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Introduction. In 1929, C. L. Siegel [8] defined two classes of functions in
transcendence theory. One is the class of E-functions (for the definition, see
[7]) and the other is the class of G-functions (see §2 below). Proofs of the al-
gebraic independence for values of E-functions and transcendence measures
were first originated by Siegel, and developed by A. B. Shidlovskĭı and his
students. On the contrary, for G-functions, Siegel only gave a program for
the proofs of the linear independence of their values. After a while, A. I. Ga-
lochkin [6] proved some irrationality measures. He used the method of Padé
approximations of the first kind. His proofs require an assumption, which is
called the Galochkin condition. This assumption appeared in E. Bombieri’s
paper [3] in another form, but it was not removed from the irrationality
statements. In 1985, D. V. Chudnovsky and G. V. Chudnovsky overcame
this difficulty [4, Theorem III]. They proved that the Galochkin condition
holds a priori. They also used a refined method of classical Padé approxima-
tions. Furthermore, they obtained some measures for values of G-functions
[4, Theorem I] without the Galochkin condition.

To explain the present state of research on the irrationality measures for
values of G-functions, let us introduce the following (unproved) statement:

Statement 0.1. Let f1(x), . . . , fm(x) be G-functions. Assume that
f1(x), . . . , fm(x) are linearly independent over Q(x) and that the 1-column
matrix

f := t(f1(x), . . . , fm(x))

is a solution of a first order linear differential equation

d

dx
f = Af,

where A ∈ Mm×m(Q(x)). Let r = a/b ∈ Q, r 6= 0, and 0 < ε < 1/2. Then
there exist a constant C1, depending on f1(x), . . . , fm(x), ε, and a constant

[313]
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C2, depending on f1(x), . . . , fm(x), ε, r, such that if

|b|ε > C1|a|m(m−1+ε),

then for arbitrary integers H1, . . . , Hn such that H := maxi=1,...,m |Hi|
> C2,

(0.1.1)
∣∣∣
m∑

i=1

Hifi(r)
∣∣∣ > H1−ε

∏m
i=1 max(|Hi|, 1)

.

D. V. Chudnovsky and G. V. Chudnovsky proved a weaker form of State-
ment 0.1 [4, Theorem I], with (0.1.1) replaced by

(0.1.2)
∣∣∣
m∑

i=1

Hifi(r)
∣∣∣ > H1−m−ε.

We state our result.

Theorem 0.2. Let fi(x) (i = 1, . . . , n) be a non-zero solution of a scalar
linear differential equation of order mi over Q(x):

(
d

dx

)mi
fi(x) + ai,mi−1(x)

(
d

dx

)mi−1

fi(x) + . . .+ ai,0(x)fi(x) = 0,

where ai,j(x) ∈ Q(x) (i = 1, . . . , n; j = 0, . . . ,mi − 1). Put f
(j)
i (x) :=

(d/dx)jfi(x) and m :=
∑n
i=1mi. Assume f

(j)
i (x) (i = 1, . . . , n; j = 0, . . .

. . . ,mi − 1) are G-functions linearly independent over Q(x). Let r = a/b ∈
Q, r 6= 0, and let 0 < ε0 < 1/2 be a fixed real number. Then there
exist an effective constant C3, depending only on f

(j)
i (x) (i = 1, . . . , n;

j = 0, . . . ,mi − 1), ε0, m, and an effective constant C4, depending only
on f

(j)
i (x) (i = 1, . . . , n; j = 0, . . . ,mi − 1), ε0, m, r, such that if

|b|ε0 > C3|a|2m(m+1)
,

then for arbitrary integers H(j)
i (i = 1, . . . , n; j = 0, . . . ,mi − 1) such that

H := maxi=1,...,n(|Hi|) > C4 and Hi := maxj=0,...,mi−1(|H(j)
i |, 1),

∣∣∣
n∑

i=1

mi−1∑

j=0

H
(j)
i f

(j)
i (r)

∣∣∣ > H1−ε0

Hm1
1 · · ·Hmn

n
.

As compared with the methods of [4, Theorem I], our method estimates
simultaneously several systems of G-functions. D. and G. Chudnovsky in-
troduced the method of graded Padé approximations, and announced that
Statement 0.1 can be proved by their methods ([4, Theorem V]).

We use classical Padé approximations and obtain the best possible mea-
sures for some special cases (m1 = . . . = mn = 1 in Theorem 0.2). Statement
0.1 is still unproved, at least by the method of classical Padé approximations.
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This paper is organized as follows.
In Section 1 we prove some properties of our Padé approximations. We

follow more or less the method developed by Shidlovskĭı for E-functions [7,
Chapter 3] until Lemma 1.8 which improves on Shidlovskĭı’s counterpart:
the matrix that appears in Shidlovskĭı’s method is too big to provide good
bounds for G-functions. It is important to deal with a matrix of minimal
size and maximum rank for the final estimates to depend only on the Hi’s.

Section 2 contains the estimations of linear forms in Padé polynomials.
The Galochkin condition appears as the (G,C)-property. (See Lemma 2.5
below.) We use there the result of [4]. Furthermore, at the end of the section
we obtain a matrix of integers which has good approximations.

Section 3 contains the proof of our result. The sketch of the proof is as
follows: Using the estimates of the first two sections, we obtain an inequality
involving the data, the degrees of the Padé polynomials and their orders
at 0. This inequality provides the bound in our result provided that these
degrees and orders satisfy two conditions. The condition on their orders is
transformed into another one on the degrees of the Padé polynomials. We
reduce them to conditions on ε and H, that is, we prove the existence of
the Padé polynomials with these conditions for any 0 < ε < 1/2 and for any
large H. We conclude our estimations by these Padé polynomials.

1. Padé approximations. Let Λ be the set of indices

(1.1.1) Λ := {(i, j) | i = 1, . . . , n; j = 1, . . . ,mi}
and write

(1.1.2) m :=
n∑

i=1

mi.

We consider the power series f(i,j) = f(i,j)(x) ∈ Q[[x]] ((i, j) ∈ Λ).
For parameters D, Di, T ∈ Z (i = 1, . . . , n), consider P(i,j) = P(i,j)(x) ∈

Q[x] with

(1.1.3) degP(i,j) ≤ D,
(1.1.4) ordx=0 P(i,j) ≥ D −Di ((i, j) ∈ Λ),

such that

(1.1.5) R :=
∑

(i,j)∈Λ
P(i,j)f(i,j) ∈ Q[[x]]

satisfies

(1.1.6) ordx=0R ≥ T
and R 6= 0.



316 M. Nagata

These polynomials P(i,j) always exist under a condition on T . See Re-
mark 1.2 below. They are not uniquely defined.

Definitions 1.1. We call P(i,j) Padé approximants and R remainder
function in the Padé approximation problem for f(i,j) with parameters
(T,D,Di).

Henceforth we write

(1.1.7) D := max
i=1,...,n

Di,

and we assume that

(1.1.8) Di ≥ 2εD

and

(1.1.9) T ≥
[ n∑

i=1

miDi − εD
]

for a sufficiently small ε > 0. Here [α] means the integer part of α.

R e m a r k 1.2. The number of the coefficients of P(i,j) for (i, j) ∈ Λ is at
most

∑n
i=1(miDi + 1). If

T <

n∑

i=1

(miDi + 1),

there exists a non-trivial solution of the Padé approximation problem with
parameters (T,D,Di).

Notations 1.3. Define an m-tuple of power series by

(1.3.1) f := t(f(1,1), . . . , f(1,m1), f(2,1), . . . , f(n,mn)) ∈ Q[[x]]m.

We fix A(i) ∈Mmi(Q(x)), the set of mi ×mi matrices, for i = 1, . . . , n and

(1.3.2) A :=



A(1) 0

. . .
0 A(n)


 ∈Mm(Q(x)).

Consider the differential equation

(1.3.3)
d

dx
f = Af,

which means that

(1.3.4)
d

dx
f i = A(i)f i (i = 1, . . . , n),

where f i := t(f(i,1), . . . , f(i,mi)) ∈ Q[[x]]mi .
Furthermore, define a sequence of m-tuples of polynomials by

(1.3.5) p[0] := t(P(1,1), . . . , P(1,m1), P(2,1), . . . , P(n,mn)) ∈ Q[x]m
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and recursively for k = 1, 2, . . . ,

(1.3.6) p[k] := u

(
d

dx
+ tA

)
p[k−1] := t(P [k]

(1,1), . . . , P
[k]
(n,mn)) ∈ Q[x]m,

where

(1.3.7) u := u(x) = the lowest common denominator

of the entries of A ∈ Z[x].

In other words, one defines sequences of mi-tuples by

(1.3.8) p
[0]
i := t(P(i,1), . . . , P(i,mi)) ∈ Q[x]mi (i = 1, . . . , n)

and for k = 1, 2, . . . ,

(1.3.9) p
[k]
i := u

(
d

dx
+ tA

)
p

[k−1]
i ∈ Q[x]mi (i = 1, . . . , n);

then it is clear that p[k] are the tuples of all entries of p[k]
i (i = 1, . . . , n).

Then we put

(1.3.10) R[0] := tp[0]f =
n∑

i=1

tp
[0]
i f i ∈ Q[[x]]

and for k = 1, 2, . . . ,

(1.3.11) R[k] :=
(
u
d

dx

)k
R[0] ∈ Q[[x]].

By elementary calculations, one has

R[k] =
(
u
d

dx

)k
R[0] =

(
u
d

dx

)k−1(
u

(
d

dx
tp[0] + tp[0]A

)
f

)
(1.3.12)

=
(
u
d

dx

)k−1(
u
t((

d

dx
+ tA

)
p[0]
)
f

)

=
(
u
d

dx

)k−1

(tp[1])f = . . . = tp[k]f.

Write

(1.3.13) R
[0]
i := tp

[0]
i f i ∈ Q[[x]]

and for k = 1, 2, . . . ,

(1.3.14) R
[k]
i :=

(
u
d

dx

)k
R

[0]
i ∈ Q[[x]] (i = 1, . . . , n).

Similarly to (1.3.12) one finds that for k = 0, 1, 2, . . . ,

(1.3.15) R
[k]
i = tp

[k]
i f i (i = 1, . . . , n).
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Finally, put

(1.3.16) s := max(deg u− 1,deg uA).

Lemma 1.4. Let P(i,j) be Padé approximants and R be the remain-
der function in the Padé approximation problem for f(i,j) with parameters

(T,D,Di). Then P
[k]
(i,j) are Padé approximants and R[k] is the remainder

function with parameters (T − k,D + ks,Di + ks+ k) for k = 0, 1, . . . , T .

P r o o f. It is enough to show that

(1.4.1) P
[k]
(i,j) ∈ Q[x],

(1.4.2) degP [k]
(i,j) ≤ D + ks,

(1.4.3) ordx=0 P
[k]
(i,j) ≥ D −Di − k,

(1.4.4) ordx=0R
[k] ≥ T − k.

This follows immediately from the definitions.

We formulate Shidlovskĭı’s lemma [7, Chapter 3, Lemma 8] as the fol-
lowing proposition, which is implicit in his proof.

Proposition 1.5. Suppose that f(i,j) ((i, j) ∈ Λ) are linearly indepen-
dent over C(x) and satisfy the differential equation (1.3.3). For arbitrary
polynomials P [0]

(i,j) ∈ C(x) with

degP [0]
(i,j) ≤ D ((i, j) ∈ Λ),

let

R[0] =
∑

(i,j)∈Λ
P

[0]
(i,j)f(i,j) ∈ C[[x]]

and let

R[k] =
(
u
d

dx

)k
R[0] =

∑

(i,j)∈Λ
P

[k]
(i,j)f(i,j)

for k = 1, 2, . . . Furthermore, let

l = rank(P [k]
(i,j))

0≤k<m
(i,j)∈Λ ≤ m.

Then there exists a set Λ1 ⊂ Λ with #Λ1 (= the cardinality of Λ1) = l such
that

(1.5.1) ∆ = det(P [k]
(i,j))

0≤k<l
(i,j)∈Λ1

6= 0.

Finally , denote by ∆µ,ν the (µ, ν)th cofactor of ∆. Then there exists a pos-
itive constant τ0, depending only on f(i,j), and there exist , for µ = 1, . . . , n,
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power series Fµ ∈ C[[x]] and polynomials Gµ ∈ C(x), which depend only on
f(i,j), such that

(1.5.2) ordx=0 Fµ ≤ τ0
and

(1.5.3) ∆Fµ = Gµ

n∑
ν=1

∆µ,νR
[ν−1].

P r o o f. The first assertion is proved in [7, Chapter 3, Lemma 6]. (1.5.2)
and (1.5.3) are implicit in the proof of [7, Chapter 3, Lemma 8].

For the sake of convenience, we often write for i = 1, . . . , n,

Di,j := Di (j = 1, . . . ,mi).

Lemma 1.6. Under the assumptions of Lemma 1.4, suppose that f sat-
isfies the differential equation (1.3.3) and that the entries of f are linearly
independent over C(x). Let

(1.6.1) l = rank(P [k]
(i,j))

0≤k<m
(i,j)∈Λ .

Then there exist a positive constant γ0, depending only on f , and a set
Λ2 ⊂ Λ with #Λ2 = l such that

(1.6.2) ordx=0R ≤
( ∑

(i,j)∈Λ2

Di,j

)
+ γ0.

P r o o f. We use Proposition 1.5. Let ∆ be a minor of maximal rank of
(P [k]

(i,j))
0≤k<m
(i,j)∈Λ , ∆µ,ν the (µ, ν)th cofactor of ∆ and δµ,ν the (µ, ν)th entry

of ∆. Each index µ corresponds to a double index (i, j) such that δµ,∗ =
P

[∗]
(i,j); we denote this double index (i, j) by λµ. Let Λ1 be a subset of Λ

which satisfies (1.5.1). From Lemma 1.4, one has

(1.6.3) deg∆ ≤ lD +
l(l − 1)

2
s

and

(1.6.4) ordx=0∆µ,ν ≥ (l − 1)D −
∑

(i,j)∈Λ1\{λµ}
Di,j − l(l − 1)/2,

or a fortiori

(1.6.5) ordx=0∆Fµ ≤ lD +
l(l − 1)

2
s+ τ0

and there exists µ0 such that

(1.6.6) ordx=0Gµ

l∑

k=1

∆µ,kR
[k−1] ≥ ordx=0

l∑

k=1

∆µ,kR
[k−1]
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≥ ordx=0R− l + (l − 1)D −
∑

(i,j)∈Λ1\{λµ0}
Di,j − l(l − 1)/2

for µ = 1, . . . , l. Hence we have

(1.6.7) ordx=0R ≤ D +
∑

(i,j)∈Λ1\{λµ0}
Di,j +

l(l + 1)
2

(s+ 1) + l + τ0

from (1.5.3). From (1.1.7), the index µ0 can be picked in such a way that
Dλµ0

= D. For this µ0, (1.6.7) yields inequality (1.6.2) with #Λ2 = l.

Lemma 1.7. Under the assumptions of Lemma 1.6, for any ε > 0 and
for any D > D̃1, if

(1.7.1) ordx=0R ≥
[ n∑

i=1

miDi − εD
]
,

then

(1.7.2) rank(P [k]
(i,j))

0≤k<m
(i,j)∈Λ = m,

where D̃1 is a positive constant depending only on f and ε. Furthermore, let

(1.7.3) ∆ := det(P [k]
(i,j))

0≤k<m
(i,j)∈Λ .

Then

(1.7.4) ordx=0∆ ≥ (m− ε)D − m(m+ 1)
2

− 1− max
(i,j)∈Λ

(ordx=0 f(i,j))

and

(1.7.5) ordx=0∆ ≤ mD +
m(m− 1)

2
s.

P r o o f. For the first assertion (1.7.2), we assume that

(1.7.6) l := rank(P [k]
(i,j))

0≤k<m
(i,j)∈Λ < m.

Then there exists Λ2 ⊂ Λ with #Λ2 = l such that

(1.7.7) ordx=0R ≤
( ∑

(i,j)∈Λ2

Di,j

)
+ γ0.

This contradicts (1.1.8) for D > (γ0 + 1)/ε, showing (1.7.2).
Let ∆µ,ν be the (µ, ν)th cofactor of ∆. We have

(1.7.8) ∆f(i,j) =
m∑
µ=1

∆µ,νR
[µ−1],



G-functions 321

where ν =
∑i−1
k=1mk + j. From Lemma 1.4, one finds for ν = 0, 1, . . . ,m−1,

(1.7.9) ordx=0

m∑
µ=1

∆µ,νR
[µ−1]

≥
[ n∑

i=1

miDi − εD
]
−m+

∑

(i,j)∈Λ

ν
(D −Di,j)−m(m− 1)/2,

where
∑ν

(i,j)∈Λ means that (i, j) runs in Λ with
∑i−1
k=1mk + j 6= ν. From

(1.1.7), for (i, j) with D = Di,j , we have

ordx=0∆f(i,j) ≥
[ n∑

i=1

miDi − εD
]

+
∑

(i,j)∈Λ

ν
(D −Di)(1.7.10)

−m(m− 1)/2−m−D −Di,j

≥ mD − εD −m(m− 1)/2−m− 1,

or weakly,

(1.7.11) ordx=0∆ ≥ mD − εD −m(m− 1)/2− 1− max
(i,j)∈Λ

(ordx=0 f(i,j)).

The inequality (1.7.5) follows immediately from Lemma 1.4.

Lemma 1.8. Under the assumptions of Lemma 1.7, for any number ξ
with ξu(ξ) 6= 0 and any D > D̃2,

(1.8.1) rank(P [k]
(i,j)(ξ))

0≤k<m
(i,j)∈Λ = m,

where D̃2 is a positive constant depending only on f , u, ε.

P r o o f. We follow the procedure of [7, Chapter 3, Lemma 10]. Let ∆ be
as in (1.7.3) and

(1.8.2) ϑ := ordx=ξ∆.

Suppose that t(y1,1, . . . , yn,mn) is a solution of the differential equation
(1.3.3) and use the notations (1.3.10) and (1.3.11). Then we have

(1.8.3) ∆yi,j =
m∑
µ=1

∆µ,νR
[µ−1],

where ∆µ,ν is the (µ, ν)th cofactor of ∆ and ν =
∑i−1
k=1mk + j.

Operating
(
u d
dx

)
on the identity (1.8.3), one finds

(1.8.4) u

(
d

dx
∆

)
yi,j +∆L1,i,j,0 =

m+1∑
µ=1

M1,µ,νR
[µ−1]

with L1,i,j,0 a linear combination of y1,1, . . . , yn,mn over C(x) and M1,µ,ν ∈
C[x].



322 M. Nagata

Repeating this process ϑ times yields

(1.8.5)
(
uϑ
(
d

dx

)ϑ
∆

)
yi,j +

ϑ−1∑

k=0

((
d

dx

)k
∆

)
Lϑ,i,j,k =

m+ϑ∑
µ=1

Mϑ,µ,νR
[µ−1]

with Lϑ,i,j,k a linear combination of y1,1, . . . , yn,mn over C(x) and Mϑ,µ,ν ∈
C[x].

Since
((

d

dx

)k
∆

)∣∣∣∣
x=ξ

= 0 (k ≤ ϑ− 1) and
((

d

dx

)ϑ
∆

)∣∣∣∣
x=ξ
6= 0,

we obtain

(1.8.6)
((

uϑ
(
d

dx

)ϑ
∆

)
yi,j

)∣∣∣∣
x=ξ

=
(m+ϑ∑
µ=1

Mϑ,µ,νR
[µ−1]

)∣∣∣
x=ξ

=
(m+ϑ∑
µ=1

Mϑ,µ,ν

( ∑

(i1,j1)∈Λ
P

[µ−1]
(i1,j1)yi1,j1

))∣∣∣
x=ξ

for any (i, j) ∈ Λ. Therefore

rank(P [k]
(i,j)(ξ))

0≤k<m
(i,j)∈Λ = m.

By Lemma 1.7, we have

ϑ ≤ deg∆− ordx=0∆

≤ mD +
m(m− 1)

2
s− (m− ε)D +

m(m+ 1)
2

+ 1 + max
(i,j)∈Λ

(ordx=0 f(i,j))

= εD +
m(m− 1)

2
s+

m(m+ 1)
2

+ 1 + max
(i,j)∈Λ

(ordx=0 f(i,j)).

Therefore (1.8.1) holds for

D >
1
ε

(
m(m− 1)

2
s+

m(m+ 1)
2

+ 1−m+ max
(i,j)∈Λ

(ordx=0 f(i,j))
)

=
1
ε

(
m(m− 1)(s+ 1)

2
+ 1 + max

(i,j)∈Λ
(ordx=0 f(i,j))

)
.

Notations 1.9. Let P(i,j) be Padé approximants and R be the remain-
der function in the Padé approximation problem for f(i,j) with parameters
(T,D,Di). Define a sequence {p〈k〉}k=0,1,... by

p〈k〉 :=
uk

k!

(
d

dx
+ tA

)
p[0](1.9.1)

= t(P 〈k〉(1,1), . . . , P
〈k〉
(1,m1), P

〈k〉
(2,1), . . . , P

〈k〉
(n,mn)).
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Furthermore, we write

(1.9.2) R〈k〉 :=
uk

k!

(
d

dx

)k
R.

R e m a r k 1.10. Similarly to (1.3.12), one has

(1.10.1) R〈k〉 = tp〈k〉f (k = 0, 1, 2, . . .).

Lemma 1.11. Let B be a differentiable l × l′ matrix. Then there exist
qk,j ∈ Z[x] such that

(1.11.1)
(
u

(
d

dx
+ tA

))k
B = uk

(
d

dx
+ tA

)k
B +

k−1∑

j=1

qk,ju
j

(
d

dx
+ tA

)
B

with

(1.11.2) deg qk,j ≤ (k − j)s
for k = 1, 2, . . . and j = 1, . . . , k − 1.

P r o o f. We show (1.11.1) by induction on k. For k = 1, it is trivial.
Assume that

(1.11.3)
(
u

(
d

dx
+ tA

))k
B

= qk,ku
k

(
d

dx
+ tA

)k
B +

k−1∑

j=1

qk,ju
j

(
d

dx
+ tA

)
B

with qk,k = 1 and deg qk,j ≤ (k− j)s for a given k ≥ 0 and j = 1, . . . , k− 1.
We now prove it for k + 1. Since

(1.11.4) u

(
d

dx
+ tA

)(
qk,ju

j

(
d

dx
+ tA

)k
B

)

= u

(
d

dx
(qk,juj) + qk,ju

j d

dx
+ qk,ju

j tA

)(
d

dx
+ tA

)j
B

=
(
qk,ju

j+1
(
d

dx
+ tA

)j+1

+ u
d

dx
(qk,juj)

(
d

dx
+ tA

)j)
B

=
(
qk,ju

j+1
(
d

dx
+ tA

)j+1

+ uj
(
d

dx
qk,j

)
jqk,j

+
(
d

dx
u

)
uj
(
d

dx
+ tA

)j)
B,
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when we choose

qk+1,k+1 := 1,

qk+1,1 :=
d

dx
(qk,1u),

qk+1,j :=
(
d

dx
qk,j

)
u+ jqk,j

(
d

dx
u

)
+ qk,j−1,

we have

(1.11.5)
(
u

(
d

dx
+ tA

))k+1

B

= uk+1qk+1,k+1

(
d

dx
+ tA

)k+1

B +
k∑

j=1

qk+1,ju
j

(
d

dx
+ tA

)j
B.

Furthermore, it follows that

deg qk+1,1 ≤ deg qk,1 + deg u ≤ (k − 1)s+ s = ks,

and

deg qk+1,j ≤ max((k− j)s+s, (k− j+1)s) = (k+1− j)s (j = 2, . . . , k).

Lemma 1.12. Let P(i,j) be Padé approximants and R be the remain-
der function in the Padé approximation problem for f(i,j) with parameters

(T,D,Di). Then P
〈k〉
(i,j) are Padé approximants and R〈k〉 is the remainder

function with parameters (T − k,D + ks,Di + ks+ k) for k = 0, 1, . . . , T .

P r o o f. It is enough to show that

(1.12.1) P
〈k〉
(i,j) ∈ Q[x],

(1.12.2) degP 〈k〉(i,j) ≤ D + ks,

(1.12.3) ordx=0 P
〈k〉
(i,j) ≥ D −Di − k,

(1.12.4) ordx=0R
〈k〉 ≥ T − k.

We show them for any (i, j) by induction on k. From Lemma 1.4, the four
assertions, (1.12.1)–(1.12.4), are true for k = 0 and k = 1. Assume that they
are true for a given k ≥ 0. We now prove them for k+ 1. From Lemma 1.11,
we have

(k + 1)! p〈k+1〉 = uk+1
(
d

dx
+ tA

)k
p〈0〉(1.12.5)

=
(
u

(
d

dx
+ tA

))k+1

p〈0〉
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−
k∑

h=1

qk+1,hu
h

(
d

dx
+ tA

)h
p〈0〉

= p[k+1] −
k∑

h=1

qk+1,hh! p〈h〉.

Then all entries of p〈k+1〉 belong to Q[x]. Furthermore, for h = 1, . . . , k,

(1.12.6) deg(qk+1,hP
〈h〉
(i,j)) ≤ (k + 1− h)s+D + hs = D + (k + 1)s

and

ordx=0(qk+1,hP
〈h〉
(i,j)) ≥ D −Di − h ≥ D −Di − (k + 1).

From Lemma 1.4, we find

(1.12.7) ordx=0 P
[k+1]
(i,j) ≥ D −Di − (k + 1).

Then it follows that

(1.12.8) ordx=0 P
〈k+1〉
(i,j) ≥ D −Di − (k + 1)

by the identity (1.12.5). The last assertion, ordx=0R
〈k+1〉 ≥ T − (k + 1), is

trivial.

Lemma 1.13. Let P(i,j) be Padé approximants and R be the remain-
der function in the Padé approximation problem for f(i,j) with parameters
(T,D,Di). Suppose that f satisfies the differential equation (1.3.3) and that
the entries of f are linearly independent over C(x). Then for any number
ξ with ξu(ξ) 6= 0 and any D > D̃3,

(1.13.1) rank(P 〈k〉(i,j)(ξ))
0≤k<m
(i,j)∈Λ = m,

where D̃3 is a positive constant depending only on f , u, ε.

P r o o f. From Lemma 1.11, there exist qk,j ∈ Q(x) such that

(1.13.2) p[k] = k! p〈k〉 +
k−1∑

j=1

j!qk,jp〈j〉

for k ≥ 1. Putting L := [2εD], one finds

(1.13.3) t(p[0], p[1], . . . , p[L]) = t(p〈0〉, p〈1〉, . . . , p〈L〉)B

where
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B =




1 0 0 0 . . . 0
0 1 q2,1(x) q3,1(x) . . . qL,1(x)
0 0 2! 2!q3,2(x) . . . 2!qL,2(x)
...

...
...

. . . . . .
...

. . . (L− 1)!qL,L−1(x)
0 0 . . . . . . 0 L!



.

Then det(B|x=ξ) 6= 0 for any ξ ∈ C, and we obtain (1.13.1) from Lemma
1.8.

2. Estimations of linear forms

Definitions 2.1. Write

(2.1.1) f(i,j) =
∞∑
ν=0

ai,j,νx
ν (ai,j,ν ∈ Q, (i, j) ∈ Λ).

Assume that there exist positive constants C5 and C6 ≥ 1, independent of
ν, such that

(2.1.2) |ai,j,ν | ≤ Cν5
and that

(2.1.3) den
(i,j)∈Λ

(ai,j,0, ai,j,1, . . . , ai,j,ν) ≤ Cν6
for ν = 0, 1, . . . Then we call f(i,j) G-functions; here den(a0, . . . , an) means
the smallest integral positive common denominator of a0, . . . , an. For con-
venience’s sake, we use a constant C7, which is independent of ν, such that

(2.1.4) max
(i,j)∈Λ

(|Cν6 ai,j,0|, |Cν6 ai,j,1|, . . . , |Cν6 ai,j,ν |) < Cν7

for ν = 0, 1, . . .
Furthermore, we define the height of P (x) = a(0) +a(1)x+ . . .+a(k)xk ∈

Mµ0×ν0(Z[x]) as

H(P (x)) := max
0≤i≤k

1≤µ≤µ0
1≤ν≤ν0

|a(i)
µ,ν |,

where a(i) = (a(i)
µ,ν)1≤µ≤µ0

1≤ν≤ν0
∈Mµ0×ν0(Z).

Lemma 2.2. Let M = [
∑n
i=1miDi − εD]. There exist P(i,j) ∈ Z[x]

((i, j) ∈ Λ) such that

(2.2.1) degP(i,j) ≤ D,
(2.2.2) ordx=0 P(i,j) ≥ D −Di,

(2.2.3) H(P(i,j)) ≤
(
CM7

n∑

i=1

(miDi + 1)
)M/(m+εD)

,
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(2.2.4) ordx=0

∑

(i,j)∈Λ
P(i,j)f(i,j) ≥M.

P r o o f. Write

(2.2.5) P(i,j) =
D∑

ν=D−Di
Pi,j,νx

ν

and

(2.2.6)
∑

(i,j)∈Λ
P(i,j)f(i,j) =

∞∑
ν=0

rνx
ν .

Equating coefficients yields

(2.2.7) rν =
∑

(i,j)∈Λ

min(ν,D)∑

k=D−Di
ai,j,ν−kPi,j,k,

for ν = 0, 1, . . . The number of the unknowns Pi,j,k in (2.2.7) is
∑n
i=1(miDi

+ mi) and the number of rν equal to 0 is M . We now consider instead of
(2.2.7),

(2.2.8) 0 =
∑

(i,j)∈Λ

min(ν,D)∑

k=D−Di
( den

(i1,j1)∈Λ
0≤h≤M

(ai1,j1,h))ai,j,ν−kPi,j,k

with integer coefficients for ν = 0, 1, . . . ,M − 1. Then by Siegel’s lemma [2,
Chapter 2, Lemma 1], there exist non-trivial solutions Pi,j,k ∈ Z such that

|Pi,j,k| ≤
(
CM7

n∑

i=1

(miDi + 1)
)M/(Σni=1(miDi+mi)−M)

≤
(
CM7

n∑

i=1

(miDi + 1)
)M/(m+εD)

.

Definitions 2.3. For A being the coefficient of the differential equation
(1.3.3), we define a sequence {Ak}k=0,1,... ⊂Mm(Q(x)) by induction as

(2.3.1)
A0 = I (the identity matrix),

Ak+1 =
d

dx
Ak +AkA (k = 1, 2, . . .).

Furthermore, we write

(2.3.2) δν := den
0≤k≤ν

(
the coefficients of the entries of

uk

k!
Ak

)
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for ν = 0, 1, . . . We say that A ∈ Mm(Q(x)) has the (G,C)-property when
there exists a constant δ > 0, independent of ν, such that

(2.3.3) δν ≤ δν .
R e m a r k 2.4. One finds immediately that

uk

k!
Ak ∈Mm(Q[x]).

The following lemma is due to D. V. Chudnovsky and G. V. Chudnovsky.
Their method is the Padé approximations of the second kind (cf. [4]).

Lemma 2.5 (D. V. Chudnovsky, G. V. Chudnovsky, cf. [4]). If there
exists a solution of the differential equation (1.3.3) such that its entries are
G-functions and they are linearly independent over Q(x), then A has the
(G,C)-property.

P r o o f. We find the proof in [4, Theorem III].

Lemma 2.6. Let P ∈Mm(Z[x]). For k = 0, 1, . . . ,

(2.6.1)
δk
k!
uk
(
d

dx
+ tA

)k
P ∈Mm(Z[x]).

P r o o f. We assume that y is a solution of the differential equation (1.3.3).
Applying d/dx to y k times gives

(2.6.2)
(
d

dx

)k
y = Aky.

Write R = tP y. Arguing as for the identities (1.3.12) yields

(2.6.3)
(
d

dx

)k
R =

t((
d

dx
+ tA

)k
P

)
y.

Now one has

1
k!

(
d

dx

)k
R =

1
k!

k∑

h=0

(
k

h

)((
d

dx

)k−h
tP

)(
d

dx

)h
y(2.6.4)

=
k∑

h=0

((
d

dx

)k−h
tP

)
1
k!
Ahy.

Then

(2.6.5)
δk
k!
uk

t((
d

dx
+ tA

)k
P

)
y =

k∑

h=0

(
uk−h

(k − h)!
uk−h tP

)
δk
h!
uhAhy.
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Since

1
(k − h)!

(
d

dx

)k−h
tP ∈Mm(Z[x]) and

δk
h!
uhAh ∈Mm(Z[x])

for h ≤ k, we get (2.6.1).

From now on, we consider the Padé approximations of Lemma 2.2.

Lemma 2.7. Let P(i,j) be the Padé approximants obtained in Lemma 2.2.
Suppose that A in (1.3.3) has the (G,C)-property. For any M0 ≤ [2εD],

(2.7.1) degP 〈k〉(i,j) ≤ D − ks,
(2.7.2) ordx=0 P

〈k〉
(i,j) ≥ D −Di − k,

(2.7.3) δM0P
〈k〉
(i,j) ∈ Z[x],

(2.7.4) H(δM0P
〈k〉
(i,j)) ≤

(
CM7

n∑

i=1

(miDi + 1)
)M/(m+εD)

δM0(m(s+ 1)2H0)k

× 1
k!

k∏

h=1

(D + (h− 1)(s+ 1) + 2),

where M = [
∑n
i=1miDi−εD] and H0 = max(H(u),H(uA)). Furthermore,

for ξ ∈ R with |ξ| < C−1
5 ,

(2.7.5) |δM0R
〈k〉
|x=ξ| ≤ m(D + ks) max

(i,j)∈Λ
(H(δM0P

〈k〉
(i,j)))

|C5ξ|M−k
1− |C5ξ|

for any k ≤M0.

P r o o f. (2.7.1) and (2.7.2) hold by Lemma 1.12. (2.7.3) holds by Lemma
2.6. We show (2.7.4) by induction on k. It is true for k = 0 by Lemma 2.2.
Assume that it is true for a given k ≥ 0. For k + 1, we have

u

(
d

dx
+ tA

)(
uk
(
d

dx
+ tA

)k)

= u
d

dx

(
uk
(
d

dx
+ tA

)k)
+ uk+1 tA

(
d

dx
+ tA

)k

= k

(
d

dx
u

)
uk
(
d

dx
+ tA

)k
+ uk+1 d

dx

(
d

dx
+ tA

)k
+ uk+1 tA

(
d

dx
+ tA

)k

= uk+1
(
d

dx
+ tA

)k+1

+ k

(
d

dx
u

)
uk
(
d

dx
+ tA

)k
,

or
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(2.7.6) uk+1
(
d

dx
+ tA

)k+1

= u

(
d

dx
+ tA

)(
u

(
d

dx
+ tA

)k)
− k
(
d

dx
u

)
uk
(
d

dx
+ tA

)k
.

It yields

(2.7.7) δM0(k + 1)! p〈k+1〉 = δM

(
u

(
d

dx
+ tA

)
− k
(
d

dx
u

))
k! p〈k〉.

Since degP 〈k〉(i,j) ≤ D + ks and deg u ≤ s+ 1, the height of every component
of the right side of (2.7.7) is not greater than

(2.7.8) k!((s+ 2)(D + ks+ 1)H0 +m(s+ 1)H0 + k(s+ 2)2H0)

× max
(i,j)∈Λ

H(δM0P
〈k〉
(i,j))

≤ k!mH0(s+ 2)2(D + k(s+ 1) + 2) max
(i,j)∈Λ

H(δM0P
〈k〉
(i,j)).

Therefore we obtain

H(δM0P
〈k+1〉
(i,j) ) ≤

(
CM7

n∑

i=1

(miDi + 1)
)M/(m+εD)

δM0(m(s+ 2)2H0)k+1

× 1
(k + 1)!

k+1∏

h=1

(D + (h− 1)(s+ 1) + 2).

So (2.7.4) holds for any k ≤M0.
Now since ordx=0R

〈k〉 ≥M − k and degP 〈k〉(i,j) ≤ D + js, one can write

(2.7.9) δM0R
〈k〉(ξ) =

∑

(i,j)∈Λ
δM0P

〈k〉
(i,j)(ξ)f(i,j)(ξ) =

∞∑

ν=M−k
r〈k〉ν xν ∈ Q[[x]].

It follows that

(2.7.10) |r〈k〉ν | ≤ m(D + ks+ 1) max
(i,j)∈Λ

H(δM0P
〈k〉
(i,j))C

ν
5 .

Hence we obtain the inequality (2.7.5).

Lemma 2.8. Let a, b ∈ Z \ {0} with |a/b| ≤ 1 and let p(x) ∈ Z[x] with
deg p(x) ≤ N and ordx=0 p(x) ≥ N − T . Then p(a/b)bN ∈ Z and∣∣∣∣p

(
a

b

)
bN
∣∣∣∣ ≤ (T + 1)H(p(x))|a|N−T |b|T .

P r o o f. Let p(x) = cN−TxN−T + . . .+ cNx
N ∈ Z[x]. Then

p

(
a

b

)
bN = aN−T (cN−T bT + . . .+ cNa

T ) ∈ Z
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and ∣∣∣∣p
(
a

b

)
bN
∣∣∣∣ ≤ |a|N−T (T + 1)|b|T max

N−T≤k≤N
|ck|

= (T + 1)H(p(x))|a|N−T |b|T .
Lemma 2.9. Let M = [

∑n
i=1miDi−εD] and M0 = [2εD]. Then for any

ξ ∈ R with |C5ξ| ≤ γ0 with a positive constant γ0 < 1 there exists a positive
constant γ, independent of D and ξ, such that

(2.9.1) γD ≥ m(D +M0s+ 1) max
(i,j)∈Λ

(H(δM0P
〈M0〉
(i,j) ))

|C5|M
1− |C5ξ|

for any D ≥ D̃4; here D̃4 is a positive constant depending only on m, ε, u
and γ0.

P r o o f. From Lemma 2.7, in order to prove Lemma 2.9, it suffices to
show the existence of a constant γ, independent of ξ and any sufficiently
large D, such that

γD ≥ δM0

(
CM7

n∑

i=1

(miDi + 1)
)M/(m+εD)

(2.9.2)

× (m(s+ 2)2H0)M0m(D +M0s+ 1)

× 1
M0!

M0∏

h=1

(D + (h− 1)(s+ 1) + 2)
|C5|M
1− γ0

.

Now for any sufficiently large D, one has

(2.9.3)
M

m+ εD
≤ m

ε
,

(2.9.4) m(D +M0s+ 1) ≤ m((1 + 2εs)D + 1) ≤ eD

and there exists a positive constant γ1, independent of D and depending
only on ε and s, such that

(2.9.5)
1
M0!

M0∏

h=1

(D + (h− 1)(s+ 1) + 2)

≤ 1
M0!

(D +M0(s+ 1) + 1)M0 ≤ (D + 2εD(s+ 1) + 1)M0

M0!

≈
D→∞

((1 + 2ε(s+ 1))D + 1)M0

√
2πM0M

M0
0 e−M0

≤ eM0

(
2 + 2ε(d+ 1)

2ε

)M0

≤ γD1 .

This gives the existence of γ independent of D and ξ and depending only
on δ, ε, C7, m, s, H0, m, s, C5, γ0, such that the right side of (2.9.2) does
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not exceed

δ2εDC
n2D/ε
7 (n(s+ 2)2H0)2εDeDγD1 |C5|nD 1

1− γ0
≤ γD

for D > D̃4. We choose D̃4 to be a positive constant depending only on m,
ε, s, γ0.

Lemma 2.10. Under the assumptions of Lemma 2.9, for any ξ = a/b

with a, b ∈ Z and ξu(ξ) 6= 0, there exist P (k,l)
(i,j) ∈ Z ((i, j) ∈ Λ) such that

(2.10.1) det(P (k,l)
(i,j) )(i,j),(k,l)∈Λ 6= 0,

(2.10.2) |P (k,l)
(i,j) | ≤ (Dk + (s+ 1)M0 + 1)

× max
(i1,j1)∈Λ

H(δM0P
〈M0〉
(i1,j1))|a|D−Dk |b|Dk+(s+1)M0 ,

(2.10.3)
∣∣∣
∑

(k,l)∈Λ
P

(k,l)
(i,j) f(k,l)(ξ)

∣∣∣ ≤ γD|a|M−M0 |b|−M+D+(s+1)M0

for D > D̃5; here D̃5 is a positive constant depending only on f , s, ε,
m, γ0.

P r o o f. According to Lemma 1.13, let λi,j ∈ N ∪ {0} ((i, j) ∈ Λ) be
distinct indices with max(i,j)∈Λ λi,j ≤M0 such that

(2.10.4) rank(P 〈λi,j〉(k,l) (ξ))(i,j),(k,l)∈Λ = m.

Now we write

(2.10.5) P
(k,l)
(i,j) = δM0P

〈λi,j〉
(k,l) (ξ)bD+λi,js.

Then det(P (k,l)
(i,j) )(i,j),(k,l)∈Λ 6= 0. Since degP 〈λi,j〉(k,l) ≤ D + λi,js and

ordx=0 P
〈λi,j〉
(k,l) ≥ D −Dk − λi,j by Lemma 1.13, we have

|P (k,l)
(i,j) | ≤ (Dk + λi,j(s+ 1) + 1)(2.10.6)

× max
(i1,j1)∈Λ

H(δM0P
〈λi,j〉
(i1,j1))|a|D−Dk−λi,j |b|Dk+λi,j(s+1)

≤ (Dk +M0(s+ 1))

× max
(i1,j1)∈Λ

(H(δM0P
〈M0〉
(i,j) ))|a|D−Dk |b|Dk+M0(s+1).

From Lemmas 2.7 and 2.9, one finds
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(2.10.7)
∣∣∣
∑

(k,l)∈Λ
δM0P

〈λi,j〉
(k,l) (ξ)f(k,l)(ξ)

∣∣∣

≤ n(D + λi,js+ 1) max
(k1,l1)∈Λ

(H(δM0P
〈λi,j〉
(k1,l1)))

|C5ξ|M−λi,j
1− |C5ξ|

≤ n(D +M0s+ 1) max
(k1,l1)∈Λ

(H(δM0P
〈M0〉
(k1,l1)))

CM5
1− |C5ξ|

≤ γD|ξ|M−λi,j

for any ξ with |ξ| ≤ γ0C
−1
5 ≤ 1. Therefore we obtain

∣∣∣
∑

(k,l)∈Λ
P

(k,l)
(i,j) f(k,l)(ξ)

∣∣∣ ≤ γD|ξ|M−λi,j |b|D+λi,js(2.10.8)

= γD|a|M−λi,j |b|−M+D+(s+1)λi,j

≤ γD|a|M−M0 |b|−M+D+(s+1)M0 .

3. Proof of Theorem 0.2. We now prove the following theorem instead
of Theorem 0.2.

Theorem 3.1. Let A(i) ∈ Mmi(Q(x)), m =
∑n
i=1mi and let Λ :=

{(i, j) | i = 1, . . . , n; j = 1, . . . ,mi}. Suppose that f(i,j) ∈ Q[[x]] ((i, j) ∈ Λ)
are G-functions which satisfy

(3.1.1)
d

dx




f(1,1)
...

f(1,m1)
f(2,1)

...
f(n,mn)




= A




f(1,1)
...

f(1,m1)
f(2,1)

...
f(n,mn)




,

where

A =



A(1) 0

. . .
0 A(n)


 .

Furthermore, assume that f(1,1), . . . , f(n,mn) are linearly independent over
Q(x). Let r = a/b ∈ Q, a, b ∈ Z, r 6= 0, and 0 < ε0 < 1/2 be a fixed
real number. Then there exist an effective constant C8, depending only on
f(i,j), ε0,m,A, and an effective constant C9, depending only on f(i,j), ε, m,
r, A, such that if

(3.1.2) |b|ε0 > C8|a|2m(m+1),
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then for any Hi,j ∈ Z such that H := max(i,j)∈Λ |Hi,j | > C9, and for
Hi := max1≤j≤mi(|Hi,j |, 1),

(3.1.3)
∣∣∣
∑

(i,j)∈Λ
Hi,jf(i,j)(r)

∣∣∣ > H1−ε0

Hm1
1 · · ·Hmn

n
.

P r o o f. Here is a sketch of the proof: Using the estimates of the first
sections, we obtain the inequalities (3.1.23), which involve the data and the
parameters D, D1, . . . , Dn. These inequalities yield the bound in Theorem
3.1 provided that D, D1, . . . , Dn satisfy the two conditions (3.1.25) and
(3.1.26). The condition (3.1.25) will transform into (3.1.27). Then we prove
the existence of Padé polynomials with these conditions for any 0 < ε < 1/2
and for any large H.

After renumbering the indices (k, l) of P (k,l)
(i,j) obtained in Lemma 2.10,

we can assume that

(3.1.4) V :=




H1,1 . . . Hn,mn

P
(1,1)
(1,2) . . . P

(n,mn)
(1,2)

...
...

P
(1,1)
(n,mn) . . . P

(n,mn)
(n,mn)




is non-singular. Let ∆ := detV and λi,j :=
∑i−1
µ=1mµ + j and let ∆(k,l)

(i,j)
denote the (λi,j , λk,l)th cofactor of V . Without loss of generality, we put
H := |H1,1| = max(i,j)∈Λ |Hi,j | and assume that f(1,1)(r) 6= 0. We write

L(1,1) :=
∑

(k,l)∈Λ
Hk,lf(k,l)(r), L(i,j) :=

∑

(k,l)∈Λ
P

(k,l)
(i,j) f(k,l)(r) ((i, j) ∈ Λ′),

where

(3.1.5) Λ′ := Λ \ {(1, 1)}.
It follows that

(3.1.6) f(1,1)∆ = L(1,1)∆
(1,1)
(1,1) +

∑

(i,j)∈Λ′
L(i,j)∆

(1,1)
(i,j) .

Put

M :=
[ n∑

i=1

miDi − εD
]

and M0 := [2εD].

Arguing as in Lemmas 2.9 and 2.10, one finds that there exists a positive
constant γ̃, independent of r, D, Di, such that

|P (k,l)
(i,j) | ≤ (Dk +M0(s+ 1) + 1)(3.1.7)

× max
(i1,j1)∈Λ

(H(δM0P
〈M0〉
(i1,j1)))|a|D−Dk |b|Dk+M0(s+1)

≤ γ̃D/m|a|D−Dk |b|Dk+(s+1)M0
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for D > D̃6; here D̃6 depends only on m, ε, u, γ0. Then we have

(3.1.8) |∆(1,1)
(1,1)| ≤ (m− 1)!γ̃D

∏

(µ,ν)∈Λ′
|a|D−Dµ |b|Dµ+(s+1)M0

and

(3.1.9) |∆(1,1)
(i,j) |

≤ (m− 2)!γ̃D
∑

(µ,ν)∈Λ′

|a|Σ(k,l)∈Λ′D−Dk |b|Σ(k,l)∈Λ′Dk+(m−1)(s+1)M0

|a|D−Dµ |b|Dµ+(s+1)M0
Hµ.

The inequality (2.10.3) in Lemma 2.10 gives

(3.1.10) |L(i,j)| ≤ γD|a|M−M0 |b|−M+D+(s+1)M0 ((i, j) ∈ Λ′).
Thus by (3.1.6), we have

|f(1,1)(r)∆| ≤ (m− 1)!(γγ̃)D|a|M−M0+Σ(k,j)∈Λ′ (D−Dk)(3.1.11)

× |b|−M+Σ(k,j)∈Λ′Dk,l+m(s+1)M0

×
∑

(k,l)∈Λ′

Hµ

|a|D−Dµ |b|Dµ+(s+1)M0

+ |L(1,1)|(m− 1)!γ̃D
∏

(µ,ν)∈Λ′
|a|D−Dµ |b|Dµ+(s+1)M0 .

Now we put

(3.1.12) ε1 :=
∑n
i=1miDi −M

D
.

This ε1 satisfies ε ≤ ε1 ≤ ε + 1/D < 3
2ε for any sufficiently large D. We

choose the parameters

(3.1.13) D1 := D

and D2, D3, . . . , Dn to be the smallest integers satisfying

(3.1.14) |f(1,1)(r)|−1Him!(γγ̃)D|a|M−M0+Σ(k,l)∈Λ′ (D−Dk)

× |b|−M+Σ(k,l)∈Λ′Dk+m(s+1)M0

(= |f(1,1)(r)|−1Him!(γγ̃)D|a|mD−ε1D−M0 |b|ε1D+m(s+1)M0)

≤ |a|D−Di |b|Di+(s+1)M0 .

We need, for i = 1, . . . , n,

(3.1.15) D ≥ Di

and

(3.1.16) Di ≥ 2εD
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in Definitions 1.1. First, we show (3.1.16). Consider the following inequality
which is equivalent to (3.1.14):

Hi ≤
|f(1,1)|
m!

(γγ̃)D|a|−Di−(m−1)D+ε1D+M0(3.1.17)

× |b|Di−ε1D−(m−1)(s+1)M0 .

We define a function g of D by

(3.1.18) g :=
log(m!)− log |f(1,1)(r)|

D log |b| +
log(γγ̃)
log |b| ,

or

|b|g =
(

D

√
m!

|f(1,1)(r)|
)

(γγ̃).

Now we choose the constant C8 in Theorem 3.1 to satisfy

C8 ≥ (γγ̃)3ε0/ε.

From the assumption

(3.1.19) |b|ε0 ≥ C8,

one has |b|ε ≥ (γγ̃)3 and 0 ≤ g < ε/2 for any sufficiently large D. (The
lower bound of D depends on m and f(1,1)(r).) Moreover, we put

(3.1.20) η :=
log |a|
log |b| .

Then 0 < η ≤ 1. With these notations, (3.1.17) is equivalent to

logHi ≤ (−gD − ηDi − (m− 1)ηD + ε1ηD(3.1.21)

+ ηM0 +Di − εD − (m− 1)(s+ 1)M0) log |b|
=
(
Di(1− η)−D

(
g + (m− 1− ε1)η + ε1

+ ((m− 1)(s+ 1)− η)
M0

D

))
log |b|.

Since Hi ≥ 1, the coefficient on log |b| on the right side of (3.1.21) (= the
exponent of |b|) is non-negative, that is to say,

(3.1.22) Di ≥ g + (m− 1− ε1)η + ε1 + ((m− 1)(s+ 1)− η)M0/D

1− η .

Thus (3.1.16) holds for i = 1, . . . , n since ε1 > ε and M0/D ≥ 2ε− 1/D for
any sufficiently large D.
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Now applying (3.1.14) in (3.1.11) yields

(3.1.23) |f(1,1)(r)∆|

≤ (m− 1)!
∑

(µ,ν)∈Λ′

|f(1,1)(r)|
m!

+ |L(1,1)|(m− 1)!γ̃D
∏

(µ,ν)∈Λ′
Hµ

×
∏

(µ,ν)∈Λ′

(
m!

|f(1,1)(r)|
(γγ̃)D|a|M−M0+Σ(k,l)∈Λ′ (D−Dk)−1

× |b|−M+D+Σ(k,l)∈Λ′Dk+1+m(s+1)M0

)

=
m− 1
m
|f(1,1)|+ |L(1,1)|(m− 1)!γ̃D

( ∏

(µ,ν)∈Λ′
Hµ

)

×
∏

(µ,ν)∈Λ′

m!
|f(1,1)(r)|

(γγ̃)D|a|mD−ε0D−M0−1|b|ε1D+m(s+1)M0+1.

Write

E := (m− 1)!γ̃D

×
(

m!
|f(1,1)(r)|

(γγ̃)D|a|mD−ε1D−M0−1|b|ε1D+m(s+1)M0+1
)m−1

.

Since

∆ ∈ Z \ {0}
and by (3.1.23), we have

|f(1,1)(r)| ≤
m− 1
m
|f(1,1)(r)|+ |L(1,1)|E

∏

(µ,ν)∈Λ′
Hµ,

or

|L(1,1)| ≥
|f(1,1)(r)|

m
E−1

∏

(µ,ν)∈Λ′
Hµ(3.1.24)

=
|f(1,1)(r)|

m
E−1 H

Hm1
1 · · ·Hmn

n
.

Consequently, the bound (3.1.3) requires

(3.1.25) the smallest integer Di in (3.1.14) (or (3.1.21)) satisfies (3.1.15)

and

H−ε0 <
|f(1,1)(r)|

m
E−1,

or more weakly
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Hε0 >

(
m!

|f(1,1)(r)|
(γγ̃)D

)m
(3.1.26)

× (|a|mD−ε1D−M0−1|b|ε1D+m(s+1)M0+1)m−1

= |b|D(mg+(m−1)(η(m−ε0−M0/D−1/D)+ε1+m(s+1)M0/D+1/D)).

From the inequalities (3.1.21), one finds that Di are increasing as functions
of Hi. Namely, the value Di is maximal for Hi = H. Therefore, for the
validity of (3.1.25) it suffices to show

(3.1.27) logH ≤
(
D(1− η)−D

(
g + (m− 1− ε1)η + ε1

+ ((m− 1)(s+ 1)− η)
M0

D

))
log |b|

after replacing Di in (3.1.21) by D. Consequently, if there exists an integer
D satisfying (3.1.26) and (3.1.27), then Theorem 3.1 holds. We recall that
η defined by (3.1.20) satisfies

(3.1.28) |b|η = |a|.
Assume that

(3.1.29) η ≤ 11(s+ 1)ε.

When

ε < min
(

1
14m(s+ 1)

,
3
44

)
and D >

2
ε
,

one has 0 ≤ g < ε/2 and 0 < ε1 < 3ε/2. Then it follows that

(3.1.30) D

(
mg+(m−1)

(
η

(
m−ε1−M0

D
− 1
D

)
+ε1+m(s+1)

M0

D
+

1
D

))

≤ D( 1
2εm+ (m− 1)

(
11εm(s+ 1) + 3

2ε+ 2εm(s+ 1) + 1
2ε
))

≤ D( 1
2εm+ 14εm(m− 1)(s+ 1)

) ≤ 15εm(m− 1)(s+ 1)D

and

(3.1.31) D(1− η)−D
(
g+ (m− 1 + ε1)η+ ε1 + ((m− 1)(s+ 1)− η)

M0

D

)

≥ D(1− ( 1
2ε+ 1

)
ε
(
m+ 3

2ε
)
(s+ 1) + 3

2ε+ 2ε(m− 1)(s+ 1)
)

≥ D(1− ε(2 + 13m(s+ 1))) ≥ D(1− 14εm(s+ 1)).

Now we put

(3.1.32) ε0 := 22m(m− 1)(s+ 1)ε.
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Then to show (3.1.26) it is enough to prove

Hε0 ≥ |b|15εm(m−1)(s+1)D = |b| 15
22 ε0D,

or equivalently,

(3.1.33) D ≤ 22 logH
15 log |b|

by (3.1.30) and (3.1.32); also, to show (3.1.27) it is enough to prove

H ≤ |b|D(1−14εm(s+1)),

or equivalently,

(3.1.34) D ≥ logH
(1− 14εm(s+ 1)) log |b|

by (3.1.31). From the assumption 0 < ε0 < 1/2, that is, 0 < 14εm(s+ 1) <
7/22, it follows that

(3.1.35)
(

22
15
− 1

1− 14εm(s+ 1)

)
logH
log |b| > 1

for any large H. This implies that there exists a positive integer D which
satisfies (3.1.33) and (3.1.34). From (3.1.29) and (3.1.32), one has

η ≤ ε0

2m(m− 1)
.

This means |b|ε0 ≥ |a|2m(m−1). If |r| is sufficiently small, then ru(r) 6= 0.
Consequently, when we choose the constant C8 as above, depending on u,
for any ε0 with 0 < ε0 < 1/2, if

(3.1.36) |b|ε0 ≥ C8|a|2m(m−1),

then

|L(1,1)| >
H1−ε0

Hm1
1 · · ·Hmn

n
.

R e m a r k 3.2. For ε0 sufficiently small, one can improve the inequality
(3.1.36) slightly.

We obtain Theorem 3.1 using the fact that the coefficient in the dif-
ferential equation (3.1.1) is a block diagonal matrix, but this restriction is
not necessary. One finds the bounds for the following differential equation
in place of (3.1.1) in a similar way under the additional assumption that
D1 ≥ . . . ≥ Dn.
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Theorem 3.3. Let A(i) ∈ Mmi(Q(x)), m =
∑n
i=1mi and let Λ :=

{(i, j) | i = 1, . . . , n; j = 1, . . . ,mi}. Suppose that f(i,j) ∈ Q[[x]] for (i, j) ∈
Λ are G-functions which satisfy

(3.3.1)
d

dx




f(1,1)
...

f(1,m1)
f(2,1)

...
f(n,mn)




= A




f(1,1)
...

f(1,m1)
f(2,1)

...
f(n,mn)




,

where

A =



A(1) 0

. . .
∗ A(n)


 .

Furthermore, assume that f(1,1), . . . , f(n,mn) are linearly independent over
Q(x). Let r = a/b ∈ Q, a, b ∈ Z, r 6= 0 and 0 < ε0 < 1/2 be a fixed
real number. Then there exist an effective constant C10, depending only on
f(i,j), ε0,m,A, and an effective constant C11, depending only on f(i,j), ε0,
m, r, A, such that if

(3.3.2) |b|ε0 > C10|a|2m(m+1),

then for any Hi,j ∈ Z such that H := max(i,j)∈Λ |Hi,j | > C11, and for
Hi := max1≤j≤mi(|Hi,j |, 1) satisfying H1 ≥ . . . ≥ Hn > 0,

(3.3.3)
∣∣∣
∑

(i,j)∈Λ
Hi,jf(i,j)(r)

∣∣∣ > H1−ε0

Hm1
1 · · ·Hmn

n
.

One can apply Theorem 3.3 into some concrete G-functions such as the
logarithm and polylogarithms.
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