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A note on the diophantine equation z? + b¥ = ¢?
by

MAOHUA LE (Zhanjiang)

1. Introduction. Let Z, N, Q be the sets of integers, positive integers
and rational numbers respectively. Let (a, b, c) be a primitive Pythagorean
triple such that

(1) a> +b*=c* a,bceN, ged(a,b,c) =1, 2]a.
Then we have
(2) a=2st, b=s>—t> c¢=s>+1t%

where s,t € N satisfy ged(s,t) = 1, s > ¢ and 2| st. Recently, Terai [5]
conjectured that the equation

has only the solution (z,y,z) = (a,2,2). Simultaneously, he proved that if
b=1 (mod4), b +1 = 2¢, b, ¢ are odd primes, ¢ splits in the imaginary
quadratic field K = Q(v/—b) and the order d of a prime ideal divisor of [c]
in K satisfies either d =1 or 2|d, then (3) has only the solution (z,y,z) =
(a,2,2). In this note we prove the following general result.

THEOREM. If b > 8-10% b= +5 (mod 8) and c is a prime power, then
(3) has only the solution (x,y,z) = (a,2,2).

2. Preliminaries. For any k € N with £ > 1 and 41k, let

V(k) =]+ x(),

qlk

where ¢ runs over distinct prime factor of k&,
0 if ¢ = 2,
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LEMMA 1 ([1, Theorems 6-7-1 and 6-7-4]). The equation
(4) Xi+Y:=k X1,Y1€7Z, ged(Xy,Y7) =1,
has exactly 4V (k) solutions (X1,Y7).

LEMMA 2 ([4, Chapter 15]). If 2tk, then all solutions (X,Y,Z) of the
equation

X 4+Y?=k, XY, Z€Z, ged(X,Y)=1, Z>0,

are given by
ZeN, X+4YV-1=X1+V1iv-1)? or Y4+XV-1=(X+Y1V-1)?,
where (X1,Y1) runs over all solutions of (4).

Let a be a non-zero algebraic number with the defining polynomial
apz” +a1z" 1+ ... +a, = ap(z — 010) ... (2 — o.a) € Z[z], where ag > 0,
o1q,...,0.c are all the conjugates of a. Then

1

r

T
<Log ap + ZLog max(1, \aioz\))

i=1

h(a)

is called Weil’s height of a.

LEMMA 3 ([3, Section 10]). Let log o be any non-zero determination of
the logarithm of a. If r = 2 and A = bymy/—1/by — loga # 0 for some
b1,bo € Z with b1by 75 0, then

|A| > exp(—20600A(1.35 + Log B + Log Log 2B)?),
where A = max(1/2,h(«)), B = max(4,|b1],|b2]).
LEMMA 4. Let XY € Z be such that XY # 0, ged(X,Y) = 1 and
2| XY. Further, lete =X +Yv—1 ande =X —Y/—1. If

()

for some n € N, then n < 8 -106.

g —g"

<n

eE—¢€
Proof. By much the same argument as in the proof of [2, Lemma 10],
if (5) holds, then we have
nlog £ tmyv —1|,
€

where ¢ € Z with [t| < n. Let k = X? +Y? and A = nlog(g/e) — tmy/—1.
Then k > 5 and /¢ satisfies

(6) Logn+ Log|e —2| > Log|e™ —&"| > nLog |¢| 4+ Log

N\ 2 —
k<Z) — (X2 - Yz)g +hk=0, ged(k,2(X2—Y?)=1.
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This implies that £/ is not a root of unity and h(z/e) = Log v'k. Therefore,
we have A # 0. Notice that |¢| = V&, |e — & < 2V/k, and the degree of /¢
is equal to 2. On applying Lemma 3 to (6), we get

Log 2V'k + 20600(Log Vk)(1.35 + Log n + Log Log 2n)? > n Log Vk,

whence we deduce that n < 8- 10°. The lemma is proved.

3. Proof of Theorem. Let (z,y,2) be a solution of (3). If 21y, then
from (3) we get (—b/c) = 1, where (-/-) is Jacobi’s symbol. Since ¢ = 1
(mod 4) and ¢ = 2s% (mod b) by (2), if b= 45 (mod 8), then

c c b b b

a contradiction. Similarly, we see from (¢/b) = —1 that (3) has no solution
(z,y,2) with 2|y and 2¢1z.

If 2|y and 2| 2, then (X,Y, Z) = (x,b%/2, 2/2) is a solution of the equa-
tion

X24Y?=¢*, XY, Z€Z, ged(X,Y)=1, Z>0.

Since c is a prime power and ¢? = a® + b, by Lemmas 1 and 2, we obtain
the following four cases:

2+ b2 = M(a+ AbV=1)*? or A (b+ Asav/—1)*/%,
W2 4 av/=1 = M\(a+ XbV=1)"2 or A (b+ daav/—1)*/?,
where )\1,)\2 € {—1, 1}

When z = 2, we see from (7) that z = a and y = 2.

When z > 2 and 2|z/2, (7) is impossible, since ¢ > 1, b > 1 and
ged(a, b) = 1.
When z > 2 and 21z/2, we see from (7) that

(8) x4 0Y2V/=1 = A (a + AabV/—1)*/2.

So we have

0w (e (P

bt (—1)ED Cg) (—b2)(22)/4>

(x-2)/4
— (—1)(z—2)/4 _1Vé 2[2Y 9 2/2—2i—1
=(—1) A Y (-1 5 )b .
=0
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If y = 2, then from (9) we get
(2-2)/4 22 /
1 1= 1) 2ip2/2-2i-1
(10) > () ,

since a? =0 (mod 4) and b> =1 (mod 4). Let 2% || a, 2° || 6% — 1, 27 || (z —
2)/4 and 2% || 2i for any i € N. Notice that 2| st if b = £5 (mod 8) by (2).
We have a = 2 and = 3. Hence,

(11) 237 || p*/ 2 — 1,

On the other hand, since

log 2¢
log 2

0; <

<2i—-1<22i—-1), i€eN,

we have

2/2\ o az(z2—2\[z/2-2\ a*! 4

12 b= — - = d 24+

(12) <2i>a 2( 2 )(22'—2)2@'(21'—1) 0 (mo )
i=1,...,(z—2)/4.

Therefore, we see from (11) and (12) that (10) is impossible.

If y > 2, then 2/2 = 0 (mod b) by (9). Let p be a prime factor of b.
Further, let p® || b, p? || 2/2 and pYi || 2i + 1 for any i € N. Notice that 21b,

p > 3 and
) )
o) o
logp
We have
2/2 \ 9 2(z/2-1\ b* 511
(13) (2i+1>b 2( 2 )2i+1 0 (mod p70),

i=1,...,(z—2)/4.
On applying (13) together with (9), we get

(14) ﬁ:a(y_g.

2

Let p run over distinct prime factors of b. We see from (14) that
(15) 2/2=0 (mod b¥/271).

Recalling that y > 2, we deduce from (15) that

(16) z/2 > b/ >,

Let ¢ = a+ by/—1 and € = a — by/—1. From (8) and (9), we get
(17) Sl PR
€E—F
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By (16), on applying Lemma 4 to (17), we obtain 2/2 < 8- 10%. Thus,
by (16), we deduce b < 8 - 105. The Theorem is proved.
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