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1. Introduction. Let f(z) =
∑∞

n=1 ane(nz) be a holomorphic cusp
form of even integral weight k > 0 with respect to the modular group Γ =
SL(2,Z), and define (for <s > (k + 1)/2)

Lf (s) =
∞∑

n=1

ann
−s,

the associated Hecke L-function. We also assume that f(z) is a Hecke eigen-
form [11] with a1 = 1. Recall that we have the bound for the coefficients

|an| ≤ d(n)n(k−1)/2

by Deligne’s proof of the Ramanujan–Petersson conjecture [2], [3], and the
bound for the square mean [9], [18],∑

n≤N

|an|2 � Nk.

It is well known [10] that Lf (s) admits analytic continuation to C as an
entire function and satisfies the functional equation

(2π)−sΓ (s)Lf (s) = (−1)k/2(2π)−(k−s)Γ (k − s)Lf (k − s).

Moreover, Lf (s) has Euler product representation (<s > (k + 1)/2)

Lf (s) =
∏
p

(1− app
−s + pk−1p−2s)−1.

The non-trivial zeros of Lf (s) lie within the strip (k−1)/2 < <s < (k+1)/2,
symmetrically to the real axis and the critical line σ = k/2. The Riemann
Hypothesis for Lf (s) asserts that all the non-trivial zeros of Lf (s) lie on the
critical line <s = k/2. Hafner [13], generalizing Selberg’s remarkable work
[19] on ζ(s), has shown that a positive proportion of all non-trivial zeros are
on the critical line.
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In this work, we establish the analogue of Selberg’s density theorem [20]
for Lf (s). Define, for σ ≥ k/2 and T ≥ 1,

Nf (σ, T ) = |{β + iγ : Lf (β + iγ) = 0, β ≥ σ, 0 < γ ≤ T}|.
It was proved by Lekkerkerker [15] that

Nf

(
k − 1

2
, T

)
∼ 1
π
T log T.

We will show that

Theorem 1.1. For some a > 0 we have

Nf (σ, T ) � T 1−a(σ−k/2) log T,

uniformly for k/2 ≤ σ ≤ (k + 1)/2.

Our proof shows that one may take a = 1/72. However, we make no
effort to obtain an optimal a by our method.

Application of standard techniques of analytic number theory easily
yields results of the type

Nf (σ, T ) � T c(σ)(log T )A,

where c(σ) < 1 for σ > k/2 and someA > 0. The significance of Theorem 1.1
lies in that A can be taken to be 1. Selberg used the analogue of Theorem 1.1
for ζ(s) to prove his famous result on the moments of arg ζ(1/2 + it). In
view of recent work of Bombieri and Hejhal [1], there is a similar application
to argLf (k/2 + it), which is the main motivation of the present paper.

Corollary 1.2. The functions
log |Lf (k/2 + it)|√

π log log t
,

argLf (k/2 + it)√
π log log t

become distributed , in the limit of large t, like independent random variables,
each having Gaussian density exp(−πu2)du.

To prove Theorem 1.1 by Selberg’s method, one considers not Lf (s)
itself, but Lf (s)MX(s), where the mollifier MX(s) is a Dirichlet polynomial
of length X = T θ, 0 < θ < 1/2, and is chosen such that Lf (s)MX(s) is
very close to 1 in the region σ > k/2, 0 < t ≤ T , or more precisely such that
the mean value

1
T

2T∫
T

|Lf (σ + it)MX(σ + it)− 1|2 dt

is very small, i.e.
2T∫

T

|Lf (σ + it)MX(σ + it)− 1|2 dt� T 1−a(σ−k/2),
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uniformly for k/2 ≤ σ ≤ (k + 1)/2. It is then possible to deduce, by a
standard argument (see §3), that the zeros of Lf (s)MX(s) and a fortiori of
Lf (s) in the region considered are comparatively few. The required mean
value estimate is obtained as follows. If we prove

2T∫
T

|Lf (k/2 + it)MX(k/2 + it)− 1|2 dt� T,

and
2T∫

T

|Lf (k/2 + 1 + it)MX(k/2 + 1 + it)− 1|2 dt� T 1−a,

then by a convexity theorem (see §3) we have
2T∫

T

|Lf (σ + it)MX(σ + it)− 1|2 dt� T 1−a(σ−k/2),

uniformly for k/2 ≤ σ ≤ k/2+1, which is all we need. The second inequality
is easy to prove since Lf (s) is an absolutely convergent Dirichlet series for
<s > (k + 1)/2 and MX(s) is an approximate inverse to Lf (s) such that
Lf (s)MX(s)− 1 is given by a Dirichlet series of the type

∑
n≥y bnn

−s, with
y large. The first inequality represents the main difficulty, since it is not
obtainable by a routine extension of Selberg’s work in the ζ(s) case. We will
replace Lf (s) by a Dirichlet polynomial of length ∼ T using the approximate
functional equation of Lf (s) in the form obtained by A. Good [7]. The
resulting expression then becomes

2T∫
T

|PTX(σ + it)|2 dt,

where PTX is a Dirichlet polynomial of length TX. However, in general
no method succeeds in handling the above mean value once P (s) has length
� T . Therefore we have to make careful use of the special feature of MX(s).
In fact, the argument similar to Selberg [19] and Hafner [13], with some
modification, is suitable here. For some technical reason we will prove the
first inequality for σ = k/2 + 1/ log T rather than k/2 and then apply a
convexity theorem to obtain Theorem 1.1.

We remark here that in our proof of Theorem 1.1 Deligne’s bound for
the Fourier coefficients an is used but not crucial here. A weaker bound like
an � n(k−1)/2+1/4+ε which follows from Weil’s bound for the Kloosterman
sums and the bound for the square mean mentioned before would suffice.
Thus, our method should be applicable when f(z) is a Maass form, though
the Ramanujan–Petersson conjecture remains unproved in this case.
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We would like to mention that D. Farmer [6], using Hafner’s method and
the spectral theory, establishes an asymptotic formula for the mean square
of Lf (s) weighted by a general mollifier of Levinson’s type. He mentions
that this mean value theorem can be combined with Jutila’s method [14] to
give a density result, but he does not give any details.
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for suggesting this problem to him, and for constant encouragement through-
out this work.

The author is grateful for Professor A. Selberg’s helpful remarks, espe-
cially for suggesting to the author a much simpler choice of the mollifier and
the use of the convexity theorem, leading to substantial simplification of an
earlier version of this work.

The author would also like to thank Professor H. Iwaniec and Professor
P. Sarnak for some helpful comments.

2. Main lemma. Let ψU (t) be a non-negative smooth function such
that

ψU (t) =
{

0 if t ≤ 1− 1/U or t ≥ 2 + 1/U ,
1 if 1 + 1/U ≤ t ≤ 2− 1/U ;

and
ψ

(p)
U (t) � Up, p ≥ 0,

where U is a positive parameter and in our discussion it will be chosen as
O(1) later. The object of this section is to prove the following lemma, which
is the analogue of Lemma 6 in [19].

Lemma 2.1. If k/2 < σ ≤ k/2 + 1/40, ε > 0, and µ, ν are positive
coprime integers ≤ T , then

∞∫
−∞

ψU

(
t

T

)
|Lf (σ + it)|2

(
µ

ν

)it

dt

=
1

(µν)σ
Dµν(2σ)

∞∫
−∞

ψU

(
t

T

)
dt

+
1

(µν)k−σ
Dµν(2k − 2σ)

∞∫
−∞

ψU

(
t

T

)(
t

2π

)2k−4σ

dt

+O

(
(µν)3U4T 4/5

2σ − k

)
,

where

Dµν(s) =
∞∑

l=1

aµlaνl

ls
.
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P r o o f. The proof is very similar to the treatment in [8] and [13], and
so we give only a sketch. We have (denote σ + it by s)

∞∫
−∞

ψU

(
t

T

)
|Lf (σ + it)|2

(
µ

ν

)it

dt

=
∞∫

−∞
ψU

(
t

T

)
Lf (σ + it)Lf (σ − it)

(
µ

ν

)it

dt

=
∞∫

−∞

( ∞∑
n=1

ann
−σ(nν)−itφ

(
2πn
t

√
ν

µ

)

+ (2π)2s−k Γ (k − s)
Γ (s)

∞∑
n=1

ann
σ−k

(
n

ν

)it

φ∗
(

2πn
t

√
µ

ν

))

×
( ∞∑

m=1

amm
−σ(mµ)itφ

(
2πm
t

√
µ

ν

)

+ (2π)2s̄−k Γ (k − s)
Γ (s)

∞∑
m=1

amm
σ−k

(
m

µ

)−it

φ∗
(

2πm
t

√
ν

µ

))
ψU

(
t

T

)
dt

+O

((√
µ

ν
+

√
ν

µ

)
log2 T

)
.

Here we use the approximate functional equation for Lf (σ±it) (see [7], Satz),
and φ(ξ), φ∗(ξ) are suitable smooth functions satisfying φ∗(ξ) = 1−φ(1/ξ),
and φ(ξ) = 1, |ξ| ≤ 2/3; φ(ξ) = 0, |ξ| ≥ 3/2.

Multiplying out the expression in the above integrand and using the
same argument and notation as in [8], §2 (see also [13], §3), we see that the
above expression equals∑

n,m

anam

(nm)σ

∞∫
−∞

ψU

(
t

T

)(
mµ

nν

)it

Φ

(
2πn
t

√
ν

µ
,
2πm
t

√
µ

ν

)
dt

+
∑
n,m

anam

(nm)k−σ
(2π)−2k+4σ

×
∞∫

−∞
t2k−4σψU

(
t

T

)(
nµ

mν

)it

Φ∗
(

2πn
t

√
µ

ν
,
2πm
t

√
ν

µ

)
dt

+O

(
log2 T

2σ − k

(√
ν

µ
+

√
µ

ν

))
= S1 + S2 + S3,

say, where Φ, Φ∗ are certain smooth functions with compact supports, and
Φ(%, %) = φ(%), Φ∗(%, %) = φ∗(%).
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For S1, the terms with mµ = nν give

(1)
∞∑

l=1

aµlaνl

(µνl2)σ

∞∫
−∞

ψU

(
t

T

)
φ

(
2π
√
µνl

t

)
dt.

For the terms with mµ 6= nν, we let mµ−nν = l. Without loss of generality
we may assume l > 0. Then the non-diagonal terms with l > 0 give

(2)
∑
l>0

∞∑
n=1

ana(nν+l)/µ(
nnν+l

µ

)σ

×
∞∫

−∞
ψU

(
t

T

)(
nν + l

nν

)it

Φ

(
2πn
t

√
ν

µ
,
2π(nν + l)
t
√
µν

)
dt

= (µν)σ
∑

0<l≤√µνUT ε

∞∑
n=1

ana(nν+l)/µ

(nν + l/2)2σ

×
∞∫

−∞
ψU

(
t

T

)
φ

(
2π(nν + l/2)

t
√
µν

)
eit l

nν+l/2 dt

+O

(
(µν)3U4 log2 T

2σ − k

)
.

For S2, the terms nµ = mν give

(3) (2π)−2k+4σ
∞∑

l=1

aµlaνl

(µνl2)k−σ

∞∫
0

ψU

(
t

T

)
φ∗

(
2π
√
µνl

t

)
t2k−4σ dt.

For the terms with nµ 6= mν, we let mν − nµ = l, and the non-diagonal
terms with l > 0 give

(4) (µν)k−σ(2π)−2k+4σ
∑

0<l≤√µνUT ε

∞∑
n=1

ana(nµ+l)/ν

(nµ+ l/2)2k−2σ

×
∞∫

−∞
ψU

(
t

T

)
t2k−4σφ∗

(
2π(nµ+ l/2)

t
√
µν

)
e−it l

nν+l/2 dt+O
(

(µν)3U4 log2 T

2σ − k

)
.

Let

G(s) =
∞∫

0

φ(x)xs−1 dx, G∗(s) =
∞∫

0

φ∗(x)xs−1 dx.

Then, by Mellin inversion,

φ(x) =
1

2πi

∫
(2)

G(s)x−s ds, φ∗(x) =
1

2πi

∫
(2)

G∗(s)x−s ds.
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Note that G(s) and G∗(s) are analytic except for a simple pole at s = 0
with residue 1, and Dµν(s) has only a simple pole at s = k for <s ≥ k−1/2,

Dµν(s) = P (µ, s)P (ν, s)D(s) with D(s) =
∞∑

l=1

a2
l l
−s;

P (a, s) =
∏
pr‖a

( ∞∑
j=0

apr+japjp−js
)( ∞∑

j=0

a2
pjp−js

)−1

;

D(s) � t1+ε, <s ≥ k − 1/2;
P (a, s) � a(k−1)/2+ε, <s ≥ k − 1/2;

|G(s)|+ |G∗(s)| �l
1

|s(s+ 1) . . . (s+ l)|
.

Thus (1) and (3) equal respectively

(5)
1

(µν)σ
· 1
2πi

∫
(2)

(
1

2π
√
µν

)s

G(s)Dµν(2σ + s)
∞∫

−∞
ψU

(
t

T

)
ts dt,

(6)
1

(µν)k−σ
· 1
2πi

∫
(2)

(
1

2π
√
µν

)s

G∗(s)Dµν(2(k − σ) + s)

×
∞∫

−∞
ψU

(
t

T

)
ts

(
t

2π

)2k−4σ

dt.

Next we shift the lines of integration in (5), (6) to <s = −1/2 and <s =
−1/2 − 2k + 4σ, respectively. The integrands have poles at k − 2σ, 0 and
2σ − k, 0, respectively. The residues at k − 2σ and 2σ − k cancel out and
the residues at 0 give the main terms.

By the estimate given above, we deduce that

(5) + (6) =
1

(µν)σ
Dµν(2σ)

∞∫
−∞

ψU

(
t

T

)
dt

+
1

(µν)k−σ
Dµν(2k − 2σ)

∞∫
−∞

ψU

(
t

T

)(
t

2π

)2k−2σ

dt+O(T 1/2+ε).

Define

Hl(s) =
∞∫

0

φ(ξ)e2πi(l/
√

µν)ξ−1
ξs−1 dξ.

This is an entire function and by the Mellin inversion formula,

φ(ξ)e2πi(l/
√

µν)ξ−1
=

1
2πi

∫
(2)

Hl(s)ξ−s ds.
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Thus the sum in (2) becomes

(µν)σ
∑

0<|l|≤√µνUT ε

∞∑
n=1

ana(nν+l)/µ

(nν + l/2)2σ

×
∞∫

−∞
ψU

(
t

T

)
φ

(
2π(nν + l/2)

t
√
µν

)
eitl/(nν+l/2) dt

= (µν)σ
∑

0<l≤√µνUT ε

1
2πi

∫
(2)

(√
µν

2π

)s

Hl(s)Dµν(s+ 2σ, l)
∞∫

−∞
ψU

(
t

T

)
ts dt.

Here

Dµν(s, l) =
∞∑

n=1

ana(nν+l)/µ

(nν + l/2)s
.

We move the line of integration to <s = −1/5. We have, on <s = −1/5,
∞∫

−∞
ψU

(
t

T

)
ts dt� 1

(|s|+ 1)4
U3T 4/5,

Hl(s) �
√
µν

l
|s|,

and we also have Hafner’s result [12]

Dµν(2σ + s, l) � l|s|1+ε

(µν)k/2−7/4
.

Thus the above expression is majorized by
(µν)σ

(µν)k/2−7/4
µνU4T 4/5 � (µν)3U4T 4/5.

Similarly, we obtain the same bound for the sum occurring in (4). Thus the
proof is complete.

In Section 4 we will give an alternative, and more elementary, treatment
of Dµν(s, l) giving a slightly weaker analytic continuation result, which still
suffices for the proof.

3. Proof of Theorem. Let

L−1
f (s) =

∞∑
n=1

µf (n)
ns

, <s > k + 1
2

.

Thus

µf (pr) =


1 if r = 0,
−ap if r = 1,
pk−1 if r = 2,
0 if r ≥ 3.
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Set λn = µf (n)gξ(n), where

gξ(n) =


1 if 1 ≤ n ≤ ξ,
log(ξ2/n)

log ξ
if ξ ≤ n ≤ ξ2,

0 if n ≥ ξ2,

and ξ = T θ, 0 < θ < 1/4 will be specified later.
We define the mollifier

Mξ2(s) =
∑

v

λv

vs
,

where k/2+A/ log ξ ≤ σ ≤ k/2+δ, and A, δ−1 are sufficiently large positive
numbers.

Using the multiplicativity of the Hecke eigenvalues an [11] and the defi-
nition of P (n, s),

P (n, s) =
∏
pr‖n

P (pr, s),

P (pr, s) =
( ∞∑

j=0

apj+rapjp−js
)( ∞∑

j=0

a2
pjp−js

)−1

,

we easily have

P (p, s) =
ap

1 + pk−1−s
, P (p2, s) =

a2
p

1 + pk−1−s
− pk−1.

We have, using Lemma 2.1,
∞∫

−∞
ψU

(
t

T

)
|Lf (σ + it)|2|Mξ2(σ + it)|2 dt

=
∑

v1,v2≤ξ2

λv1λv2

(v1v2)2σ
(v1, v2)2σDv1/(v1,v2),v2/(v1,v2)(2σ)

∞∫
−∞

ψU

(
t

T

)
dt

+
∑

v1,v2≤ξ2

λv1λv2

(v1v2)k
(v1, v2)2(k−σ)Dv1/(v1,v2),v2/(v1,v2)(2k − 2σ)

×
∞∫

−∞
ψU

(
t

T

)(
t

2π

)2k−4σ

dt+O(T 4/5U3ξ14 log3 ξ)

= S1 + S2 + S3,

say. Since we have

Dv1/(v1,v2),v2/(v1,v2)(2σ) = D(2σ)P
(

v1
(v1, v2)

, 2σ
)
P

(
v2

(v1, v2)
, 2σ

)
,
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where

D(s) = D11(s) =
∞∑

l=1

a2
l

ls
,

it follows by Möbius inversion that

S1 = D(2σ)
∞∫

−∞
ψU

(
t

T

)
dt

×
∑

v1,v2≤ξ2

λv1λv2

(v1v2)2σ
(v1, v2)2σP

(
v1

(v1, v2)
, 2σ

)
P

(
v2

(v1, v2)
, 2σ

)

= D(2σ)
∞∫

−∞
ψU

(
t

T

)
dt

×
∑

v1,v2≤ξ2

λv1λv2

(v1v2)2σ

∑
r|v1, r|v2

∑
l|r

µ(l)
(
r

l

)2σ

P

(
v1
r/l

, 2σ
)
P

(
v2
r/l

, 2σ
)

= D(2σ)
∞∫

−∞
ψU

(
t

T

)
dt

×
∑

r≤ξ2, r cubefree

∑
l|r

µ(l)
(
r

l

)2σ( ∑
r|v

λv

v2σ
P

(
v

r/l
, 2σ

))2

.

Similarly

S2 = D(2k − 2σ)
∞∫

−∞
ψU

(
t

T

)(
t

2π

)2k−4σ

dt

×
∑

r≤ξ2, r cubefree

∑
l|r

µ(l)
(
r

l

)2(k−σ)( ∑
r|v

λv

vk
P

(
v

r/l
, 2(k − σ)

))2

.

We distinguish two cases: (a) r ≤ ξ, and (b) ξ < r ≤ ξ2.
First consider the case (a) r ≤ ξ. We deduce that, since

1
2πi

∫
(2)

ys

s2
ds =

{
log y, y ≥ 1 ,
0, 0 < y ≤ 1,

we have∑
v

λrv

(rv)2σ
P (lv, 2σ)

=
∑

v

µf (rv)gξ(rv)
(rv)2σ

P (lv, 2σ)
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=
1

2πi

∫
(2)

ξs(ξs − 1)
s2

( ∑
v

µf (rv)
(rv)2σ+s

P (lv, 2σ)
)

ds

log ξ

=
∑

v

µf (rv)
(rv)2σ

P (lv, 2σ)

+
1

2πi

∫
Γ

(ξ/r)s(ξs − 1)
s2

( ∑
v

µf (rv)
(rv)2σ

· 1
vs
P (lv, 2σ)

)
ds

log ξ
,

where Γ denotes the path {ix, |x| ≥ δ} ∪ {δeiθ, π/2 ≤ θ ≤ 3π/2}, and δ is
sufficiently small.

We observe that (pep(r) ‖ r, pep(l) ‖ l)∑
v

µf (rv)
(rv)2σ

P (lv, 2σ)

=
∏
p

(
1 +

µf (p)
p2σ

P (p, 2σ) +
µf (p2)
p4σ

P (p2, 2σ)
)

×
∏
p|r

µf (pep(r))
(pep(r))2σ

P (pep(l), 2σ) +
µf (pep(r)+1)
(pep(r)+1)2σ

P (pep(l)+1, 2σ)

1 +
µf (p)
p2σ

P (p, 2σ) +
µf (p2)
p4σ

P (p2, 2σ)

=
1

D(2σ)
u(r, l, 2σ),

say. Similarly∑
v

µf (rv)
(rv)2σ

· 1
vs
P (lv, 2σ)

=
∏
p

(
1 +

µf (p)
p2σ+s

P (p, 2σ) +
µf (p2)
p4σ+2s

P (p2, 2σ)
)

×
∏
p|r

µf (pep(r))
(pep(r))2σ

P (pep(l), 2σ) +
µf (pep(r)+1)

(pep(r)+1)2σps
P (pep(l)+1, 2σ)

1 +
µf (p)
p2σ+s

P (p, 2σ) +
µf (p2)
p4σ+2s

P (p2, 2σ)

= G(s)v(r, l, 2σ, s),
say.

It is easily verified that, for <s > −1/2,

G(s) =
1

D(2σ + s)

∏
p

(
1 +O

(
1

p2(1+<s)

))
.
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We have, by Cauchy’s inequality,( ∑
v

λrv

(rv)2σ
P (lv, 2σ)

)2

�
∣∣∣∣ ∑

v

µf (rv)
(rv)2σ

P (lv, 2σ)
∣∣∣∣2 +

∫
Γ

∣∣∣∣(ξr
)s
ξs − 1
s2

∣∣∣∣
×

∣∣∣∣ ∑
v

µf (rv)
(rv)2σvs

P (lv, 2σ)
∣∣∣∣2 |ds|

log2 ξ
.

For r cubefree, r = r1r
2
2, µ(r1r2) 6= 0, we infer that∑

l|r

|µ(l)|
(
r

l

)2σ∣∣∣∣ ∑
v

µf (rv)
(rv)2σ

P (lv, 2σ)
∣∣∣∣2

�
∏
p|r

(
1 +

1
p3/4

)
1

D(2σ)2

( ∑
t|r1

a2
t

t2σ

(
r1
t

)−3)
r
2(k−1)−4σ
2 ,

∑
l|r

|µ(l)|
(
r

l

)2σ∣∣∣∣ ∑
v

µf (rv)
(rv)2σvs

P (lv, 2σ)
∣∣∣∣2

�
∏
p|r

(
1 +

1
p3/4

)
1

|D(2σ + s)|2

( ∑
t|r1

a2
t

t2σ

(
r1
t

)−3)
r
2(k−1)−4σ
2 .

From the zero-free region result for D(s) (see, for example, [17], Theo-
rem 5.1) and a standard argument (due to Landau, see [21], §3.9 and §3.11),
we have

D(s) 6= 0, 1/D(s) � log(|y|+ 3),

for s = x+ iy, x ≥ k − 2δ/ log(|y|+ 3). Note that∑
r≤ξ

a2
r

r2σ

∏
p|r

(
1 +

1
p3/4

)
=

∑
r≤ξ

a2
r

r2σ

∑
u|r

|µ(u)|
u3/4

=
∑
u≤ξ

|µ(u)|
u3/4+2σ

∑
r≤ξ/u

a2
ru

r2σ

�
∑

u

1
u3/4+2σ

( ∑
(r,u)=1

a2
r

r2σ

)( ∑
r|u∞

a2
ru

r2σ

)

� D(2σ)
∑

u

d2(u)
u3/4+2σ

∑
r|u∞

(ru)k−1d2(r)
r2σ

� D(2σ)
∑

u

d2(u)
u7/4

∑
r|u∞

d2(r)
r

� D(2σ).

Here we have used Deligne’s bound for the Hecke eigenvalues aru, but it
is clear that the weaker and more elementary bound ar � r(k−1)/2+1/4+ε

suffices for the same purpose. Hence
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∑
r1r2

2≤ξ, µ(r1r2) 6=0

d(r2)r
2(k−1)−4σ
2

∑
t|r1

a2
t

t2σ

∏
p|t

(
1+

1
p3/4

)(
r1
t

)−3∏
p| r1

t

(
1+

1
p3/4

)

�
∑
t≤ξ

a2
t

t2σ

∏
p|t

(
1 +

1
p3/4

) ∑
r≤ξ/t

d(r)
r3

∑
r2≤

√
ξ

d(r2)
r22

� D(2σ).

Thus,

D(2σ)
∑
r≤ξ

∑
l|r

|µ(l)|
(
r

l

)2σ∣∣∣∣ ∑
v

λrv

(rv)2σ
P (lv, 2σ)

∣∣∣∣2 � 1.

(Note that 2σ − k � 1/ log ξ.)
In case (b), ξ < r ≤ ξ2, we have∑
v

λrv

(rv)2σ
P (lv, 2σ) =

1
2πi

∫
(2)

(
ξ2

r

)s 1
s2

( ∑
v

µf (rv)
(rv)2σvs

P (lv, 2σ)
)

ds

log ξ
.

The treatment is the same except that the above integrand has a double
pole at s = 0. Using

∑
p|r log p/p� log log r, we can establish that

D(2σ)
∑

ξ<r≤ξ2

∑
l|r

|µ(l)|
(
r

l

)2σ∣∣∣∣ ∑
v

λrv

(rv)2σ
P (lv, 2σ)

∣∣∣∣2 � 1.

Hence S1 � T . Similarly, S2 � T . If we choose ψU (t/T ) to be the majorant
of the characteristic function of [T, 2T ] (here U � 1), then we have, with
ξ = T 1/72,

2T∫
T

|Lf (σ + it)|2|Mξ2(σ + it)|2 dt� T.

In particular, we have
Lemma 3.1. Let σ = k/2 +A/ log T . Then

2T∫
T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt� T.

We also have
Lemma 3.2.

2T∫
T

|Lf (k/2 + 1 + it)Mξ2(k/2 + 1 + it)− 1|2 dt� T 1−1/72.

P r o o f. Lemma 3.2 follows immediately from the equality (see [16])
T∫

0

∣∣∣ ∞∑
n=1

ann
it
∣∣∣2 dt =

∞∑
n=1

|an|2(T +O(n)).
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From Lemma 3.1, Lemma 3.2 and an easy modification of the classical
convexity theorem (see [21], §7.8), we deduce that

Theorem 3.3. We have
2T∫

T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt� T 1− 1
72 (σ−k/2),

uniformly for k/2 +A/ log T ≤ σ ≤ k/2 + 1.

Now we are in a position to prove our main theorem.

Theorem 3.4. We have

Nf (σ, T ) � T 1− 1
72 (σ−k/2) log T,

uniformly for k/2 ≤ σ ≤ (k + 1)/2.

First, we show the following proposition.

Proposition 3.5. We have
(k+1)/2∫

σ

Nf (σ′, T ) dσ′ � T 1− 1
72 (σ−k/2),

uniformly for k/2 ≤ σ ≤ (k + 1)/2.

P r o o f. It suffices to prove that
(k+1)/2∫

σ

(Nf (σ′, 2T )−Nf (σ′, T )) dσ′ � T 1− 1
72 (σ−k/2),

for k/2 +A/ log ξ ≤ σ ≤ (k + 1)/2.
Let Φ(s) = 1 − (Lf (s)Mξ2(s) − 1)2. The zeros of Lf (s) occur among

those of Φ(s), with at least the same multiplicities. By Littlewood’s lemma
concerning the number of zeros of an analytic function in a rectangle [22],
we have

(k+1)/2∫
σ

(Nf (σ′, 2T )−Nf (σ′, T )) dσ′

≤ 1
2π

2T∫
T

log |Φ(σ + it)| dt+
1
2π

∞∫
σ

argΦ(σ′ + 2iT ) dσ′

− 1
2π

∞∫
σ

argΦ(σ′ + iT ) dσ′.

In the range ((k + 1)/2 + 4,∞), we see that

argΦ(σ′ + it) = O(2−σ′).
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Hence this part of the integral is O(1). In the range (k/2, (k + 1)/2 + 4), it
follows from Jensen’s theorem [22] and a standard argument (see [19]) that

argΦ(σ′ + iT ) = O(log T ).

We deduce that
∞∫

σ

argΦ(σ′ + iT ) dσ′ � log T.

Finally, since log(1 + |x|) ≤ |x|,
2T∫

T

log |Φ(σ + it)| dt ≤
2T∫

T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt

= O(T 1− 1
72 (σ−k/2)).

This proves the proposition.

P r o o f o f T h e o r e m 3.4. It suffices to assume that σ−k/2 ≥ 1/ log T .
Thus,

Nf (σ, T ) ≤ log T
σ∫

σ−1/ log T

Nf (σ′, T ) dσ′

≤ log T
(k+1)/2∫

σ−1/ log T

Nf (σ′, T ) dσ′

� T 1− 1
72 (σ−k/2) log T.

Our proof is now complete.

4. Appendix. In this section, we will give a simple proof of Hafner’s
result which is used in Section 2 without appealing to the spectral theory
of the Laplacian acting on L2(Γ0(a, b)\H). Our approach is based upon
the delta-symbol method introduced by Duke–Friedlander–Iwaniec [5] and
does not require a discussion of exceptional eigenvalues for the congruence
subgroups. Instead we only need Weil’s bound for the Kloosterman sums.
Our result is quantitatively a little weaker than Hafner’s but is sufficient
for our application. Furthermore, our method can as well be applied to the
case when an is the Fourier coefficient of a Maass form so it appears to be
of independent interest.

Let an be the nth Fourier coefficient of a (holomorphic) Hecke eigenform
of weight k. We consider the sum

(7)
∑

mµ−nν=l, x≤n≤2x

anam, µ, ν, l > 0, x ≥ 10.
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Let g(ξ) be a smooth function on R1 with compact support such that
0 ≤ g(ξ) ≤ 1; g(ξ) = 1 if x ≤ ξ ≤ 2x; supp(g(ξ)) ⊂ [x− x1−θ, 2x+ x1−θ] for
some 0 < θ < 1; and g(p)(ξ) �p (x1−θ)−p, p ≥ 0. Then we have

(8)
∑

mµ−nν=l, x≤n≤2x

anam

=
∑

mµ−nν=l

anamg(n) +O

((
xν + l

µ

)(k−1)/2+ε

x(k−1)/2+εx1−θ

)
.

Let h(ξ) be another smooth function with compact support such that
0 ≤ h(ξ) ≤ 1; h(ξ) = 1, if

(
3
4xν + l

)
/µ ≤ ξ ≤

(
9
4xν + l

)
/µ; supp(h(ξ)) ⊂[(

1
2xν + l

)
/µ,

(
5
2xµ + l

)
/ν

]
; and h(p)(ξ) �p (xν/µ)−p, p ≥ 0. Clearly we

have

(9)
∑

mµ−nν=l

anamg(n) =
∑

mµ−nν=l

anamg(n)h(m).

Next we will recall the delta-symbol method introduced in [5].
Define

(10) δ(n) =
{

1 if n = 0,
0 if n 6= 0.

Let ω(t) be an even function on R1 with ω(0) = 0 and compactly supported
such that

∑∞
k=1 ω(k) = 1. Let

δk(n) = ω(k)− ω

(
n

k

)
.

Then clearly δ(n) =
∑

k|n δk(n). Thus

δ(n) =
∑

k

k−1
∑

h mod k

e

(
hn

k

)
δk(n).

Put
∆c(n) =

∑
r

r−1δcr(n).

Writing r = (h, k), a = h/r, c = k/r, we have

(11) δ(n) =
∑

c

c−1
∑∗

a mod c

e

(
an

c

)
∆c(n).

We will apply the above identity to integers |n| < N/2, say, with ω(t) sup-
ported on K/2 < |t| < K, and whose derivatives satisfy ω(j)(t) � K−j−1.
Now, δk(n) vanishes except for 1 ≤ k < max(K,N/K) = K by choosing
K = N1/2. Hence ∆c(n) vanishes except for 1 ≤ c < K and ∆c(n) �
K−1 logK. Let ∆1 = xν/µ, ∆2 = x1−θ, ∆ = min(∆1,∆2). We infer that,
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by (10) and (11),

S =
∑

mµ−nν=l

anamg(n)h(m)

=
∑
m,n

anamg(n)h(m)δ(mµ− nν − l) =
∑

c

c−1Sc,

where

Sc =
∑∗

a mod c

∑
m,n

amang(n)h(m)e
(
a(mµ− nν − l)

c

)
∆c(mµ− nν − l)(12)

=
∑∗

a mod c

e

(
−al
c

) ∑
m,n

bmbne

(
a

c
(mµ− nν)

)
F (m,n),

with bm = amm
−(k−1)/2 and

F (m,n) = (mn)(k−1)/2h(m)g(n)∆c(µm− νn− l).

Define γ = max(µ, ν), K2 = N = 8xγl. It is easy to see that

(13)
d

dn
∆c(n)

{� 1/K|n| if |n| � Kc,
= 0 otherwise.

We have, for i+ j ≥ 1,

(14)
∂i+j

∂ξi∂ηj
F (ξ, η)

�
(
xν + l

µ

)(k−1)/2

x(k−1)/2K−1

(
∆c

K

)−i−j+1(
µ+ ν

|µξ − νη − l|
+

1
∆

)
if |µξ−νη− l| � Kc, and without the term (µ+ν)/|µξ−νη− l| if otherwise.
We need the following Poisson-type formula [4]:

Lemma 4.1. Let F be a smooth and compactly supported function on R+.
For any integers c ≥ 1 and (a, c) = 1 we have∑

m

bme

(
am

c

)
F (m) =

∑
r

bre

(
−ar
c

)
F̆ (r),

where aa ≡ 1 (mod c) and F̆ (r) is the Hankel-type transform

F̆ (y) = 2πikc−1
∞∫

0

F (x)Jk−1

(
4π
c

√
xy

)
dx,

where Jν(z) is the usual Bessel function.

Applying Lemma 4.1 in each variable m,n in (12), we deduce that

(15) Sc =
∑∗

a mod c

e

(
al

c

) ∑
r1,r2

br1br2e

(
aµ1

c1
r1 −

aν1

c2
r2

)
F̆ (r1, r2),
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where
µ1 =

µ

(µ, c)
, c1 =

c

(µ, c)
, ν1 =

ν

(ν, c)
, c2 =

c

(ν, c)
,

and
(16) F̆ (r1, r2)

=
4π2

c1c2

∞∫
0

∞∫
0

F (x1, x2)Jk−1

(
4π
c1

√
x1r1

)
Jk−1

(
4π
c2

√
x2r2

)
dx1 dx2.

By the recurrence formula
d

dz
(zνJν(z)) = zνJν−1(z)

and the bound Jν(z) � (1 + z)−1/2, we obtain, by partial integration twice
in each variable in (16) and using (14),∑

r1,r2

br1br2 |F̆ (r1, r2)| � K(lγxθ+ε)9/4

(
xν + l

µ

)(k−1)/2

x(k−1)/2.

The sum over a in (15) is a Kloosterman sum S(l, ∗, c) to which we apply
Weil’s bound. Thus, we infer that

Sc � (l, c)1/2c1/2τ(c)(xlγ)1/2(γlxθ+ε)9/4

(
xν + l

µ

)(k−1)/2

x(k−1)/2.

Hence

S � (xlγ)3/4(lγxθ+ε)9/4

(
xν + l

µ

)(k−1)/2

x(k−1)/2

�
(
xν + l

µ

)(k−1)/2

x(k−1)/2x3/4+9θ/4+εγ3l3.

We conclude that∑
n≤x

ana(nν+l)/µ �
(
xν + l

µ

)(k−1)/2

x(k−1)/2(l3x3/4+9θ/4+εγ3 + x1−θ+ε)

�
(
xν + l

µ

)(k−1)/2

x(k−1)/2γ3l3x13/14,

on taking θ = 1/13. Finally, since for <s > k,

Dµ,ν(s, l) :=
∞∑

n=1

ana(nν+l)/µ

(nν + l/2)s
=

∞∫
1/2

1
(xν + l/2)s

d
( ∑

n≤x

ana(nν+l)/µ

)

= sν
∞∫

1/2

∑
n≤x ana(nν+l)/µ

(xν + l/2)s+1
dx,

we obtain
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Theorem 4.2. Dµ,ν(s, l) can be analytically continued to <s > k−1/14,
and for <s > k − 1/14, s = σ + it, we have

Dµ,ν(s, l) � l3|s|
(µν)(k−1)/2

(max(µ, ν))3
1

σ − (k − 1/14)
.
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