kN^{1+m}).$

With sufficiently large constants $\gamma_0, \gamma_1 \in \mathbb{R}_+$, which depend only on $\underline{f}, \alpha, N_0$, and the constant c_6 of Lemma 4, we choose $N_1 = [\gamma_0 D]$ and the parameters $k_0(N), k_1(N)$ for $N \in \{N_0, \ldots, N_1\}$ such that

$$d^{k_0(N)-1} < c_{22}N^{1+m} \le d^{k_0(N)},$$

$$k_1 = k_1(N) = \left[\frac{1}{\log d} \log \left(D^{m+1} + \frac{\log H}{D}\right) + \gamma_1\right],$$

D and H as in the assumptions of Theorem 1. Hence $k_0(N) \leq k_1$, and for the application of Lemma 4 we define

$$\Phi_1 = N_1, \quad \Phi_2 = c_{23} N_1 d^{k_1},$$

$$\Psi_1(k, N) = c_{24} d^k N^{1+m}, \quad \Psi_2(k, N) = c_{25} d^k N^{1+m}.$$

Then obviously (i), (ii), (iii) of Lemma 4 are fulfilled with $\Lambda = dc_{24}/c_{25}$ and $U = c_{24}d^{k_1}N_1^{1+m}, \quad \tau = c_{24}d^{k_0(N_0)}N_0^{1+m}.$

Furthermore, we see that

$$U \ge \gamma_2 N_1^m \max\{\log H + d^{k_1} D, \tau D/N_1\}$$

$$\ge c_6 \Lambda^{m-1} \Phi_1^{m-1} \max\{\tau D, \Lambda(\Phi_1 \log H + \Phi_2 D)\},$$

and Lemma 4 implies

$$|Q(\underline{f}(\alpha))| > \exp(-U)$$

$$\geq \exp(-\gamma_3 d^{k_1} N_1^{1+m})$$

$$\geq \exp\left(-\gamma_4 D^{m+1} \left(D^{m+1} + \frac{\log H}{D}\right)\right). \blacksquare$$

5. Proof of Theorem 2. The first part of the proof up to Lemma 9 and the definition of the polynomials $R_{k,N}$ in the paragraph after Lemma 9 is identical with the proof of Theorem 1. Since $2 \le \delta \le d$, Lemma 10 must be slightly modified.

Lemma 11. Suppose $k, N \in \mathbb{N}$. Then

- (i) $R_{k,N} \in K[z,y]$,
- (ii) $\deg_z R_{k,N} \le d_k N \le 2c_{17}d^k N$, $\deg_y R_{k,N} \le N$,
- (iii) $H(R_{k,N}) \leq \exp(c_{18}N(d^k + N^m)),$

and if $\delta^k \geq c_{26}\nu(N)$ and $Nd^k \leq c_{27}\nu(N)\delta^k$, then

(iv)
$$\exp(-c_{28}\nu(N)\delta^k) \le |R_{k,N}(\alpha, f(\alpha))| \le \exp(-c_{29}\nu(N)\delta^k).$$

Proof. The additional assumption in (iv) is necessary to compensate the bounds of Lemma 9 and (15), (16).

With denominators D_1, D_2, D_3 as in (17) we define polynomials $Q_{k,N}$ by

$$Q_{k,N}(y) = (D_1 D_2)^{[2c_{17}d^k N] + 1} D_3^{mkN} R_{k,N}(\alpha, y).$$

Thus for $k \in \mathbb{N}$ with $Nd^k \leq c_{30}\nu(N)\delta^k$ and $\delta^k \geq c_{31}\nu(N)$ we have

$$Q_{k,N} \in O_K[\underline{y}], \quad \deg Q_{k,N} \le N, \quad H(Q_{k,N}) \le \exp(c_{32}d^kN),$$

$$\exp(-c_{33}\delta^k\nu(N)) \le |Q_{k,N}(f(\alpha))| \le \exp(-c_{34}\delta^k\nu(N)).$$

With sufficiently large $\gamma_0, \gamma_1 \in \mathbb{R}_+$, which depend on f and α , we define

$$k_0 = \left[\frac{\log \nu(N)}{\log \delta} + \gamma_0\right], \quad k_1 = \left[\frac{\log \nu(N) - m_0 \log N}{\log d - \log \delta} - \gamma_1\right]$$

(notice that $c_{30} \in \mathbb{R}_+$ may be very small). Then obviously $Nd^k \leq c_{30}\nu(N)\delta^k$ and $\delta^k \geq c_{31}\nu(N)$ for $k_0 \leq k \leq k_1$ (without loss of generality $m_0 \geq 1$), and $k_0 \leq k_1$ is shown in (19). Furthermore,

$$(18) \nu(N)\delta^{k_1} \ge \gamma_2 N^{m_0} d^{k_1},$$

and the definition of m_0, k_0, k_1 together with $\nu(N) \geq c_{12} N^{1+m}$ yields

$$\delta^{k_1} \ge \gamma_3 N^{m_0 - 1} \delta^{k_0}$$

with $\gamma_2, \gamma_3 \in \mathbb{R}_+$ for $N \geq N_0(\gamma_0, \dots, \gamma_3)$. Thus we define

$$\Phi_1 = N, \quad \Phi_2 = c_{32}d^{k_1}N,$$

$$\Psi_1(k) = c_{33}\delta^k \nu(N), \quad \Psi_2(k) = c_{34}\delta^k \nu(N), \quad \Lambda = \delta c_{33}/c_{34},$$

and if we now fix $N \in \mathbb{N}$ sufficiently large with respect to $\gamma_0, \ldots, \gamma_3, \delta, f, \alpha$, and c_5 , we put $Q_k = Q_{k,N}$ for $k_0 \leq k \leq k_1$ and this value of N. Then (18), (19) imply

$$\Psi_2(k) \ge c_5 \Lambda^{m_0 - 1} \Phi_1^{m_0 - 1} \max \{ \Psi_1(k_0), \Phi_2 \},$$

and the other assumptions of Lemma 3 are also fulfilled for this choice of parameters. The application of Lemma 3 completes the proof of Theorem 2.

6. Proof of Theorem 3. Under the assumptions of Theorem 3 we can give sharper bounds for the power series coefficients of f_1, \ldots, f_m in the expansion at ω . This yields a weaker condition for k_0 , hence a better bound for m_0 .

Analogously to Section 4 we apply the Möbius transformation Φ to get $\omega = 0$. Then the sharper estimates for the power series coefficients depend on the fact that a(z) = 1, and T(z) and the entries of A(z) and $\underline{B}(z)$ are polynomials. For the sake of simplicity the case $\omega = \infty$ is excluded, because then Φ transforms the functional equation into another system, where in general a(z) is not constant, and T(z) is rational.

Since the proof of Theorem 3 is analogous to the proof of Theorem 2 apart from the estimates for the power series coefficients, most proofs are shortened or omitted.

LEMMA 12. Suppose that the assumptions of Theorem 3 are fulfilled with $\omega = 0$. Then for all $h \in \mathbb{N}_0$ and $j \in \mathbb{N}$, $j \in \mathbb{N}_0^m$,

(i) $f_{i,h} \in K$,

(ii)
$$|f_{i,h}| \le \exp(c_{34}\log(h+2)), D^{[c_{34}\log(h+2)]}f_{i,h} \in O_K,$$

(iii)
$$f_{i,h}^{(j)} \le \exp(c_{35}j\log(h+2)), D^{[c_{35}j\log(h+2)]}f_{i,h}^{(j)} \in O_K,$$

(iv)
$$|f_h^{(\underline{j})}| \le \exp(c_{36}|\underline{j}|\log(h+2)), D^{[c_{36}|\underline{j}|\log(h+2)]} f_h^{(\underline{j})} \in O_K,$$

where $D \in \mathbb{N}$, $c_{34}, c_{35}, c_{36} \in \mathbb{R}_+$, and the algebraic number field K depend on f.

Proof. Without loss of generality $f_i(0) = 0$ for all i (since $f_1(0), \ldots, f_m(0) \in \overline{\mathbb{Q}}$, the functions $f_i(z) - f_i(0)$, $1 \leq i \leq m$, satisfy functional equations of the required form). Then with $A(z) = (a_{i,j}(z))_{1 \leq i, j \leq m}$, $\underline{B}(z) = (B_i(z))_{1 \leq i \leq m}$ and

$$a_{i,j}(z) = \sum_{h=0}^{s} a_{i,j,h} z^{h}, \quad B_{i}(z) = \sum_{h=0}^{s} b_{i,h} z^{h},$$
$$T(z) = \sum_{h=0}^{d} p_{h} z^{h}, \quad (T(z))^{l} = \sum_{h=0}^{d^{l}} p_{h}^{(l)} z^{h},$$

the functional equation implies

$$\sum_{h=1}^{\infty} f_{i,h} z^h = \sum_{j=1}^{m} \left(\sum_{h=0}^{s} a_{i,j,h} z^h \right) \left(\sum_{l=1}^{\infty} f_{j,l} \left(\sum_{h=\delta^l}^{d^l} p_h^{(l)} z^h \right) \right) + \sum_{h=0}^{s} b_{i,h} z^h$$

$$= \sum_{h=\delta}^{\infty} \left(\sum_{j=1}^{m} \sum_{k=\max\{\delta,h-s\}}^{h} a_{i,j,h-k} \left(\sum_{\log k/\log d \le l \le \log k/\log \delta} f_{j,l} p_k^{(l)} \right) \right) z^h$$

$$+ \sum_{h=0}^{s} b_{i,h} z^h,$$

and from the identity

(20)
$$f_{i,h} = \sum_{k=\max\{\delta,h-s\}}^{h} \sum_{j=1}^{m} a_{i,j,h-k} \left(\sum_{\log k/\log d \le l \le \log k/\log \delta} f_{j,l} \, p_k^{(l)} \right) + b_{i,h}$$

(with $b_{i,h} = 0$ for h > s) assertion (i) follows immediately. Since

$$\overline{|p_h^{(l)}|} \le \sum_{h_1 + \dots + h_l = h} \overline{|p_{h_1}|} \dots \overline{|p_{h_l}|} \le \exp(\gamma_0 l)$$

(notice that $\delta \leq h_i \leq d$ for $i=1,\ldots,l$), the first part of (ii) follows from (20), if we choose $D \in \mathbb{N}$ as a suitable denominator for the coefficients of T(z) and the entries of A(z) and $\underline{B}(z)$. Then (iii), (iv) can be derived from (9), (10) respectively (notice that the number of $\underline{h} \in \mathbb{N}_0^j$ with $|\underline{h}| = h$ is bounded by $\binom{h+j-1}{j-1} \leq \exp(j\log(h+1))$.

LEMMA 13. For $N \in \mathbb{N}$ there exists a polynomial $R_N(z, \underline{y}) \in O_K[z, y_1, \dots, y_m] \setminus \{0\}$ with the following properties:

- (i) $\deg_z R_N \leq N$, $\deg_y R_N \leq N$,
- (ii) $H(R_N) \le \exp(c_{37}\bar{N}\log(N+1)),$
- (iii) $c_{38}N^{1+m} \le \nu(N) = \text{ord}_0 R_N(z, f(z)).$

Proof. Analogous to Lemma 8.

LEMMA 14. For $k \in \mathbb{N}$ with $\delta^k \geq c_{39} N \log \nu(N)$,

$$\exp(-c_{40}\nu(N)\delta^k) \le |R_N(T^k(\alpha), f(T^k(\alpha)))| \le \exp(-c_{41}\nu(N)\delta^k),$$

where $c_{39}, c_{40}, c_{41} \in \mathbb{R}_+$ depend only on f and α .

Proof. Analogous to Lemma 9. Notice that

$$|\beta_h| \le |\beta_h| \le \exp(\gamma_0 N \log h), \quad D^{[\gamma_0 N \log h]} \beta_h \in O_K$$

and $h \ge \nu(N)$.

Now we define polynomials $R_{k,N}$ by

$$R_{0,N}(z,\underline{y}) = R_N(z,\underline{y}),$$

$$R_{k+1,N}(z,y) = (\det A(z))^N R_{k,N}(T(z), A(z)^{-1}(y - \underline{B}(z))),$$

where the degree of the entries of A(z) and $\underline{B}(z)$ is at most s.

Lemma 15. Suppose $k, N \in \mathbb{N}$. Then

- (i) $R_{k,N} \in K[z,y]$,
- (ii) $\deg_z R_{k,N} \le c_{42} (d^k 1)/(d 1) + d^k \le 2c_{42} d^k$, $\deg_y R_{k,N} \le N$,
- (iii) $H(R_{k,N}) \le \exp(c_{43}N(\log(N+1) + d^k))$

with $c_{42} = sm, c_{43} \in \mathbb{R}_{+}$.

If $\delta^k \geq c_{44}N \log \nu(N)$ and $Nd^k \leq c_{45}\nu(N)\delta^k$, then

(iv)
$$\exp(-c_{46}\nu(N)\delta^k) \le |R_{k,N}(\alpha, f(\alpha))| \le \exp(-c_{47}\nu(N)\delta^k)$$
.

Proof. Analogous to Lemma 10 resp. Lemma 11.

Suppose that D_1 is a denominator of α , D_2 is a common denominator of the coefficients of T(z), and D_3 is a common denominator of the coefficients of the entries of A(z) and $\underline{B}(z)$. Then we define

$$Q_{k,N}(\underline{y}) = (D_1 D_2)^{[2c_{42}d^k N] + 1} D_3^{mkN} R_{k,N}(\alpha, \underline{y}).$$

180 T. Töpfer

Thus for $N \geq N_0$ and $\delta^k \geq c_{48}N \log \nu(N)$ and $Nd^k \leq c_{49}\nu(N)\delta^k$ we have

$$Q_{k,N} \in O_K[\underline{y}], \quad \deg Q_{k,N} \le N, \quad H(Q_{k,N}) \le \exp(c_{50}d^kN),$$

$$\exp(-c_{51}\delta^k\nu(N)) \le |Q_{k,N}(f(\alpha))| \le \exp(-c_{52}\delta^k\nu(N)).$$

With sufficiently large $\gamma_0, \gamma_1 \in \mathbb{R}_+$, which depend on f and α , we choose

$$k_0 = \left[\frac{\log(N\log\nu(N))}{\log\delta} + \gamma_0\right], \quad k_1 = \left[\frac{\log\nu(N) - m_0\log N}{\log d - \log\delta} - \gamma_1\right].$$

This implies $\delta^k \geq c_{48} N \log \nu(N)$ and $N d^k \leq c_{49} \nu(N) \delta^k$. Furthermore,

$$\nu(N)\delta^{k_1} > \gamma_2 N^{m_0} d^{k_1}$$

for $N \geq N_0(\gamma_2)$. Since $m_0 \log d < (1 - \varepsilon)(m+1) \log \delta$ for some $\varepsilon \in \mathbb{R}_+$ and $\nu(N) \geq c_{38}N^{1+m}$, we have for all $N \geq N_0(\gamma_0, \dots, \gamma_3, \varepsilon)$,

$$\delta^{k_1} > \gamma_3 N^{m_0 - 1} \delta^{k_0}$$
.

Thus let

$$\Phi_1 = N, \quad \Phi_2 = c_{50}Nd^{k_1},$$

$$\Psi_1(k) = c_{51}\delta^k \nu(N), \quad \Psi_2(k) = c_{52}\delta^k \nu(N), \quad \Lambda = \delta c_{51}/c_{52},$$

where N is fixed sufficiently large with respect to $\gamma_0, \ldots, \gamma_3, \varepsilon, \delta, \underline{f}, \alpha$, and c_5 , and put

$$Q_k(\underline{y}) = Q_{k,N}(\underline{y})$$

for $k_0 \leq k \leq k_1$ and this value of N. Then

$$\Psi_2(k_1) \ge c_5 \Lambda^{m_0 - 1} \Phi_1^{m_0 - 1} \max \{ \Psi_1(k_0), \Phi_2 \},$$

and since all other assumptions of Lemma 3 are fulfilled, the assertion of Theorem 3 now follows from Lemma 3. \blacksquare

References

- [B1] P.-G. Becker, Effective measures for algebraic independence of the values of Mahler type functions, Acta Arith. 58 (1991), 239–250.
- [B2] —, Algebraic independence of the values of certain series by Mahler's method, Monatsh. Math. 114 (1992), 183–198.
- [B3] —, Transcendence of the values of functions satisfying generalized Mahler type functional equations, J. Reine Angew. Math. 440 (1993), 111–128.
- [B4] —, Transcendence measures for the values of generalized Mahler functions in arbitrary characteristic, Publ. Math. Debrecen, to appear.
- [BB] P.-G. Becker and W. Bergweiler, Transcendency of local conjugacies in complex dynamics and transcendency of their values, Manuscripta Math. 81 (1993), 329–337.
- [DS] J. L. Davison and J. E. Shallit, Continued fractions for some alternating series, Monatsh. Math. 111 (1991), 119–126.

- [J] E. M. Jabbouri, Sur un critère pour l'indépendance algébrique de P. Philippon, in: Approximations Diophantiennes et Nombres Transcendants, P. Philippon (ed.), W. de Gruyter, Berlin, 1992, 195–202.
- [K1] K. K. Kubota, Linear functional equations and algebraic independence, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, New York, 1977, 227–229.
- [K2] —, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9–50.
- [L] J. H. Loxton, Automata and transcendence, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge University Press, Cambridge, 1988, 215–228.
- [LP] J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, New York, 1977, 211–226.
- [M1] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342–366.
- [M2] —, Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, ibid. 103 (1930), 573–587.
- [M3] —, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), 545–585.
- [M4] —, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512–521.
- [Ni1] K. Nishioka, On a problem of Mahler for transcendency of function values, J. Austral. Math. Soc. Ser. A 33 (1982), 386–393.
- [Ni2] —, Algebraic independence measures of the values of Mahler functions, J. Reine Angew. Math. 420 (1991), 203–214.
- [NT] K. Nishioka and T. Töpfer, Transcendence measures and nonlinear functional equations of Mahler type, Arch. Math. (Basel) 57 (1991), 370–378.
- [Ta] J. Tamura, Symmetric continued fractions related to certain series, J. Number Theory 38 (1991), 251–264.
- [T1] T. Töpfer, An axiomatization of Nesterenko's method and applications on Mahler functions, ibid. 49 (1994), 1–26.
- [T2] —, An axiomatization of Nesterenko's method and applications on Mahler functions II, Compositio Math., to appear.
- [T3] —, Zero order estimates for functions satisfying generalized functional equations of Mahler type, Acta Arith., to appear.

MATHEMATISCHES INSTITUT UNIVERSITÄT ZU KÖLN WEYERTAL 86–90 D-50931 KÖLN, GERMANY

> Received on 21.3.1994 and in revised form on 15.7.1994 (2577)