On relative integral bases for unramified extensions

by

Kevin Hutchinson (Dublin)

0. Introduction. Since \mathbb{Z} is a principal ideal domain, every finitely generated torsion-free \mathbb{Z}-module has a finite \mathbb{Z}-basis; in particular, any fractional ideal in a number field has an "integral basis". However, if K is an arbitrary number field the ring of integers, A, of K is a Dedekind domain but not necessarily a principal ideal domain. If L / K is a finite extension of number fields, then the fractional ideals of L are finitely generated and torsion-free (or, equivalently, finitely generated and projective) as A-modules, but not necessarily free. Beginning with some classical results of Artin and Chevalley (Propositions 1.1 and 1.2), we give some criteria for the existence or nonexistence of A-bases for ideals in L or for the ring of integers of L in the case where L / K is unramified (Theorem 1.10 and Corollary 2.3). In particular, we show how the existence of an integral basis is (under mild hypotheses) determined by purely group-theoretic properties of the Galois group of the normal closure of L / K. We prove the main results for arbitrary finite separable field extensions L / K. The arguments were suggested by reading [4].
1. Unramified extensions. We begin by recalling some of the basic facts about lattices (finitely generated torsion-free modules) over a Dedekind domain. If P is a lattice over the Dedekind domain A, then $P \cong I_{1} \oplus \ldots \oplus I_{n}$ where I_{1}, \ldots, I_{n} are ideals of A and furthermore $I_{1} \oplus \ldots \oplus I_{n} \cong J_{1} \oplus \ldots \oplus J_{m}$ if and only if $n=m$ and $I_{1} \ldots I_{n} \cong J_{1} \ldots J_{m}$. Note also that if I and J are fractional ideals of A, then $I \cong J$ if and only if $[I]=[J]$, where $[K]$ denotes the class of the ideal K in $C l(A)$, the ideal classgroup of A. It follows that the module $P \cong I_{1} \oplus \ldots \oplus I_{n}$ is determined up to isomorphism by its rank, n, and the class $\left[I_{1} \ldots I_{n}\right] \in C l(A)$, called the Steinitz class of P and denoted $c(P)$. For example, if $J \subseteq A$ is an ideal representing $c(P)$ then $P \cong A^{\oplus(n-1)} \oplus J$. In particular P has an A-basis (i.e., P is free as an A-module) if and only if $c(P)=1$. (For details, see for example [1], [3] or [5].)

Suppose now that A is a Dedekind domain with field of fractions K and
that L / K is a finite separable extension of fields of degree n. Let B be the integral closure of A in L. Then B is a Dedekind domain and any fractional ideal I of B is an A-lattice of rank n. We recall the following basic results on the Steinitz class of such a lattice:

Proposition 1.1. If I is any fractional ideal of B then

$$
c(I)=c(B) \mathrm{N}_{L / K}[I] .
$$

Proposition 1.2. If $\delta_{B / A}$ is the relative discriminant of B over A and if $d_{L / K}$ is the discriminant of any K-basis of L, then

$$
\delta_{B / A}=J^{2}\left(d_{L / K}\right)
$$

where J is a fractional ideal of A representing the ideal class $c(B)$.
(For proofs, see [3].)
Here are some simple corollaries:
Corollary 1.3. There exists an ideal of B which has an A-basis if and only if

$$
c(B) \in \mathrm{N}_{L / K}(C l(B))
$$

Proof. By 1.1, I is A-free $\Leftrightarrow 1=c(I)=\mathrm{N}_{L / K}[I] c(B) \Leftrightarrow c(B)=$ $\mathrm{N}_{L / K}\left[I^{-1}\right]$.

Corollary 1.4.

$$
c(B)^{2}=\left[\delta_{B / A}\right]=\mathrm{N}_{L / K}\left[D_{B / A}\right]
$$

where $D_{B / A}$ is the different of B relative to A.
Proof. This is immediate from 1.2.
Corollary 1.5. If n is odd, there exists an ideal of B which has an A-basis.

More generally, if the torsion abelian group $C l(A) / \mathrm{N}_{L / K} C l(B)$ has no nontrivial 2-torsion there exists a fractional ideal of B with an A-basis.

Proof. Since $\left[c(B) \mathrm{N}_{L / K} C l(B)\right]^{2}=1$ in $C l(A) / \mathrm{N}_{L / K} C l(B)$, by 1.4, the hypothesis implies that $c(B) \in \mathrm{N}_{L / K} C l(B)$ and hence there exists an A-free fractional ideal of B.

We will give an explicit example below of an extension of number fields L / K where no fractional ideal of L has a basis over the ring of integers of K (Example 1.14).

Recall that if no prime of A ramifies in B, then $\delta_{B / A}=A$.
Corollary 1.6. If no prime of A ramifies in B and if $C l(A)$ has no nontrivial 2-torsion, then B has an A-basis.

Proof. Since $\delta_{B / A}=A$, we have $c(B)^{2}=\left[\delta_{B / A}\right]=1$ by 1.4 and hence $c(B)=1$ by hypothesis.

If D is a Dedekind domain, let $U(D)$ denote the group of units of D. Thus we have:

Corollary 1.7. Suppose that no prime of A ramifies in B and that $d_{L / K}$ is the discriminant of any K-basis of L. Then B has an A-basis if and only if $d_{L / K}=u a^{2}$ with $u \in U(A)$ and $a \in K^{*}$.

Proof. By $1.2, A=J^{2}\left(d_{L / K}\right)$ where J represents $c(B)$. Thus, $\left(d_{L / K}\right)=$ J^{-2} and hence B is A-free $\Leftrightarrow J$ is a principal ideal $\Leftrightarrow\left(d_{L / K}\right)$ is the square of a principal ideal $\Leftrightarrow d_{L / K}=u a^{2}$.

Suppose now that θ is a primitive element for L / K. Let E be the normal closure of L / K and let G be the Galois group of $E / K, H$ the Galois group of E / L. Let $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a set of representatives for the elements of the coset space G / H. Let $d=d(\theta)=d_{L / K}\left(1, \theta, \ldots, \theta^{n-1}\right)=\prod_{i \neq j}\left(\sigma_{i}(\theta)-\sigma_{j}(\theta)\right)=$ $\alpha(\theta)^{2}$ where $\alpha=\alpha(\theta)=\prod_{i<j}\left(\sigma_{i}(\theta)-\sigma_{j}(\theta)\right)$. Finally, let C be the integral closure of A in E.

Lemma 1.8. If no prime of A ramifies in B and if either $U(C)^{2} \cap K=$ $U(A)^{2}$ or $[E: L]$ is odd and $U(B)^{2} \cap K=U(A)^{2}$, then B has an A-basis if and only if $\alpha \in K$.

Proof. If $\alpha \in K$ then $d=\alpha^{2}$ in K and hence B is A-free by 1.7 (without the added hypotheses on squares of units). Conversely, suppose that B is A free. Then $\alpha^{2}=d=u a^{2} \Rightarrow\left(a^{-1} \alpha\right)^{2}=u \Rightarrow u \in U(C)^{2} \cap K \Rightarrow u \in U(A)^{2} \Rightarrow$ $\alpha^{2}=(v a)^{2}$ for some $v \in U(A) \Rightarrow \alpha= \pm v a \in K$ if $U(C)^{2} \cap K=U(A)^{2}$. If [$E: L]$ is odd then $\alpha \in L$ and thus in the argument just given, $a^{-1} \alpha \in L$ and hence $u \in U(B)^{2} \cap K$.

Note. The condition on units $U(B)^{2} \cap K=U(A)^{2}$ is not very restrictive. In the number field case, for instance, there are only finitely many quadratic extensions of the field K of the form $K(\sqrt{u}) / K$ where u is a unit of K and the condition simply says that any such extension is not contained in L.

Recall that if σ is a permutation of the set $\left\{x_{1}, \ldots, x_{n}\right\}$, then σ is an even permutation if and only if

$$
\sigma\left(\prod_{i<j}\left(x_{i}-x_{j}\right)\right)=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Thus $\alpha(\theta) \in K \Leftrightarrow \sigma(\alpha(\theta))=\alpha(\theta)$ for all $\sigma \in G \Leftrightarrow \sigma$ acts as an even permutation on $\left\{\sigma_{1}(\theta), \ldots, \sigma_{n}(\theta)\right\}$ for all $\sigma \in G \Leftrightarrow$ each $\sigma \in G$ acts evenly on the G-set G / H since the $\operatorname{map} G / H \rightarrow\left\{\sigma_{1}(\theta), \ldots, \sigma_{n}(\theta)\right\}, \sigma_{i} H \mapsto \sigma_{i}(\theta)$ is an isomorphism of G-sets.

We will say that the group G acts evenly on the G-set X if each element of G acts on X as an even permutation. Otherwise we will say that G acts oddly on X.

Lemma 1.9. Let G be a finite group and H a subgroup of odd order. Then G acts oddly on G / H if and only if the Sylow 2-subgroups of G are nontrivial and cyclic.

Proof. Since every element of odd order in a permutation group is even, G acts oddly on a set X if and only if some element of G of 2-power order acts oddly. Suppose that $\sigma \in G, \sigma \neq 1$ has 2-power order and let C be the cyclic subgroup of G generated by σ. Let $\tau \in G$ and consider the orbit of $\tau H \in G / H$ under C. The stabilizer of C on τH is $C \cap \tau H \tau^{-1}=1$ since $\tau H \tau^{-1}$ has odd order and C has 2-power order. Thus G / H decomposes into $[G: H] /|C|$ orbits each of length $|C|$. Thus, as a permutation, σ factors as a product of $[G: H] /|C|$ cycles, each of length $|C|$. But each cycle of length $|C|$ in turn factors as a product of $|C|-1$ transpositions and hence σ factors as a product of $\frac{[G: H]}{|C|}(|C|-1)$ transpositions. Since $|C|-1$ is odd, σ acts oddly $\Leftrightarrow[G: H] /|C|$ is odd $\Leftrightarrow C$ is a Sylow 2-subgroup of G.

Combining 1.8 and 1.9 we obtain:
Theorem 1.10. Suppose that L / K is a finite separable extension of fields and that E is the normal closure of L / K. Suppose that A is a Dedekind domain with field of fractions K and that B and C are the integral closures of A in L and E respectively. If $[E: L]$ is odd and $U(B)^{2} \cap K=U(A)^{2}$ and if no prime of A ramifies in B then B has an A-basis if and only if the Sylow 2-subgroup of G is not nontrivial and cyclic.

This generalises the result (see [3]) that if L / K is Galois, unramified of odd degree, then B has an A-basis. However, here is an example of an unramified extension L / K of odd degree for which B is not free as an A module.

Example 1.11. Let F be the splitting field of $f(X)=X^{3}-X+1$ over \mathbb{Q}. The discriminant of $f(X)$ is -23 , so $\operatorname{Gal}(F / \mathbb{Q})=S_{3}$, the symmetric group on three letters. Let $E=F(\sqrt{2})$ and $K=\mathbb{Q}(\sqrt{-46})$. E is the splitting field of $f(X)$ over $\mathbb{Q}(\sqrt{2})$ and hence E is unramified (at any finite prime) over $\mathbb{Q}(\sqrt{-23}, \sqrt{2})$ by the arguments of Uchida [6] (Theorem 1 and Corollary). $\mathbb{Q}(\sqrt{-23}, \sqrt{2})$ is in turn unramified over K and thus E / K is a Galois unramified extension with $\operatorname{Gal}(E / K)=S_{3}$. Let H be any subgroup of $\operatorname{Gal}(E / K)$ of order 2 and let $L=E^{H}$. Let A, B and C be the rings of integers of K, L and E respectively. Since $U(A)=\{ \pm 1\}$ and $\sqrt{-1} \notin \mathbb{Q}(\sqrt{-23}, \sqrt{2})$ it follows that $U(C)^{2} \cap K=U(A)^{2}$. Since S_{3} acts oddly on $S_{3} / H, \alpha \notin K$ and thus B is not a free A-module by 1.8 .

If $[E: L]=|H|$ is even, then 1.9 is easily seen to fail and there is no simple criterion for G to act oddly on G / H. However, in certain circumstances one can provide criteria. We will consider this below.

For the present we specialize to the case where L / K is an extension of number fields and A is the ring of integers of L. In this situation classfield theory allows us to control the norm map $\mathrm{N}_{L / K}: C l(B) \rightarrow C l(A)$:

Lemma 1.12. Let K_{1} be the Hilbert classfield of K. Let $\varrho_{K}: C l(A) \rightarrow$ $\operatorname{Gal}\left(K_{1} / K\right)$ be the Artin isomorphism. Then ϱ_{K} induces an isomorphism $\mathrm{N}_{L / K}(C l(B)) \rightarrow \operatorname{Gal}\left(K_{1} / K_{1} \cap L\right)$.

Proof. Let L_{1} be the Hilbert classfield of L. Then $L_{1} \supseteq K_{1}$ and if $\varrho_{L}: C l(B) \rightarrow \operatorname{Gal}\left(L_{1} / L\right)$ is the Artin isomorphism for L and $\operatorname{res}_{L / K}$ is the restriction map $\operatorname{Gal}\left(L_{1} / L\right) \rightarrow \operatorname{Gal}\left(K_{1} / K\right)$, then $\varrho_{K} \mathrm{~N}_{L / K}=\operatorname{res}_{L / K} \varrho_{L}$ and hence ϱ_{K} induces an isomorphism $\mathrm{N}_{L / K}(C l(B)) \rightarrow \operatorname{res}_{L / K}\left(\operatorname{Gal}\left(L_{1} / L\right)\right)=$ $\operatorname{Gal}\left(K_{1} / L \cap K_{1}\right)$.

Corollary 1.13. Suppose that L / K is unramified and that L contains the maximal abelian unramified 2 -extension of K. Then there exists an ideal of B with an A-basis if and only if B has an A-basis.

Proof. L / K unramified $\Rightarrow c(B)^{2}=1$ and since L contains the maximal abelian unramified 2-extension of $K, \mathrm{~N}_{L / K}(C l(B))$ has odd order by 1.12. Thus $c(B)=1 \Leftrightarrow c(B) \in \mathrm{N}_{L / K}(C l(B))$.

Example 1.14. Let $K=\mathbb{Q}(\sqrt{-14}), F=K(\sqrt{2}), L=K(\sqrt{2 \sqrt{2}-1})$. Then L is the Hilbert classfield of K (see, for example, Cox [2]). Clearly $\operatorname{Gal}(L / K) \cong C l(A)$ is cyclic of order 4 and $\operatorname{Gal}(F / K)$ is cyclic of order 2 . Let B be the ring of integers of L and let C be the ring of integers of F. Note that $U(A)=\{ \pm 1\}$ and that $\sqrt{-1} \notin L$ (for otherwise we would have $\sqrt{-1} \in F=\mathbb{Q}(\sqrt{-14}, \sqrt{2})$ which is clearly false $)$. It follows that $U(B)^{2} \cap K=$ $U(C)^{2} \cap K=U(A)^{2}=1$. Thus neither B nor C has an A-basis by 1.9. No ideal of B is A-free by 1.13.

However $\mathrm{N}_{F / K}(C l(C))$ is the unique subgroup of order 2 in $C l(A)$ by 1.12 and thus, since $c(C)^{2}=1$ (because F / K is unramified), $c(C) \in \mathrm{N}_{F / K}(C l(C))$ and so there exist ideals of C which are A-free.
2. "Odd" group actions. In this section we prove a few results on oddness of transitive group actions where the stabilizer has even order. In the case where the stabilizer has a normal complement, a criterion for oddness can be given:

Theorem 2.1. Suppose that G is a finite group with subgroup H. Suppose that H has a normal complement N. Let S be a Sylow 2 -subgroup of H and suppose the elements $\sigma_{1}, \ldots, \sigma_{r}$, of orders $2^{m_{1}}, \ldots, 2^{m_{r}}$, generate S. Then G acts oddly on G / H if and only if either the Sylow 2-subgroups of N are
nontrivial and cyclic or

$$
\sum_{k=0}^{m_{i}-1} 2^{m_{i}-k-1}\left|C_{N}\left(\sigma_{i}^{2^{k}}\right)\right| \not \equiv\left(2^{m_{i}}-1\right)|N| \bmod 2^{m_{i}+1}
$$

for some $i \in\{1, \ldots, r\}$ where $C_{N}(\tau)=\{\mu \in N \mid \mu \tau=\tau \mu\}$ for $\tau \in G$.
Proof. Since $G=H N$ and since a product of two even permutations is even, G acts oddly on G / H if and only if either H or N acts oddly on G / H. Now, the bijection of sets $N \leftrightarrow G / H$ induces an isomorphism of N-sets if N acts on N by left multiplication and a bijection of H-sets if H acts on N by conjugation. Thus N acts oddly on G / H if and only if the Sylow 2-subgroup of N is nontrivial and cyclic by Lemma 1.9 (with $G=N$ and $H=1$). Clearly H acts oddly on N by conjugation if and only if S does. S acts oddly on N if and only if some σ_{i} does. It remains to show that σ_{i} acts as an odd permutation if and only if

$$
\sum_{k=0}^{m_{i}-1} 2^{m_{i}-k-1}\left|C_{N}\left(\sigma_{i}^{2^{k}}\right)\right| \not \equiv\left(2^{m_{i}}-1\right)|N| \bmod 2^{m_{i}+1}
$$

Fix i and let $\sigma=\sigma_{i}, m=m_{i}$. Let $r_{k}=\left|C_{N}\left(\sigma^{2^{k}}\right)\right|$. Consider the action of σ on N by conjugation. N decomposes as a union of orbits of length 2^{k}, $k \leq m$. If $\tau \in N$, then the orbit of τ has length 2^{k} if and only if $\sigma^{2^{k}}$ fixes τ but $\sigma^{2^{k-1}}$ does not; i.e., if and only if $\tau \in C_{N}\left(\sigma^{2^{k}}\right)-C_{N}\left(\sigma^{2^{k-1}}\right)$. Thus the number of orbits of length 2^{k} is

$$
s_{k}=\frac{1}{2^{k}}\left(r_{k}-r_{k-1}\right) .
$$

Thus the permutation σ factors as a product of the form

$$
\prod_{k=1}^{m}\left(\prod_{j=1}^{s_{k}} \sigma_{k j}\right)
$$

where $\sigma_{k j}$ is a 2^{k}-cycle. Hence $\sigma_{k j}$ in turn factors as a product of $2^{k}-1$ transpositions and hence σ factors as a product of t transpositions where

$$
\begin{aligned}
t & =\sum_{k=1}^{m}\left(2^{k}-1\right) s_{k}=\sum_{k=1}^{m}\left(2^{k}-1\right) \frac{1}{2^{k}}\left(r_{k}-r_{k-1}\right) \\
& =\frac{1}{2^{m}} \sum_{k=1}^{m}\left(2^{m}-2^{m-k}\right)\left(r_{k}-r_{k-1}\right) \\
& =\frac{1}{2^{m}}\left\{2^{m}\left(r_{m}-r_{0}\right)-\sum_{k=1}^{m} 2^{m-k}\left(r_{k}-r_{k-1}\right)\right\} \\
& =\frac{1}{2^{m}}\left\{\left(2^{m}-1\right) r_{m}-2^{m-1} r_{0}-2^{m-2} r_{1}-\ldots-r_{m-1}\right\}
\end{aligned}
$$

Thus σ acts oddly $\Leftrightarrow t \not \equiv 0 \bmod 2 \Leftrightarrow 2^{m} t \not \equiv 0 \bmod 2^{m+1} \Leftrightarrow$

$$
\sum_{k=0}^{m-1} 2^{m-k-1} r_{k} \not \equiv\left(2^{m}-1\right) r_{m} \bmod 2^{m+1}
$$

proving the result since $r_{m}=\left|C_{N}\left(\sigma^{2^{m}}\right)\right|=\left|C_{N}(1)\right|=|N|$.
Corollary 2.2. Suppose G is a Frobenius group with kernel N and complement H. If $|H|$ is odd, then G acts evenly on G / H. If $|H|$ is even, then G acts oddly on G / H if and only if the Sylow 2-subgroups of H are cyclic of order 2^{m} and 2^{m+1} does not divide $|N|-1$.

Proof. Since it can easily be shown that the Sylow 2-subgroups of N cannot be nontrivial cyclic, it follows that if H has odd order then G acts evenly on G / H by 1.8. Suppose, on the other hand, that H has even order. If $\sigma \in H-\{1\}$ then $C_{N}(\sigma)=1$. Suppose $\sigma \in H$ of order 2^{m}. Then $\left|C_{N}\left(\sigma^{2^{k}}\right)\right|=$ 1 for $k \leq m-1$. Thus, by the proof of Theorem 2.1, σ acts oddly on $G / H \Leftrightarrow$

$$
2^{m}-1 \not \equiv\left(2^{m}-1\right)|N| \bmod 2^{m+1}
$$

$\Leftrightarrow 2^{m+1}$ does not divide $|N|-1$. However, if σ does not generate a Sylow 2-subgroup of H then the order of such a group is 2^{k} with $k \geq m+1$ and hence σ acts evenly since 2^{k} divides $|N|-1$ (because $|H|$ does). This proves the result.

A special case of 2.2 is the case where G is dihedral of order $2 m$ with m odd and H is a subgroup of order 2 . Then G acts oddly on G / H if and only if $m \not \equiv 1 \bmod 4$.

Corollary 2.3. Suppose E / K is a Galois extension of fields with $\operatorname{Gal}(E / K)=G$ a Frobenius group with complement H. Let L be the fixed field of H. Suppose that A is a Dedekind domain with field of fractions K and that B and C are the integral closures of A in L and E respectively. Suppose that no prime of A ramifies in B and that $U(C)^{2} \cap K=U(A)^{2}$. Then B has an A-basis if and only if one of the following holds: (i) $|H|$ is odd or (ii) the Sylow 2-subgroup of H is not cyclic or (iii) the Sylow 2-subgroup of H is cyclic of order 2^{m} and 2^{m+1} divides $[L: K]-1$.

Proof. This follows at once from 2.2 and 1.8.
Of course we could have stated a more general result using Theorem 2.1 rather than 2.2.

References

[1] E. Artin, Questions de base minimale dans la théorie des nombres algébriques, CNRS XXIV (Colloq. Int., Paris, 1949), 19-20.
[2] D. A. Cox, Primes of the Form $x^{2}+n y^{2}$, Wiley, 1989.
[3] A. Fröhlich, Ideals in an extension field as modules over the algebraic integers in a finite number field, Math. Z. 74 (1960), 29-38.
[4] L. McCulloh, Frobenius groups and integral bases, J. Reine Angew. Math. 248 (1971), 123-126.
[5] E. Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlkörpern I, II, Math. Ann. 71 (1911), 328-353; 72 (1911), 297-345.
[6] K. Uchida, Unramified extensions of quadratic number fields I, Tôhoku Math. J. 22 (1970), 138-141.

DEPARTMENT OF MATHEMATICS
UNIVERSITY COLLEGE DUBLIN
BELFIELD, DUBLIN 4, IRELAND
E-mail: KHUTCH@IRLEARN.UCD.IE

