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1. Introduction. Let {um}m∈Z be a linear recurrence sequence, i.e., a
sequence satisfying a relation

(1.1) um+k = νk−1um+k−1 + . . .+ ν1um+1 + ν0um (m ∈ Z)

with k > 0 and given coefficients νi with ν0 6= 0. Equations

(1.2) um = un

in unknowns (m,n) ∈ Z2 have been studied in [2] and [7]. It was shown
there that for nondegenerate {um}, (1.2) has only finitely many solutions
m > n ≥ 0. More generally, the equation

(1.3) um = vn,

where {um} and {vn} are given recurrence sequences, was treated by Laurent
[3] and the current authors [11]. They give a complete qualitative description
of the set of solutions (m,n) ∈ Z2 of (1.3).

It is the purpose of the present paper to derive quantitative results on
equations (1.3). Let

(1.4) P (z) = zk − νk−1z
k−1 − . . .− ν0 =

r∏

i=1

(z − αi)σi

with distinct roots α1, . . . , αr be the companion polynomial of relation (1.1).
It is well known that there exist polynomials f1, . . . , fr which are not all zero
and have deg fi ≤ σi − 1 such that

(1.5) um =
r∑

i=1

fi(m)αmi .

Notice that in view of (1.4) we have in particular

(1.6) deg fi < k (i = 1, . . . , r).

[1]
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The sequence {um} is called nondegenerate if none of the quotients αi/αj
for i 6= j is a root of unity.

To unify the notation in the sequel, we will consider instead of (1.5) the
function

(1.7) F (x) =
r∑

i=0

fi(x)αxi

of polynomial–exponential type, where α0 is a root of unity, where αi/αj
for i 6= j is not a root of unity, and where the fi are polynomials with

(1.8) deg fi < k (0 ≤ i ≤ r)
and with

(1.9) fi 6= 0 for i = 1, . . . , r.

If the companion polynomial (1.4) of {um} does not have a zero which is a
root of unity, then we put f0(x) ≡ 0 and α0 = 1.

Similarly, we write vm = G(m) with

(1.10) G(y) =
r′∑

i=0

gi(y)βyi ,

where again we suppose that the gi are polynomials with

deg gi < k (i = 0, . . . , r′),(1.11)

gi 6= 0 for i = 1, . . . , r′(1.12)

and where we assume, moreover, that βi 6= 0, that β0 is a root of unity, and
βi/βj for i 6= j is not a root of unity.

We will suppose throughout that both r, r′ ≥ 1. Thus, equation (1.3)
becomes

(1.13) F (x) = G(y),

to be solved in integers x, y.
In this paper we will study (1.13) assuming that F and G are defined

over the algebraic numbers. So, let K be a number field of degree

(1.14) [K : Q] = d

containing α0, . . . , αr, β0, . . . , βr′ . We assume, moreover, that the leading
coefficients and the zeros of the polynomials fi and gi are contained in K.

We recall the following definitions from [11].

Definition. F and G are called related if

(i) r = r′,
(ii) either f0 ≡ g0 ≡ 0 or f0g0 6≡ 0,
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(iii) there is a reordering of β1, . . . , βr such that

(1.15) αpi = βqi (i = 1, . . . , r)

with certain nonzero integers p, q.

Now, suppose that F and G are related with (1.15) and that r is even. F
and G are called doubly related if after reordering we have both (1.15) and

(1.16) αp
′
i = βq

′
i+1, αp

′
i+1 = βq

′
i for 1 ≤ i < r, i odd,

with certain nonzero integers p′, q′.
In the sequel, when F and G are related or doubly related, we will

assume that the reorderings guaranteeing (1.15), or (1.15) and (1.16), have
been applied.

It was shown in [11] that the related pair F,G is doubly related if and
only if

(1.17) αiαi+1 and βiβi+1 for 0 ≤ i < r, i odd, are roots of unity.

Moreover, if p, q and p′, q′ are as in (1.15) and (1.16), then p/q = −p′/q′.
There cannot be a third permutation with a property like (1.15) or (1.16).

A pair F,G that is related but not doubly related is called simply related.
Let us mention in this context that relatedness as well as double relatedness,
in view of Lemma 6.3 below, are decidable properties.

We denote by M(K) the set of absolute values of K and by M∞(K)
the subset of archimedean absolute values in M(K). Let S be the subset
of M(K) consisting of M∞(K) and those absolute values ‖ ‖v in M(K) for
which ‖αi‖v 6= 1 or ‖βj‖v 6= 1 for some i with 1 ≤ i ≤ r or some j with
1 ≤ j ≤ r′. It is clear that the cardinality s of S is finite and has

(1.18) s ≤ d+ ω,

where ω denotes the number of distinct prime ideals occurring in the de-
composition of the fractional ideals (αi), (βj) in K.

Theorem 1. Suppose that F and G are not related. Then equation (1.13)
has not more than

(1.19) 2s
7245d!(k2(r+r′+2))!

solutions (x, y) ∈ Z2.

Now, suppose that F and G are related. In [11] (Proposition 1) we proved
the following:

When F and G are simply related , then all but finitely many solutions
of (1.13) satisfy the system of equations

(1.20) fi(x)αxi = gi(y)βyi (i = 0, . . . , r).
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When F and G are doubly related , then all but finitely many solutions
of (1.13) satisfy either (1.20) or the system

fi(x)αxi = gi+1(y)βyi+1, fi+1(x)αxi+1 = gi(y)βyi (1 ≤ i < r, i odd),(1.21a)

f0(x)αx0 = g0(y)βy0 .(1.21b)

If F and G are simply related, we write S for the set of solutions (x, y) ∈
Z2 of (1.13) that do not satisfy the system (1.20).

If F and G are doubly related, we let S be the set of solutions of (1.13)
which satisfy neither (1.20) nor (1.21a,b).

Theorem 2. Suppose that F and G are related. Then S has cardinality

(1.22) |S| ≤ 2s
7245d!(2k2(r+1))!

.

R e m a r k. If in (1.7) and (1.10), f0 = g0 = 0, then in (1.22), r + 1 may
be replaced by r. The significant feature in Theorems 1 and 2 is that the
bounds (1.19) and (1.22) are uniform, as they involve only the degree d of
the field K, the bound k for the degrees of the polynomials fi and gj , the
numbers r and r′ of characteristic roots and the number s of absolute values
in S. No particular care was taken in optimizing the actual shape of the
bounds; we rather tried to avoid painstaking estimates.

For F and G related, we still want some information about the solutions
(x, y) ∈ Z2 of either (1.20) or of (1.20) and (1.21a,b).

Again following [11], we call the ordered pair F,G exceptional if

(i) F and G are simply related,
(ii) there is a natural number N > 1 which is an integral power of each

αi and each βi with 1 ≤ i ≤ r,
(iii) either |αi| > 1 for 1 ≤ i ≤ r, or |αi| < 1 for 1 ≤ i ≤ r,
(iv) f0 and g0 are constant,
(v) each gi is constant and for 1 ≤ i ≤ r, fi(x) = ai(x−A)li where A is

rational and li > 0.

We remark that by Lemma 6.3 below, exceptionality is decidable. Notice
that if F,G is exceptional, then by (1.15) either |βi| > 1 for 1 ≤ i ≤ r or
|βi| < 1 for 1 ≤ i ≤ r. Thus, in view of (1.17), if the pair F,G is doubly
related neither F,G nor G,F is exceptional.

If F and G are related, then as α0 and β0 are roots of unity, we may
extend (1.15) also to i = 0 (by replacing p, q by suitable multiples, if neces-
sary). So we will suppose in the sequel that we have

(1.23) αpi = βqi for i = 0, . . . , r

with nonzero integers p, q. And in fact, we will assume that p > 0 in (1.23),
and p is chosen minimal with this property.
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Similarly, when F and G are doubly related we will assume instead of
(1.16) that

(1.24) αp
′
i = βq

′
i+1, αp

′
i+1 = βq

′
i for i = 1, . . . , r, i odd,

and αp
′

0 = βq
′

0 ,

with nonzero integers p′, q′, where again p′ > 0, p′ minimal.
The systems (1.20) or (1.21a,b) are of exactly the same type. Thus it

suffices to deal with (1.20).
Suppose that the polynomials fi in (1.7) have leading coefficients ai and

zeros A(i)
1 , . . . , A

(i)
li

(i = 1, . . . , r), and similarly define bj and B
(j)
1 , . . . , B

(j)
mj

with respect to the polynomials gj in (1.10). Write

(1.25) H(F ) = max{h(ai), h(αi), h(A(i)
j ) over 0 ≤ i ≤ r, 1 ≤ j ≤ li},

where h is the absolute height whose definition will be detailed in Section 5.
Similarly define H(G) with respect to G.

Let H be a quantity having

H ≥ max{3, H(F ), H(G)}.
We write c(d, k,H) for an unspecified but effective constant that depends
only upon d, k and H. So c(d, k,H) at different instances may have different
values.

In Sections 8–11 we will detail some arguments that may give the reader
an idea about explicit versions of these constants.

Theorem 3. Suppose that F and G are related , but neither F,G nor
G,F is exceptional. Then it is decidable whether (1.20) admits infinitely
many solutions (x, y) ∈ Z2 or not.

(a) If (1.20) has only finitely many solutions, then all but at most

(1.26) M1 := 2s
72540d!(2k)!

solutions satisfy

(1.27) max(|x|, |y|) ≤ c(d, k,H),

where c(d, k,H) is effectively computable.
(b) If (1.20) has infinitely many solutions, there is a unique linear one-

parameter family of solutions

(1.28) x(t) = pt+ p′, y(t) = qt+ q′ (t ∈ Z)

with 0 ≤ p′ < p such that all but at most M1 solutions lie in this family or
satisfy (1.27).

The family (1.28) is effectively computable.
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The point of the theorem is that the solutions with (1.27) as well as the
family (1.28) may be effectively computed, while on the other hand M1 is
independent of H.

R e m a r k. The family (1.28) occurs if and only if we have the polynomial
identities

(1.29) fi(pX + p′)αp
′
i ≡ gi(qX + q′)βq

′
i (0 ≤ i ≤ r).

Theorem 4. Suppose that the pair F,G is exceptional. Then it is decid-
able whether (1.20) admits infinitely many solutions (x, y) ∈ Z2 or not.

(a) If (1.20) has only finitely many solutions, then all but at most

(1.30) M2 := (r − 1)221080s7

solutions satisfy

(1.31) max(|x|, |y|) ≤ c(d, k,H).

(b) If (1.20) has infinitely many solutions, then there is a finite number
of one-parameter exponential families of solutions of the type

(1.32) xj(t) = pEjR
t +A, yj(t) = qEjR

t + Ft+Gj (t ∈ Z, t ≥ 0)

with 1 ≤ j ≤ c(d, k, r,H) such that all but at most M2 solutions lie in
one of these families or satisfy (1.31). The parameters p, q, Ej , R,A, F,Gj
determining the families are effectively computable. Moreover , in (1.32), R
is an integral power of each α1, . . . , αr and F is a nonzero integer that does
not depend upon the particular family.

Theorems 1–4 imply in particular that for equations um = vn we have
an algorithm that allows us to determine effectively all solutions, except
possibly a finite set whose cardinality is uniformly bounded.

A particular instance of our results concerns equations um = un or more
generally

(1.33) aum = bun

with a, b ∈ K∗, where {um}m∈Z is a nondegenerate linear recurrence se-
quence as in (1.1). We suppose that relation (1.1) is minimal, i.e., that um
does not satisfy a relation of smaller order. Moreover, we assume that k > 1
and that at least one of the characteristic roots of the polynomial in (1.4) is
not a root of unity. Using the representation (1.5), we may write um = F (m)
with F as in (1.7), and here by (1.4), if f0 ≡ 0 then r ≤ k and otherwise
r + 1 ≤ k. We suppose that {um}, i.e., F (m), is defined over K. It is clear
that F is related with itself. We call {um} symmetric if F is doubly related
with itself.

The relations (1.15) or (1.23) now simply reduce to α1
i = α1

i (i =
0, . . . , r), and if F is symmetric, then since in (1.15), (1.16) we have p/q =
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−p′/q′, the relations (1.16) or (1.24) become

(1.34) αwi = α−wi+1 for 1 ≤ i < r, i odd,

where w > 0. In fact, it follows from Lemma 6.1 below that here the minimal
w has

(1.35) 0 < w ≤ 2d2.

Let H1 = max{3,H(F )}.
Corollary 1. (i) Suppose that {um} is not symmetric. Then all but at

most

(1.36) M3 := 2s
7246d!(2k3)!

solutions (m,n) ∈ Z2 of the equation

(1.37) um = un

with m 6= n satisfy

(1.38) max{|m|, |n|} ≤ c(d, k,H1),

where c(d, k,H1) is effective.
(ii) If {um} is symmetric, then in addition to solutions as in (i), there

may be a one-parameter family of solutions

(1.39) m(t) = wt+ w′, n(t) = −wt+ w′′ (t ∈ Z)

where w is an integer with 0 < w ≤ 2d2, and w′ has 0 ≤ w′ < w. The family
(1.39) is effectively computable.

We next treat the slightly more general equation

(1.40) aum = bun.

Let H2 = max{3,H(F ), h(b/a)}.
Corollary 2. (i) Suppose that b/a 6= 1 is a root of unity. Then, apart

from at most

(1.41) M4 := 2s
7246d!(2k3)!

solutions, and apart from a possible one-parameter family as in (1.39), the
solutions (m,n) ∈ Z2 of (1.40) satisfy

(1.42) max{|m|, |n|} ≤ c(d, k,H2).

Again the family is effectively computable and the constant in (1.42) is ef-
fective. The family (1.39) may only occur if {um} is symmetric.

(ii) Suppose that a/b is not a root of unity. Then all but at most M4

solutions of (1.40) have (1.42).

A qualitative version of Corollaries 1 and 2 was proved by Laurent [4]
(Théorème 2).
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2. Polynomial–exponential equations. We consider equations

(2.1)
h∑

i=1

Pi(x)αx
i = 0

in variables x = (x1, . . . , xN ) ∈ ZN , where the Pi are nonzero polynomials
with coefficients in K of total degree ≤ δ, and where αx

i = αx1
i1 . . . α

xN
iN .

Here we suppose that the αij are elements in K∗. The letter S will indicate
a finite set S ⊂M(K) which containsM∞(K) as well as the nonarchimedean
absolute values v of K for which |αij |v 6= 1 for some pair i, j (1 ≤ i ≤ h,
1 ≤ j ≤ N). We set s = cardS.

When P is a partition of {1, . . . , h} and π is a subset of {1, . . . , h}, we
write π ∈ P if π is among the subsets belonging to P. Consider the splitting
of equation (2.1) into the system

(2.1P)
∑

i∈π
Pi(x)αx

i = 0 (π ∈ P).

We denote by S(P) the set of solutions x ∈ ZN of (2.1P) which do not satisfy
a system (2.1Q) for a proper refinement Q of P. It is clear that any solution
x ∈ ZN of (2.1) is contained in some set S(P) for a suitable P (which is
not necessarily unique). Thus, to give an upper bound for the number of
solutions of (2.1), it suffices to give an upper bound for the cardinalities of
the sets S(P) where P runs through the partitions of {1, . . . , h}.

Given P and elements i, j ∈ {1, . . . , h}, we write i P∼ j if i, j belong to
the same subset π ∈ P. We denote by G(P) the subgroup of ZN consisting
of points x having

(2.2) αx
i = αx

j for every i, j with i
P∼ j.

The following theorem is the main result of Schlickewei and Schmidt [10].

Theorem A. Suppose that G(P) = {0}. Then

(2.3) |S(P)| < 220N4+Ns7243d!(Dh)!
,

where D =
(
N+δ
N

)
.

We mention that Theorem A is a consequence of the Subspace Theorem
in diophantine approximation.

3. Groups G(P). To prove our theorems we will apply Theorem A of
Section 2.

It is clear that equation (1.13) is a special instance of (2.1), where in
view of (1.7) and (1.10) we have h = r + r′ + 2, N = 2 and δ < k. We will
symbolize the r + r′ + 2 summands of equation (1.13) as

0x, 1x, . . . , rx, 0y, 1y, . . . , r′y.
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Given a partition P of {0x, . . . , rx, 0y, . . . , r′y}, the relations (2.2) are

αxi = αxj for all i, j with ix
P∼ jx,(3.1)

βyi = βyj for all i, j with iy
P∼ jy,(3.2)

αxi = βyj for all i, j with ix
P∼ jy.(3.3)

We say that P contains an essential singleton if P contains a one-element
subset {ix} or {iy} and if, moreover, in the case {ix} = {0x} or {iy} = {0y}
we have f0(x) 6≡ 0 or g0(x) 6≡ 0, respectively.

Lemma 3.1. Suppose that P contains an essential singleton. Then

(3.4) |S(P)| ≤ 2s
7244d!(k(r+r′+2))!

.

P r o o f. Suppose without loss of generality that {iy} ∈ P. Then (1.13P)
contains the equation gi(y)βyi = 0. As gi is a nonzero polynomial of degree
≤ k, this equation has not more than k solutions, say y1, . . . , yk ∈ Z. Given
y, we write G(y) = c and equation (1.13) becomes

(3.5) f0(x)αx0 + f1(x)αx1 + . . .+ fr(x)αxr − c · 1x = 0.

Consider partitions Q of the set {0, 1, . . . , r, r + 1}, where r + 1 symbolizes
the summand −c · 1x in (3.5).

Either , Q contains a singleton i with 1 ≤ i ≤ r. Then fi(x)αxi = 0, and
there are not more than k solutions x ∈ Z. Consequently, in this case

(3.6) |S(P)| ≤ k2.

Or , for each i (1 ≤ i ≤ r) there exists j with 0 ≤ j ≤ r + 1 and j 6= i
such that i ∼ j. But then G(Q) is contained in the set of x ∈ Z having

(3.7) αxi = αxj .

As we assume that F (x) is nondegenerate, (3.7) has only the trivial solution
x = 0. Hence G(Q) = {0}. Thus we may apply Theorem A to (3.5), and
consequently, (3.5Q) has not more than

(3.8) 220+s7243d!(k(r+2))!

solutions.
Allowing a factor k for the number of possible values y and a factor

2(r+2)2
for the number of possible partitions Q we may conclude from (3.8)

that

(3.9) |S(P)| ≤ k · 2(r+2)2 · 220+s7243d!(k(r+2))! ≤ 2s
7244d!(k(r+r′+2))!

.

It is clear that we obtain the same estimate if P contains an essential sin-
gleton {ix}, and in view of (3.6) the lemma follows.



10 H. P. Schlickewei and W. M. Schmidt

Lemma 3.2. Let P be a partition of {0x, . . . , rx, 0y, . . . , r′y} with G(P) =
{0}. Then

(3.10) |S(P)| ≤ 2s
7244d!(k2(r+r′+2))!

.

P r o o f. We apply Theorem A with h = r + r′ + 2, N = 2 and δ < k to
obtain, from (2.3),

|S(P)| < 2320+2s7243d!(k2(r+r′+2))!
< 2s

7244d!(k2(r+r′+2))!
.

Lemma 3.3. Suppose that F and G are not related. Let P be a partition of
{0x, 1x, . . . , rx, 0y, 1y, . . . , r′y}. Then either P contains an essential singleton
or G(P) = {(0, 0)}.

P r o o f. See Laurent [3], Lemme 2, and [11], §5.

Lemma 3.4. Suppose that F and G are related and f0(x)g0(x) 6≡ 0. Let P
be a partition of {0x, . . . , rx, 0y, . . . , ry} that does not contain an essential
singleton and such that G(P) 6= {(0, 0)}.

(i) If F and G are simply related , then

(3.11) P = {0x, 0y}, {1x, 1y}, . . . , {rx, ry}.
(ii) If F and G are doubly related , then either P is as in (3.11) or

(3.12) P = {0x, 0y}, {1x, 2y}, {2x, 1y}, . . . , {(r − 1)x, ry}, {rx, (r − 1)y}.
P r o o f. See [3], Lemme 2, and [11], §5.

4. Proof of Theorems 1 and 2. As for Theorem 1, in view of Lem-
ma 3.3 we have only partitions P of {0x, . . . , rx, 0y, . . . , r′y} that haveG(P) =
{(0, 0)} or contain an essential singleton. In Theorem 2 the situation is
the same by the definition of S. Therefore, we may apply Lemmata 3.1
and 3.2. Comparing (3.4) and (3.10) we see that for any partition P under
consideration we have

|S(P)| ≤ 2s
7244d!(k2(r+r′+2))!

.

As the number of partitions of {0x, . . . , rx, 0y, . . . , r′y} to be considered does
not exceed 22(r+r′+2), we get

(4.1) |S| ≤ 2s
7245d!(k2(r+r′+2))!

,

and Theorem 1 follows. If F and G are related, then r = r′ and hence (4.1)
implies Theorem 2 as well.

5. Heights. Recall that K is a number field of degree d. We denote
by M(K) an indexing set for the absolute values of K. Thus given v ∈
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M(K), | |v is an extension of either the standard absolute value on Q or of
a p-adic absolute value. Moreover, for α ∈ K and v ∈M(K) we define

‖α‖v = |α|dv/dv ,

where dv denotes the local degree. Given an element α ∈ K∗, we put

(5.1) h(α) =
∏

v∈M(K)

max{1, ‖α‖v}.

If α = (α1, . . . , αn) is a vector in Kn, we define ‖α‖v = max{‖α1‖v, . . .
. . . , ‖αn‖v} and put

(5.2) H(α) =
∏

v∈M(K)

‖α‖v.

Thus, for α ∈ K∗ we have h(α) = H(1, α). Given a subset S of M(K), we
put

(5.3) HS(α) =
∏

v∈S
‖α‖v.

Lemma 5.1. Given α1, . . . , αl ∈ K∗ we have

h(α1 . . . αl) ≤ h(α1) . . . h(αl),(5.4)

h(α1 + . . .+ αl) ≤ lh(α1) . . . h(αl).(5.5)

Moreover , for α ∈ K∗ let C be a denominator of α, i.e., a natural number
such that Cα is an algebraic integer. Then C may be chosen such that

(5.6) h(C) ≤ h(α)d.

This is well known. A proof may be found, e.g., in Schmidt [12].

Lemma 5.2 (Dobrowolski [1]). Suppose that A ∈ K∗ is not a root of
unity. Then

(5.7) h(A) > 1 +
1

20d3 .

Lemma 5.3. Let x′ and y′ be integers. Let A′ and B′ be elements in K∗

such that

(5.8) x′ − y′ −A′ +B′ 6= 0.

Suppose that H ′ is a quantity with

(5.9) H ′ ≥ max{h(A′), h(B′)}.
Suppose moreover that

(5.10) max{|x′|, |y′|} ≥ 16H ′d+3.

Then

(5.11) H((x′ −A′, y′ −B′, x′ − y′ −A′ +B′)) ≥ max{|x′|, |y′|}1/2
max{1, |x′ − y′|} .
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P r o o f. We may assume that |x′| ≥ |y′| and get by (5.2), (5.8),

H((x′ −A′, y′ −B′, x′ − y′ −A′ +B′))

=
∏

v∈M(K)

max{‖x′ −A′‖v, ‖y′ −B′‖v, ‖x′ − y′ −A′ +B′‖v}

≥
∏

v|∞
‖x′ −A′‖v

∏

v -∞
‖x′ − y′ −A′ +B′‖v

=
∏

v|∞
‖x′ −A′‖v‖x′ − y′ −A′ +B′‖−1

v .

On the other hand, by (5.1) and (5.5),
∏

v|∞
‖x′ − y′ −A′ +B′‖v ≤

∏

v∈M(K)

max{1, ‖x′ − y′ −A′ +B′‖v}

= h(x′ − y′ −A′ +B′)

≤ 3 max{1, |x′ − y′|}h(A′)h(B′).

We denote by σ1, . . . , σd the isomorphic embeddings of K in C. Then, in
view of (5.10),

∏

v|∞
‖x′ −A′‖v =

( d∏

i=1

|x′ − σiA′|
)1/d

≥
d∏

i=1

(|x′| − |σiA′|)1/d

≥
d∏

i=1

(|x′| − h(A′)d)1/d = |x′| − h(A′)d ≥ 3
4
|x′|.

Altogether, using (5.9) and (5.10) we get

H((x′ −A′, y′ −B′, x′ − y′ −A′ +B′))

≥ 3
4 |x′|(3 max{1, |x′ − y′|}h(A′)h(B′))−1

≥ |x′|1/2
max{1, |x′ − y′|} =

max{|x′|, |y′|}1/2
max{1, |x′ − y′|} .

Let

f∗(x) = a∗
l∏

i=1

(x−A∗i ), a∗ 6= 0,(5.12)

and

g∗(x) = b∗
m∏

j=1

(x−B∗j ), b∗ 6= 0,(5.13)

be polynomials with a∗, A∗1, . . . , A
∗
l , b
∗, B∗1 , . . . , B

∗
m ∈ K. Suppose that

(5.14) max{l,m} < k.
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Let α, β ∈ K∗ be elements with

(5.15) ‖β‖v = ‖α‖v = 1 for each v 6∈ S,
where S is as in Section 1. Thus α, β are “S-units”.

Lemma 5.4. Let f(x), g(x), α, β be as in (5.12)–(5.15). Suppose that

(5.16) l > 0, m > 0.

Let H∗ be a quantity with

(5.17) H∗ ≥ max{h(a∗), h(A∗1), . . . , h(A∗l ), h(b∗), h(B∗1), . . . , h(B∗m)}.
Let x, y, v, w be integers such that

f∗(x)αv = g∗(y)βw,(5.18)

f∗(x)g∗(y) 6= 0,(5.19)

x−A∗i 6= y −B∗j for each pair i, j (1 ≤ i ≤ l, 1 ≤ j ≤ m).(5.20)

Then there exists a pair i0, j0 with 1 ≤ i0 ≤ l, 1 ≤ j0 ≤ m such that

(5.21)
∏

v∈S
(‖x−A∗i0‖v‖y −B∗j0‖v‖x− y −A∗i0 +B∗j0‖v)

≤ 34k2
H∗8k

2
max{1, |x− y|}4k2−1.

P r o o f. (5.15), (5.18) and (5.19) imply
∏

v∈S
‖f∗(x)‖v =

∏

v∈S
‖g∗(y)‖v =

∏

v 6∈S
‖f∗(x)‖−1

v =
∏

v 6∈S
‖g∗(y)‖−1

v ,(5.22)

‖f∗(x)‖v = ‖g∗(y)‖v for each v 6∈ S.(5.23)

Given v ∈M(K), we denote by λv and µv respectively subscripts having

‖x−A∗λv‖v = min
1≤λ≤l

‖x−A∗λ‖v, ‖y −B∗µv‖v = min
1≤µ≤m

‖y −B∗µ‖v.

We partition the set M(K)\S into two subsets S1, S2; here S1 consists of
those v for which ‖y − B∗µv‖v ≥ ‖x − A∗λv‖v and S2 of those v for which
‖x−A∗λv‖v > ‖y −B∗µv‖v. Then by (5.23),

(5.24)

(5.25)

‖f∗(x)‖v ≥ ‖b∗‖v‖y −B∗µv‖mv for each v ∈ S1,

‖f∗(x)‖v ≥ ‖a∗‖v‖x−A∗λv‖lv for each v ∈ S2.

On the other hand, for each v 6∈ S we have

‖x− y −A∗λv +B∗µv‖v ≤ max{‖x−A∗λv‖v, ‖y −B∗µv‖v}.
Therefore (5.24) and (5.25) respectively yield

‖f∗(x)‖v ≥ ‖b∗‖v‖x− y −A∗λv +B∗µv‖mv for each v ∈ S1,(5.26)

‖f∗(x)‖v ≥ ‖a∗‖v‖x− y −A∗λv +B∗µv‖lv for each v ∈ S2.(5.27)
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Let S1,λ,µ be the subset of S1 for which (5.26) holds with (λv, µv) = (λ, µ).
Then
∏

v∈S1,λ,µ

‖f∗(x)‖−1
v ≤

∏

v∈S1,λ,µ

‖b∗‖−1
v ‖x− y −A∗λ +B∗µ‖−mv

=
∏

v 6∈S1,λ,µ

‖b∗‖v‖x− y −A∗λ +B∗µ‖mv

≤
∏

v 6∈S1,λ,µ

max{1, ‖b∗‖v}max{1, ‖x− y −A∗λ +B∗µ‖}m

≤ h(b∗)h(x− y −A∗λ +B∗µ)m.

Taking the product over 1 ≤ λ ≤ l and 1 ≤ µ ≤ m and using the same
argument for (5.27), we get

∏

v 6∈S
‖f∗(x)‖−1

v ≤ h(a∗)l+mh(b∗)l+m
l∏

λ=1

m∏
µ=1

h(x− y −A∗λ +B∗µ)l+m,

and thus by (5.17) and Lemma 5.1,
∏

v 6∈S
‖f∗(x)‖−1

v ≤ 3lm(l+m)h(x− y)lm(l+m)H∗2(lm+1)(l+m).

Thus by (5.12) and (5.22) there exists i0 with 1 ≤ i0 ≤ l such that

∏

v∈S
‖x−A∗i0‖v ≤

(∏

v 6∈S
‖f∗(x)‖−1

v

)1/l(∏

v∈S
‖a∗‖v

)1/l

≤ 3m(l+m)H∗2m(l+m)+l−1(2l+2m+1) max{1, |x− y|}m(l+m).

Similarly, we find j0 with 1 ≤ j0 ≤ m such that
∏

v∈S
‖y −B∗j0‖v ≤ 3l(l+m)H∗2l(l+m)+m−1(2l+2m+1) max{1, |x− y|}l(l+m).

Finally, by (5.14) we get
∏

v∈S
‖x−A∗i0‖v‖y −B∗j0‖v‖x− y −A∗i0 +B∗j0‖v

≤ h(x− y −A∗i0 +B∗j0)
∏

v∈S
(‖x−A∗i0‖v‖y −B∗j0‖v)

≤ 3(m+l)2+1H2(m+l)2+(m+l)(2l+2m+1)/(ml)+2 max{1, |x− y|}(l+m)2+1

< 34k2
H∗8k

2
max{1, |x− y|}4k2−1,

as asserted.
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6. Multiplicative relations

Lemma 6.1. Let K be a number field of degree d. Denote by w the number
of roots of unity in K. Then

(6.1) w ≤ 2d2.

P r o o f. The group of roots of unity in K is cyclic of order w. It is
generated by a primitive wth root of unity ζ, which is a root of the wth
cyclotomic polynomial. Thus ϕ(w) = deg ζ ≤ d, where ϕ is Euler’s function.
On the other hand, ϕ(w) ≥ (w/2)1/2, and (6.1) follows.

Lemma 6.2. Suppose again that K has degree d. Suppose that α ∈ K∗ is
such that there exists a natural number u with αu ∈ Q. Then in fact there
exists such a u having

(6.2) u ≤ 2d3.

P r o o f. We have αu = q for some q ∈ Q∗ and therefore α = ζ|q|1/u,
where |q|1/u is the positive uth root of |q| and ζ is a 2uth root of unity. So
α is a root of the polynomial

x2u − q2 =
∏

ζ

(x− ζ|q|1/u)

where ζ runs through the 2uth roots of unity. On the other hand, α is in K.
Therefore the minimal polynomial of α over Q, say p(x), is of degree say
e ≤ d and p(x) | (x2u−q2). Hence p(x) =

∏e
i=1(x−ζi|q|1/u), where ζ1, . . . , ζe

are certain 2uth roots of unity. We may infer that |q|e/u∏e
i=1 ζi ∈ Q. This

implies that
∏e
i=1 ζi is real, therefore ±1, and therefore |q|e/u ∈ Q. On the

other hand, α = ζi|q|1/u for some i. It follows that ζei ∈ K, and hence
ζewi = 1. But this implies that

αew = ζewi |q|ew/u = |q|ew/u ∈ Q.
Consequently, αew ∈ Q. In view of Lemma 6.1 and the hypotheses we have

we ≤ 2d3,

and the assertion follows.

Lemma 6.3. Let α and β be elements in K∗, and neither a root of unity.
Let H be a quantity with

(6.3) H ≥ max{h(α), h(β)}.
Suppose that there exist nonzero integers z1, z2 with

(6.4) αz1βz2 = 1.

Then there exist such integers having

(6.5) max{|z1|, |z2|} ≤ 60d6 logH.
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P r o o f. This follows at once from Loxton and van der Poorten [5] (The-
orem 3). In fact, they proved that there exist nonzero integers zi with (6.4)
such that

max{|z1|, |z2|} ≤ w · d · logH · λ−1,

where w is the number of roots of unity in K and where λ is the logarithm
of the right hand side in formula (5.7) of Dobrowolski’s result as quoted in
Lemma 5.2. Thus Lemma 6.1 implies the assertion.

7. Linear equations in S-integers. Let S be a finite subset of cardi-
nality |S| = s of M(K) as in Section 1. We suppose that S contains the set
of archimedean prime divisors M∞(K) of K. An element x ∈ K is called an
S-integer if ‖x‖v ≤ 1 for each v 6∈ S. We consider the equation

(7.1) x1 + . . .+ xn = 0

to be solved in S-integers xi ∈ K.
Given a vector x = (x1, . . . , xn) ∈ Kn we define the S-height by

HS(x) =
∏

v∈S
‖x‖v

with ‖x‖v as in Section 5.
We will need the following result of Schlickewei [9] (Theorem 1.4).

Lemma 7.1. Suppose that n ≥ 3. Let δ > 0. Then the set of solutions of
equation (7.1) in S-integers x1, . . . , xn satisfying

(7.2)
∏

v∈S
‖x1‖v . . . ‖xn‖v < HS(x)1−δ

is contained in the union of not more than

(7.3) t = 2ns[(4sd!)237(n−1)d!s6δ−2
]

proper subspaces U1, . . . , Ut of the (n−1)-dimensional linear space U defined
by equation (7.1).

8. The equation f(x)αx = g(y)βy. Let

f(x) = a

l∏

i=1

(x−Ai) with a 6= 0(8.1)

and

g(x) = b

m∏

j=1

(x−Bj) with b 6= 0(8.2)
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be polynomials with a,A1, . . . , Al, b,B1, . . . , Bm ∈ K. We suppose that

(8.3) max{l,m} < k.

Assume that α, β ∈ K∗ are not roots of unity but are multiplicatively de-
pendent. Let (p, q) ∈ Z2, with p > 0 minimal, such that

(8.4) αp = βq (= δ, say).

We want to study the solutions (x, y) ∈ Z2 of the equation

(8.5) f(x)αx = g(y)βy.

In a qualitative sense such equations have been studied in [2] and in [11].
Here we ask for some quantitative information about the solutions.

Throughout, we assume that H is a quantity satisfying

(8.6) H ≥ {3, h(α), h(β), h(a), h(b), h(A1), . . . , h(Al), h(B1), . . . , h(Bm)}.
Given (x, y) ∈ Z2 we write

(8.7) x = px′ + p′, y = qy′ + q′,

where x′, y′ ∈ Z and 0 ≤ p′ < p, 0 ≤ q′ < q. (Notice that p′ and q′ are not
fixed, but will depend upon x and y respectively.)

Lemma 8.1. The solutions (x, y) ∈ Z2 of (8.5) with

(8.8) max{|x|, |y|} ≥ exp(25d6 log2H)

satisfy

(8.9) |qx− py| ≤ 219dk15 log2H log(max{|qx|, |py|}).
P r o o f. Using (8.4) and (8.7), we may write (8.5) as

δx
′−y′ =

g(y)
f(x)

α−p
′
βq
′
.

(We remark in this context that (8.8) implies f(x) 6= 0.) Therefore by Lem-
ma 5.1, (8.1) and (8.2),

h(δ)|x
′−y′| ≤ h(a)h(b)

( m∏

j=1

h(y −Bj)
l∏

i=1

h(x−Ai)
)
h(α)|p

′|h(β)|q
′|,

and by (8.6) this is

≤ H2 · 2m max{1, |y|}mHm · 2l max{1, |x|}lH lH |p|+|q|

≤ 22kH2k+|p|+|q|max{|x|, |y|}2k.
But by Lemma 6.3, we have

(8.10) max{|p|, |q|} ≤ 60d6 logH.
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Combination of Lemma 5.2 and (8.8) yields

|x′ − y′| · 1
30d3

≤ 2k log 2 + (2k + 120d6 logH) logH + 2k log(max{|x|, |y|})
≤ 4k log(max{|x|, |y|}).

Finally, by (8.10) this implies

|qx− py| ≤ |pqx′ − pqy′|+ |qp′|+ |pq′|
≤ 3600d12 log2H · 120d3k log(max{|x|, |y|}) + 7200d12 log2H

≤ 219d15k log2H log(max{|x|, |y|})
≤ 219d15k log2H log(max{|qx|, |py|}),

as asserted.

9. The equation f(x)αx = g(y)βy, continued. We assume (8.1)–(8.7)
throughout. Recall that our number field K has degree d. Let S be the finite
subset of M(K) of Section 1 with |S| = s and assume that ‖α‖v = ‖β‖v = 1
for v 6∈ S.

Lemma 9.1. Let c1, c2, c3 be integers with c1c2 6= 0 and c1/c2 6= q/p.
Then the number of common solutions (x, y) ∈ Z2 of the two equations

(9.1) c1x = c2y + c3, f(x)αx = g(y)βy

does not exceed

(9.2) 2s
7244d!(2k)!

.

P r o o f. We assume without loss of generality that (c1, c2) = 1. Then
we may parametrize the solutions of the linear equation as x = x0 + c2t,
y = y0 + c1t (t ∈ Z), where x0 and y0 are fixed and the second equation in
(9.1) becomes

(9.3) f(c2t+ x0)αx0(αc2)t = g(c1t+ y0)βy0(βc1)t (t ∈ Z).

Equation (9.3) is of the type covered by Theorem A of Section 2. We have
to consider two partitions. The first corresponds to the vanishing of each
side in (9.3) and gives f(c2t+ x0) = 0. Since f 6≡ 0, deg f < k, this has less
than k solutions.

The second partition of (9.3) has no vanishing term. The corresponding
group G(P) is defined by

(9.4) (αc2)z = (βc1)z.

As α and β are not roots of unity and c1/c2 6= q/p, (8.4) implies that (9.4)
has only the trivial solution z = 0. By Theorem A, this partition gives not
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more than

220+s7243d!(2k)!

solutions. Since this, plus k, does not exceed (9.2), the lemma follows.

Lemma 9.2. Suppose that in (8.1), (8.2) we have

(9.5) min{l,m} > 0.

Let H be as in (8.6). Then the number of solutions (x, y) ∈ Z2 of equation
(8.5) satisfying

(9.6) qx− qAi 6= py − pBj for each pair i, j (1 ≤ i ≤ l, 1 ≤ j ≤ m)

and

(9.7) max{|x|, |y|} > exp(210k4d6 log2H)

does not exceed

(9.8) 2s
7245d!(2k)! − 2d2k3.

P r o o f. We first remark that (9.7) implies that we are only considering
solutions (x, y) with f(x)g(y) 6= 0. Given a solution (x, y), we consider the
product

(9.9)
l∏

i=1

(x−Ai)
m∏

j=1

(y −Bj)

corresponding to f(x)g(y) (but omitting the leading coefficients). We par-
tition the solutions (x, y) into classes L = L(i, j) (1 ≤ i ≤ l, 1 ≤ j ≤ m) as
follows: (x, y) belongs to L(i, j) if the term (x−Ai)(y−Bj) in (9.9) is small
in the sense of (5.21) of Lemma 5.4. Two different classes may overlap, but
this is of no importance. We will give an upper bound for the number of
solutions in each single class. As the total number of classes is

(9.10) lm < k2,

our assertion (9.8) will eventually follow.
We now restrict ourselves to solutions x, y in a fixed class say L(i0, j0),

and so we may assume in the sequel that Lemma 5.4 holds true for the pair
(i0, j0). To simplify the notation we will omit subscripts in what follows,
and we will write A,B instead of Ai0 , Bj0 . Recall (8.7), i.e.,

x = px′ + p′, y = qy′ + q′ (0 ≤ p′ < p, 0 ≤ q′ < |q|).
Let D be a common denominator of A and B. By Lemma 5.1, D may be
chosen to satisfy

(9.11) D ≤ H2d.
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Put

(9.12)
x1 = Dqx−DqA, x2 = −(Dpy −DpB),

x3 = −(Dqx−Dpy −DqA+DpB).

The definition of D implies that x1, x2, x3 are algebraic integers, and hence
in particular they are S-integers. Moreover,

(9.13) x1 + x2 + x3 = 0.

We want to apply Lemma 7.1 to equation (9.13). To do so, we have to
verify hypothesis (7.2). For this purpose we apply Lemma 5.4. We rewrite
equation (8.5) as

(9.14) aD−lq−l
l∏

i=1

(Dqx−DqAi)αx = bD−mp−m
m∏

j=1

(Dpy −DpBj)βy

and apply Lemma 5.4 with

f∗(Dqx) = a∗
l∏

i=1

(Dqx−A∗i ), g∗(Dpy) = b∗
m∏

j=1

(Dpy −B∗j ),

where a∗ = aD−lq−l, A∗i = DqAi, b∗ = bD−mp−m, B∗j = DpBj . It is clear
that f∗(Dqx) = f(x), g∗(Dpy) = g(y) and so (8.5) becomes f∗(Dqx)αx =
g∗(Dpy)βy. Hypothesis (5.20) of Lemma 5.4 is now hypothesis (9.6).

The conclusion of Lemma 5.4 will be true with

H∗ = max{h(a∗), h(A∗i ), h(b∗), h(B∗j )}.
By Lemma 6.3 we have (cf. (8.6))

(9.15) max{|p|, |q|} ≤ 60d6 logH.

Combining (9.15) and (9.11), by Lemma 5.1 we obtain

H∗ ≤ (60d6 logH)kH1+2kd ≤ H5kd.

By Lemma 5.4 we may conclude (using (9.11)) that the xi in (9.12), (9.13)
satisfy

∏

v∈S
‖x1‖v‖x2‖v‖x3‖v ≤ 34k2

H40k3d max{1, |Dqx−Dpy|}4k2−1(9.16)

≤ 34k2
H44k3d max{1, |qx− py|}4k2−1.

On the other hand, by Lemma 5.3 and (9.7) we get

(9.17) H(x1, x2, x3)

= H(Dqx−DqA,Dpy −DpB,Dqx−Dpy −DqA+DpB)

= H(qx− qA, py − pB, qx− py − qA+ pB) ≥ max{|qx|, |py|}1/2
max{1, |qx− py|}
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provided that

(9.18) max{|qx|, |py|} ≥ 16 max{h(qA), h(pB)}d+3.

By (9.15) we have

16h(qA)d+3 ≤ 24(26d6 logH)d+3Hd+3 ≤ (23dH)6d+18

and similarly

16h(pB)d+3 ≤ (23dH)6d+18.

Therefore (9.18) will be satisfied if max{|x|, |y|} ≥ (23dH)6d+18, but this is
amply guaranteed by (9.7).

We want to obtain (7.2) with δ=1/2. Since HS(x1, x2, x3)≥H(x1, x2, x3),
and by (9.16), (9.17), this will be true if we have

(9.19) max{|qx|, |py|} ≥ 316k2
H176k3d max{1, |qx− py|}16k2

.

We are going to use Lemma 8.1, which is allowed since (9.7) implies (8.8).
We obtain

max{1, |qx− py|} · 3 ·H11kd ≤ 221kd15 log2H ·H11kd log(max{|qx|, |py|}),
and hence (9.19) will be satisfied if we have

(9.20) 221kd15H11kd log2H log(max{|qx|, |py|}) ≤ (max{|qx|, |py|})1/16k2
.

But it is easily checked that (9.7) implies (9.20).
So hypothesis (7.2) of Lemma 7.1 is indeed satisfied with δ = 1/2. We

may conclude that the solutions x1, x2, x3 of (9.12), (9.13) satisfy one of

(9.21) 2 · 3s(4sd!)274d!s6·4

linear relations, each of which may be taken as

(9.22) c1x1 + c2x2 = 0

with c1, c2 ∈ K, (c1, c2) 6= (0, 0).
Suppose first that in (9.22) we have c1 = 0. Then (9.12) implies y = B

and therefore g(B) = 0, which is impossible by (9.7). Similarly, we may
conclude that c2 6= 0.

Next assume that c1 = c2. Then (9.22) entails qx − qA − py + pB = 0,
which is excluded by (9.6).

Therefore, we may assume that in (9.22), c1c2 6= 0 and c1 6= c2. In view
of (9.12), (9.22) is a relation between x and y of the shape

(9.23) d1x = d2y + d3,

and here d1d2 6= 0 and d1/d2 6= q/p. Now, if a relation (9.23) involves two
different solutions (x(1), y(1)), (x(2), y(2)), then (d1, d2, d3) is proportional to
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a vector with integral components. Thus we may apply Lemma 9.1. Conse-
quently, each relation (9.23) leads to not more than

2s
7244d!(2k)!

solutions (x, y). Taking into account the number of possible relations (9.23)
as estimated in (9.21) and allowing a factor k2 from (9.10) for the number
of classes L, we finally get the bound

k2 · 2 · 3s(4sd!)274d!s6·42s
7244d!(2k)!

< 2s
7245d!(2k)! − 2d2k3.

The lemma follows.

Lemma 9.3. Let f and g be as in (8.1)–(8.3). Suppose that

(9.24) min{l,m} > 0.

Let i, j with 1 ≤ i ≤ l, 1 ≤ j ≤ m be fixed. Consider the system of two
equations

(9.25(i, j)) qx− qAi = py − pBj
where q and p are as in (8.4), and

(9.26) f(x)αx = g(y)βy

in (x, y) ∈ Z2. Set

(9.27) M = 2d2k.

We distinguish two cases.

(a) There exist no integers p′ and q′ having

(9.28) 0 ≤ p′ < p, q′ = Bj +
q

p
(p′ −Ai)

such that we have the polynomial identity

(9.29) f(pt+ p′)αp
′ ≡ g(qt+ q′)βq

′
.

Then (9.25(i, j)) and (9.26) have at most M common solutions.
(b) There exist unique integers p′, q′ with (9.28) and (9.29). Then the

common solutions of (9.25(i, j)) and (9.26) consist of the linear one-parame-
ter family

(9.30) x = pt+ p′, y = qt+ q′ (t ∈ Z),

plus at most M further solutions.

R e m a r k. By Lemma 6.3, p and q in (8.4) satisfy the estimate max{p, |q|}
≤ 60d6 logH. Thus by (9.28) it is decidable whether we get a family (9.30)
or not. In fact, if there is a solution family (9.30), then its data p, q, p′, q′

are effectively computable (at least in principle).
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P r o o f o f L e m m a 9.3. Let (x, y) be a solution of (9.25(i, j)). Then
writing x = pt + p′ with 0 ≤ p′ < p we get y = qt + q′ with q′ as in (9.28).
So the solutions of (9.25(i, j)) in fact split into families

Fp′ : x = pt+ p′, y = qt+ q′, 0 ≤ p′ < p,

as in (9.30).
Given a family Fp′ , in view of (8.4) equation (9.26) becomes

(9.31) f(pt+ p′)αp
′

= g(qt+ q′)βq
′
.

Now, if we had two families Fp′1 ,Fp′2 for which (9.31) is an identity, then com-

paring the leading coefficients we get αp
′
1/βq

′
1 = αp

′
2/βq

′
2 . Hence αp

′
1−p′2 =

βq
′
1−q′2 and by the minimality of (p, q), (p′1 − p′2, q

′
1 − q′2) is a multiple of

(p, q). In conjunction with |p′1 − p′2| < p this gives p′1 = p′2, whence q′1 = q′2.
Therefore, if there exist integers p′, q′ with (9.28) and (9.29), then they are
uniquely determined.

It remains to be shown that the union of the families Fp′ for which we do
not have an identity (9.29) contains not more than M solutions (x, y), with
M as in (9.27). In fact, the solutions (x, y) of (9.25(i, j)) satisfy y = (q/p)x+c
with c = Bj − (q/p)Ai. Thus (9.26) becomes

(9.32) f(x)αx = g

(
q

p
x+ c

)
β(q/p)x+c.

Notice that in (9.32) the exponent (q/p)x + c of β is an integer; therefore
the quotient β(q/p)x+c/αx lies in K and so is a pth root of βqx+pc/αpx in K.
But by (8.4), βqx = αpx. Thus the quotient is a pth root of βpc in K. Let
βc be such a pth root. Then (9.32) splits into equations of the shape

(9.33) f(x) = g

(
q

p
x+ c

)
ζβc,

where ζ runs through the pth roots of unity in K. Given ζ, either (9.33)
holds identically in x or, since max{deg f,deg g} < k, it has not more than
k solutions. Since the number of roots of unity in K is ≤ 2d2, solutions x
where (9.33) is not an identity are contained in a set of cardinality < 2d2k,
as asserted in (9.27).

Comparing the leading coefficients in (9.33), it follows, since β is not
a root of unity, that there exists at most one root of unity ζ such that
(9.33) holds identically in x. It is clear that only such a ζ can give rise to a
one-parameter family Fp′ as in (9.30) having (9.29), and the lemma follows.

10. Equations f(x)αx = bβy. In Section 9 we have treated equa-
tion (8.5) under the assumption that both f and g have positive degrees.
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In this section we study equation (8.5) assuming that

(10.1) g(y) ≡ b,
i.e., that m = 0. We assume again that we have (8.4) and that (p, q) is
minimal. For the sake of completeness in our applications we state

Lemma 10.1. Let a and b be elements of K∗. Suppose that α, β ∈ K∗ are
not roots of unity. Then the equation

(10.2) aαx = bβy

either has no solution (x, y) ∈ Z2 at all , or the set of solutions consists of
the one-parameter family

(10.3) x = pt+ p′, y = qt+ q′ (t ∈ Z)

where (p′, q′) ∈ Z2 is the unique solution of the equation aαp
′

= bβq
′

with
0 ≤ p′ < p, q′ ∈ Z. Moreover , if H ≥ max{h(α), h(β), h(a), h(b)}, then

p′ ≤ 60d6 logH and |q′| ≤ 211d9 logH.

P r o o f. Only the assertion on p′ and q′ needs some comments. By
Lemma 6.3, we have p′ ≤ 60d6 logH. But, moreover, βq

′
= (a/b)αp

′
im-

plies h(β)|q
′| ≤ h(a)h(b)h(α)p

′
, hence by Lemma 5.2,

|q′| 1
30d3 ≤ (p′ + 2) logH,

and the assertion follows.

Lemma 10.2. Let f(x) and g(x) be given by (8.1) and (10.1) respectively.
Suppose that f has at least two distinct zeros. Let H be a quantity with

(10.4) H ≥ max{2, h(a), h(A1), . . . , h(Al), h(b)}.
Then the number of solutions (x, y) ∈ Z2 of equation (8.5) having

(10.5) |x| ≥ H2d(k+2)2

does not exceed

(10.6) 2s
7280d!

.

P r o o f. Equation (8.5) now reads a(x− A1) . . . (x− Al) = bβyα−x. Let
D be a common denominator of a,A1, . . . , Al, b. By Lemma 5.1, D may be
chosen with

(10.7) D ≤ Hd(l+2).

We have

(10.8) Da(Dx−DA1) . . . (Dx−DAl) = Dl+1bβyα−x.
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Notice that here Dx−DAi 6= 0 for each i (1 ≤ i ≤ l). Now (10.8) implies

(10.9)
∏

v∈S
‖Da‖v‖Dx−DA1‖v . . . ‖Dx−DAl‖v =

∏

v∈S
‖Dl+1b‖v.

By the definition of D, each factor on the left hand side of (10.9) is ≥ 1. We
suppose without loss of generality that A1 6= A2 and obtain from (10.9),

∏

v∈S
‖Dx−DA1‖v‖Dx−DA2‖v ≤

∏

v∈S
‖Dl+1b‖v.

Thus, we may conclude that

(10.10)
∏

v∈S
‖Dx−DA1‖v‖Dx−DA2‖v‖DA1 −DA2‖v

≤
∏

v∈S
‖Dl+1b‖v‖DA1 −DA2‖v

≤ Dl+2h(b) · 2h(A1)h(A2) < Hd(l+3)2−2.

On the other hand, we get

H((Dx−DA1, Dx−DA2, DA1 −DA2))(10.11)

= H((x−A1, x−A2, A1 −A2))

≥
∏

v|∞
‖x−A1‖v

∏

v -∞
‖A1 −A2‖v

=
∏

v|∞
‖x−A1‖v‖A1 −A2‖−1

v .

Let σ1, . . . , σd be the isomorphic embeddings of K in C. Then (10.4) and
(10.5) entail

∏

v|∞
‖x−A1‖v =

( d∏

i=1

|x− σiA1|
)1/d

≥
d∏

i=1

(|x| − |σiA1|)1/d

≥
d∏

i=1

(|x| −Hd)1/d = |x| −Hd ≥ |x|
2
.

Moreover, we have
∏

v|∞
‖A1 −A2‖v ≤ 2h(A1)h(A2) ≤ 2H2.

Therefore, (10.11) implies

(10.12) H((Dx−DA1, Dx−DA2, DA1 −DA2)) ≥ |x|
4
H−2.
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Comparing (10.12) with (10.10) we obtain using (10.5),

(10.13)
∏

v∈S
‖Dx−DA1‖v‖Dx−DA2‖v‖DA1 −DA2‖v

< Hd(l+3)2−2 ≤ |x|
1/2

2
H−1

≤ H((Dx−DA1, Dx−DA2, DA1 −DA2))1/2

≤ HS((Dx−DA1, Dx−DA2, DA1 −DA2))1/2.

We apply Lemma 7.1 to the equation x1 + x2 + x3 = 0 with

(10.14) x1 = Dx−DA1, x2 = −Dx+DA2, x3 = DA1 −DA2.

In view of (10.13), hypothesis (7.2) is satisfied with δ = 1/2. The conclusion
is that the solutions x1, x2, x3 satisfy one of

(10.15) 2 · 2s(4sd!)237·2·d!s6·4

linear relations, each of which may be taken as

(10.16) c1x1 + c2x2 = 0,

with c1, c2 ∈ K, (c1, c2) 6= (0, 0). If here c1 = c2, then by (10.14) we get A1 =
A2, a contradiction. Therefore each relation (10.16) implies an equation of
the shape x+ c3 = 0, and hence determines x uniquely.

On the other hand, given x there is at most one value y such that
f(x)αx = bβy. Thus (10.6) follows from (10.15).

Lemma 10.3. Suppose that f(x) = a(x−A)l and g(x) = b, with a, b, A ∈
K, ab 6= 0. Let H be a quantity satisfying

(10.17) H ≥ max{2, h(a), h(A), h(b)}.
Suppose that

(10.18) A 6∈ Q.
Then the number of solutions (x, y) ∈ Z2 of the equation

(10.19) f(x)αx = g(y)βy

(i.e., of (8.5)) with

(10.20) |x| ≥ H2d2(k+2)2

does not exceed

(10.21) 2s
7280d!

.
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P r o o f. Let σ1, . . . , σd be the isomorphic embeddings of our field K in
an algebraic closure. Then (10.19) implies

d∏

i=1

σi(a)
d∏

i=1

(x− σi(A))l
d∏

i=1

σi(α)x =
d∏

i=1

σi(b)
d∏

i=1

σi(β)y.

Write
∏d
i=1σi(a) = C, σi(A) = Ai (i = 1, . . . , d),

∏d
i=1σi(b) = B,

∏d
i=1σi(α)

= α′,
∏d
i=1 σi(β) = β′. Then we get

(10.22) C

d∏

i=1

(x−Ai)lα′x = Bβ′y.

Since by (10.18), A 6∈ Q, we may suppose that A1 6= A2. So (10.22) is an
equation of the type studied in Lemma 10.2.

The only problem with (10.22) is that the zeros Ai of the polynomial on
the left hand side in general will not lie in K but in the normal closure of K.
Conceivably this could have some impact in the application of Lemma 7.1.
However, the proof of Lemma 7.1 (cf. [9], Section 2, and [8], Section 2) is such
that in fact the result in Lemma 7.1 covers even the solutions in the normal
closure of K (this is the reason that (7.3) involves the parameter d! instead
of simply the degree d of K). Now, analyzing the proof of Lemma 10.2
we see easily that in our context everything goes through if we replace the
parameter H by Hd. Thus hypothesis (10.5) becomes (10.20). With this new
hypothesis the conclusion remains the same, and (10.21) follows from (10.6).

We may summarize the results of this section as follows.

Lemma 10.4. Let f(x) be given by (8.1) and g(x) ≡ b with b 6= 0. Suppose
that deg f > 0 and that f is not of the shape a(x− A)l with A ∈ Q. Let H
be a quantity with

(10.23) H ≥ max{3, h(a), h(A1), . . . , h(Al), h(b), h(α)}.
Suppose that α ∈ K∗ is not a root of unity. Then the number of solutions
(x, y) ∈ Z2 of the equation

(10.24) f(x)αx = g(y)βy

with

(10.25) |x| ≥ H2d2(k+2)2

does not exceed

(10.26) 2s
7280d!

.

Moreover , solutions (x, y) ∈ Z2 where (10.25) is violated have

(10.27) |y| ≤ H27d2k2
.
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P r o o f. It suffices to prove (10.27). We get

βy =
a

b
(x−A1) . . . (x−Al)αx,

and hence by Lemma 5.1,

h(β)|y| ≤ H2 · 2l|x|lH l+|x|.

Thus Lemma 5.2 and (10.25) imply

1
30d3 |y| ≤ (l + 2 + |x|) logH + l log |x|+ l log 2

< (k + 2 +H2d2(k+2)2
)H + k · 2d2(k + 2)2H + kH,

and (10.27) follows with a simple computation.

11. Equations f(x)αx = bβy, continued. In this section, we study the
special case of equation (8.5) given by

(11.1) a(x−A)lαx = bβy

where a, b ∈ K∗, A ∈ Q, α, β ∈ K∗, α and β are not roots of unity and
where l > 0.

We suppose, moreover, that we have (8.4), i.e.,

(11.2) αp = βq (= δ)

and that here p > 0 is minimal.

Lemma 11.1. Suppose that for all integers u 6= 0 we have αu 6∈ Q. Then
(11.1) has at most two solutions (x, y) ∈ Z2.

P r o o f. As β is not a root of unity, it is clear that given x ∈ Z, there
is at most one y ∈ Z such that (x, y) is a solution of (11.1). For a solution
(x, y) the relations (11.1), (11.2) imply

apq(x−A)pqlδqx = bpqδpy.

Write w = py − qx. Then we get

(11.3) apq(x−A)pql = bpqδw.

Now, suppose that we have two solutions (x1, w1), (x2, w2) ∈ Z2 of (11.3).
Then

(11.4)
(x1 −A)pql

(x2 −A)pql
= δw1−w2 .

Our hypothesis implies that δu ∈ Q for u ∈ Z is only possible for u = 0. Thus
by (11.4), we have w1 = w2 and consequently (x1 − A)pql = (x2 − A)pql. It
follows that either x1 = x2 or x1 + x2 = 2A. Thus given a solution (x1, w1),
every solution (x,w) has x = x1 or x = 2A− x1.



The intersection of recurrence sequences 29

R e m a r k. The hypothesis of Lemma 11.1 may be effectively verified. In
fact, by Lemma 6.2, it suffices to check the powers αu with

(11.5) 1 ≤ u ≤ 2d3.

In the sequel we will suppose that some nonzero integral power of α lies
in Q. Then naturally the same holds true for δ = αp.

Define u1 as the least positive integer such that

(11.6) δu1 ∈ Qpql,
and define Q ∈ Q by

(11.7) Qpql = δu1 .

Since δ = αp, (11.7) together with (11.5), (8.6) and (6.5) implies

(11.8) h(Q) ≤ exp(120d9 log2H).

Lemma 11.2. Suppose that Q 6∈ Z. Let H be a quantity with

(11.9) H ≥ max{3, h(a), h(b), h(A), h(α), h(β)}.
Then the solutions (x, y) ∈ Z2 of (11.1) satisfy

(11.10) py − qx < 222d24k log4H.

Similarly , if Q−1 6∈ Z, then the solutions (x, y) ∈ Z2 of (11.1) satisfy

(11.11) qx− py < 222d24k log4H.

P r o o f. Put py − qx = w; then (11.1) implies

(11.12) apq(x−A)pql = bpqδw.

Write

(11.13) w = u1z + u0

with u1 as in (11.6), z ∈ Z and 0 ≤ u0 < u1. We infer from (11.5) and (6.5)
that

(11.14) u1 ≤ 2d3|pq|l < 7200kd15 log2H.

Now combination of (11.6), (11.7) and (11.12) yields

(11.15) (b/a)pqδu0 = ((x−A)Q−z)pql ∈ Q|pql|.
If there exists u0 in the range 0 ≤ u0 < u1 with (b/a)pqδu0 ∈ Q|pql|, i.e. with
(11.15), then by the definition of u1, such a u0 is uniquely determined. (If
there is no u0 with this property, then (11.1) has no solution (x, y) ∈ Z2 at
all.) It is clear by (11.4) that there exists an algorithm to decide whether u0

exists and to determine u0 effectively, if it exists.
Now suppose that u0 is as in (11.15). Define the rational number r by

(11.16) rpql = (b/a)pqδu0 .
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Then by (11.14) we get

(11.17) h(r) ≤ h(b)h(a)h(δ)2d3
.

Combination of (11.15) and (11.16) yields

(11.18) x = A± rQz with x, z ∈ Z.
Suppose that Q 6∈ Z. Then for z ∈ Z with 2z > h(A)h(r), (11.18) entails
that x 6∈ Z. Thus in (11.18) we have necessarily

z < 2(log h(A) + log h(r)).

Using the definition of z in (11.13) together with (11.14) and (11.17) we
obtain

w = u1z + u0 < 2d3|pq|l(2(log h(A) + log h(r)) + 1)(11.19)

≤ 222d24k log4H,

and this is (11.10).
(11.11) follows in the same way.

Lemma 11.3. Suppose that Q 6∈ Z. Let H be as in (11.9). Then the
solutions (x, y) ∈ Z2 of (11.1) with

(11.20) py − qx ≥ 0

satisfy

(11.21) |x| ≤ exp(213d18 log4H), |y| ≤ exp(214d18 log4H).

Similarly , if Q−1 6∈ Z, then the solutions (x, y) ∈ Z2 of (11.1) with

(11.22) py − qx ≤ 0

satisfy (11.21).

P r o o f. We have (11.3), i.e.,

apq(x−A)pql = bpqδpy−qx.

So if (11.20) holds true, we have

h(x−A) ≤ (h(b)h(a)h(δ)(py−qx)/|pq|)1/l

and therefore since py − qx = w and by (11.19),

|x| ≤ (h(b)h(a)h(δ)(py−qx)/|pq|)1/l + h(A)

≤ H2 log h(δ) exp(4d2(log h(A) + log h(r))) + h(A).

Recall that δ = αp, so that by (6.5), log h(δ) ≤ 60d6 log2H, and from
(11.17) we get

(11.23) log h(r) ≤ 2 logH + 120d9 log2H < 27d9 log2H,
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which finally implies that |x| ≤ exp(213d18 log4H). But then (11.10) and
(11.20) in conjunction with (9.15) give |y| ≤ exp(214d18 log4H), and so
(11.21) follows.

The combination (11.22), (11.21) may be shown in the same way.

To finish our study of equation (11.1), we still have to deal with the cases
when Q in (11.7) satisfies

(11.24) Q ∈ Z or Q−1 ∈ Z.
It turns out that this is the most complicated case. In [11] we called an
equation

f(x)αx = g(y)βy

exceptional of type 1 if f has exactly one root A (of arbitrary multiplicity)
and if this root lies in Q, if g is a nonzero constant and α, β ∈ K∗ are not
roots of unity but such that there exist nonzero integers p, q with αp = βq =
δ, and such that moreover some power δu with u ∈ Z\{0} lies in Z. We called
the equation exceptional of type 2 if the roles of f and g are interchanged.

So let us now deal with the exceptional equation of type 1. Suppose
Q ∈ Z. Equation (11.1) gives (11.18), i.e.,

(11.25) x = A± rQz,
and we ask for solutions (x, z) ∈ Z2. Put

(11.26) A = B/D, r = C/D with D > 0

and with B,C,D ∈ Z, (B,C,D) = 1. Then D ≤ h(A)h(r) and thus by
(11.23) and (6.5),

(11.27) D ≤ exp(28d9 log2H).

Then x given by (11.25) lies in Z if

(11.28) B ± CQz ≡ 0 (mod D).

Put D = D1D2, where D1 is made up of primes dividing Q and D2 of other
primes. Then for z with 2z > D1 we get Qz ≡ 0 (mod D1), and in view of
(11.28) this entails

Lemma 11.4. Suppose that Q ∈ Z and that B 6≡ 0 (mod D1). Then the
solutions (x, y) ∈ Z2 of (11.1) satisfy

(11.29) |x| ≤ exp(217d18 log4H), |y| ≤ exp(218d18 log4H).

P r o o f. By Lemma 11.3 we may suppose that py − qx > 0. Recall the
definition of z in (11.13). We have u1z+u0 = py−qx. Our hypothesis implies
that only such z are admitted for which 2z ≤ D1. We infer from (11.27) that
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necessarily z ≤ 29d9 log2H. Combining this with (11.14), we get

py − qx ≤ 210d12|pq|l log2H.

The proof may now be finished in exactly the same way as in Lemma 11.3.

It is clear that we get a result analogous to Lemma 11.4 if Q−1 ∈ Z.
We now suppose that B in (11.28) has B ≡ 0 (mod D1). We detail only

the case when in (11.28) we have the + sign. By Lemma 11.3, it suffices to
find the solutions z ∈ Z, z ≥ 0, of the congruence

(11.30) B + CQz ≡ 0 (mod D),

since for z < 0 we have py − qx ≤ 0 and that case is treated in (11.22),
(11.21). Values z with 2z ≤ D1 lead to solutions x, y of (11.1) with (11.29)
(this follows at once from the proof of Lemma 11.4).

If (11.30) has a solution z with 2z > D1 at all, then it has such a solution
z+ in the range

(11.31)
logD1

log 2
< z+ ≤ logD1

log 2
+D2.

Let z+ be minimal with (11.31) such that (11.30) is satisfied for z = z+. By
(11.27), z+ is effectively computable. By definition of D2, we have (Q,D2) =
1. Let v > 0 be the least solution of Qv ≡ 1 (mod D2). Again by (11.27) we
have

(11.32) 0 < v ≤ ϕ(D2) ≤ exp(28d9 log2H).

It is now clear that the solutions z of (11.30) with z > (logD1)/ log 2 are
given by

(11.33) z = z+ + vs (s ∈ Z, s ≥ 0).

In view of (11.18) we therefore obtain

(11.34) x = rQz
+

(Qv)s +A = E′Rs0 +A (s ∈ Z, s ≥ 0),

where E′ = rQz
+

and R0 = Qv. Now by (11.3) we get

py = w + qx = u1z + u0 + qx = qE′Rs0 + u1vs+ u1z
+ + u0 + qA(11.35)

= qE′Rs0 + F ′s+G′,

say, with F ′ = u1v and G′ = u1z
+ + u0 + qA. But y needs to be an integer.

So the question is: for which s do we have

(11.36) qE′Rs0 + F ′s+G′ ≡ 0 (mod p)?

Write p = p1p2 where p1 is a product of primes dividing R0, and p2 is a
product of other primes. If s is so large that 2s > h(r)p, then the rational
number qE′Rs0 will have a numerator ≡ 0 (mod p1). In view of (11.23)
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and (6.5) this will be satisfied if

(11.37) s > 28d9 log2H.

Solutions where (11.36) is violated lead to z = z+ + vs ≤ exp(29d9 log2H)
by (11.27), (11.32) and (11.37), and this implies an effective bound for the
corresponding solutions x and y of (11.1) (cf. the proof of Lemma 11.3).
So it suffices to solve (11.36) for s ≥ s0 with s0 = [28d9 log2H + 1], and
consequently we have to solve simultaneously

(11.38) F ′s+ F ′s0 +G′ ≡ 0 (mod p1)

and

(11.39) qE′Rs00 R
s
0 + F ′s+ F ′s0 +G′ ≡ 0 (mod p2)

with s ∈ Z, s ≥ 0.
If the congruence (11.38) is solvable at all, then the solutions s run

through certain residue classes mod p1, and since we have effective bounds
for all parameters in (11.38), we may compute these classes effectively. Now,
given such a residue class s = p1t+p′1 (t ∈ Z, t ≥ 0), we have to solve (11.39)
for s in this class, i.e.,

(11.40) qE′Rs0+p′1
0 (Rp1

0 )t + F ′p1t+ F ′(s0 + p′1) +G′ ≡ 0 (mod p2)

(t ∈ Z, t ≥ 0).

Since (R0, p2) = 1, the residue class of (Rp1
0 )t (mod p2) depends only upon

the residue class of t modϕ(p2) and the solutions t of (11.40) lie in suit-
able residue classes mod p2ϕ(p2) (if there are solutions t at all). Again since
we have effective bounds for all the parameters in (11.40), it is decidable
whether (11.40) admits solutions, and in the affirmative case we may deter-
mine effectively all residue classes.

Collecting our results, we see that the solutions s of (11.36) consist of
certain residue classes mod p1p2ϕ(p2) and these classes are effectively com-
putable. Let Pt+P ′ (t ∈ Z, t ≥ 0) be such a residue class. Then by (11.34)
we get x(t) = rQz

+
QvP

′
(QvP )t +A, and so

(11.41) x(t) = EpRt +A (t ∈ Z, t ≥ 0),

where

(11.42) E = rQz
++vP ′p−1, R = QvP .

Moreover, we obtain

py = qx+ w = qx+ u1z + u0 = qx+ u1vs+ u1z
+ + u0

= qx+ u1vPt+ u1vP
′ + u1z

+ + u0,

and hence by (11.41),

(11.43) y(t) = EqRt + Ft+G (t ∈ Z, t ≥ 0),
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where

(11.44) F = u1vP, G = qA+ u1vP
′ + u1z

+ + u0.

All this was when Q ∈ Z and we have the + sign in (11.28). If we have the −
sign in (11.28), then defining z− with respect to the congruence B−CQz ≡ 0
(mod D) in the same way as we got z+, all the above still holds true mutatis
mutandis.

If, however, Q−1 ∈ Z, then in the above construction we have to study
solutions x, y with 0 > w = py − qx = u1z + u0, and we have to focus on
z with z < 0. Again we obtain exponential families x(t), y(t) of the type
(11.41), (11.43). We only have to replace z+ by −z+ or z− by −z− respec-
tively, and v by −v. We remark that in (11.41) and (11.43), the quantities
R and F do not depend upon the particular residue class modP and that,
moreover, we have F 6= 0.

We summarize what we have shown.

Lemma 11.5. Suppose that equation (11.1) is exceptional of type 1. Then
apart from finitely many solutions x, y which may be effectively computed ,
the solutions (x, y) of (11.1) make up a finite number (possibly zero) of one-
parameter exponential families, each of type (11.41), (11.43). There exists
an algorithm to decide whether such exponential families do occur at all. If
such families do occur , then they are effectively computable.

12. Summary on equations f(x)αx = g(y)βy. We collect the results
on equation (8.5) proved in the preceding sections. We assume throughout
that (8.1)–(8.6) are valid.

Proposition 12.1. Suppose that (8.5) is not exceptional. Then there
exists an algorithm to decide whether (8.5) has infinitely or only finitely
many solutions.

(a) If (8.5) has only finitely many solutions, then all but at most

(12.1) M = 2s
7245d!(2k)!

solutions have

(12.2) max(|x|, |y|) ≤ c(d, k,H)

with effectively computable c(d, k,H).
(b) If (8.5) has infinitely many solutions, then there is a unique linear

one-parameter family

(12.3) x(t) = pt+ p′, y(t) = qt+ q′ (t ∈ Z)

with 0 ≤ p′ < p, such that all but at most M solutions lie in this family
or have (12.2). The family (12.3) and the bound c(d, k,H) are effectively
computable.
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P r o o f. The case when both f and g have positive degree follows from
Lemmata 9.2 and 9.3. The bound in (12.1) is the sum of the bounds in (9.8)
and k2 times the bound in (9.27).

Lemma 10.1 covers the case when both f and g are constants. The re-
maining cases are treated in Lemmata 10.4, 11.1 and 11.3.

We remark that the bound 2s
7280d!

in Lemma 10.4 is smaller than the
bound in (12.1) since k ≥ 1.

Proposition 12.2. Suppose that (8.5) is exceptional of type 1. Then
there exists an algorithm to decide whether (8.5) has infinitely many or only
finitely many solutions. Moreover :

(a) If (8.5) has only finitely many solutions, then each solution satisfies

(12.4) max(|x|, |y|) ≤ c(d, k,H).

(b) If (8.5) has infinitely many solutions, then they make up finitely
many one-parameter exponential families, each of the type

(12.5) xj(t) = pEjR
t +A, yj(t) = qEjR

t + Ft+Gj (t ∈ Z, t ≥ 0)

(1 ≤ j ≤ c(d, k,H)), and possibly some further solutions with (12.4).
Here the families (12.5) are effectively computable. Moreover , Ej , Gj are

rational numbers, F is a nonzero integer that does not depend upon the
particular family , and R = αu ∈ Z for some u ∈ Z\{0}. The constant in
(12.4) is effective.

P r o o f. The assertion follows at once from Lemmata 11.3 and 11.4 and
from formulas (11.41)–(11.44) in the proof of Lemma 11.4.

13. Intersections of solution families. We consider a system of equa-
tions

f1(x)αx1 = g1(y)βy1 ,(13.1)
(x, y) ∈ Z2.

f2(x)αx2 = g2(y)βy2 ,(13.2)

Here we suppose that f1, f2, g1, g2 are nonzero polynomials as in (8.1), (8.2),
of respective degrees l1, l2,m1,m2, with

(13.3) max{l1, l2,m1,m2} < k.

We assume that α1, α2, β1, β2 ∈ K∗, that α2 and β2 are not roots of unity
and that

(13.4) αpi = βqi for i = 1, 2,

where p and q are nonzero integers such that p > 0 is minimal with a relation
(13.4). Our hypotheses are such that at least equation (13.2) is of the shape
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studied in Sections 8–12. In studying simultaneously (13.1) and (13.2) we
distinguish the following cases.

(i) α1 and β1 are not roots of unity;
(ii) α1 and β1 are roots of unity.

We first treat alternative (i).
We will make throughout the hypothesis

(H) Both (13.1) and (13.2) admit infinitely many solutions.

In view of Propositions 12.1 and 12.2 this will be no restriction.
If we choose (p1, q1) and (p2, q2) in Z2 minimal such that αpii = βqii , then

the pair (p, q) in (13.4) will be such that p is the least common multiple of
p1 and p2.

Lemma 13.1. Suppose that neither (13.1) nor (13.2) is exceptional and
that we have (H). Then the intersection of the linear families

x1(t1) = p1t1 + p′1, y1(t1) = q1t1 + q′1 (t1 ∈ Z)(13.5)

and

x2(t2) = p2t2 + p′2, y2(t2) = q2t2 + q′2 (t2 ∈ Z)(13.6)

from (12.3) either is empty or equals

x(t) = pt+ p′, y(t) = qt+ q′ (t ∈ Z),

where p is the least common multiple of p1 and p2 and where 0 ≤ p′ < p is
uniquely determined.

P r o o f. Suppose that the intersection of the families (13.5) and (13.6) is
not empty. Let t(0)

1 , t
(0)
2 ∈ Z be parameters having

p1t
(0)
1 + p′1 = p2t

(0)
2 + p′2, q1t

(0)
1 + q′1 = q2t

(0)
2 + q′2.

Then the intersection consists of points

x(t1) = p1t1 + p1t
(0)
1 + p′1, y(t1) = q1t1 + q1t

(0)
1 + q′1 (t1 ∈ Z),

where t1 satisfies the equation p1t1 = p2t2 with t1, t2 ∈ Z. Here t1 may be
written as t1 = p2t/(p1, p2) with t ∈ Z and the assertion follows.

Lemma 13.2. Suppose that one of (13.1), (13.2) is exceptional and the
other is not. Suppose, moreover , that we have hypothesis (H). Then the
intersection of the linear family (12.3) with the union of the exponential
families (12.5) contains at most two points (x, y).

P r o o f. Suppose without loss of generality that the linear family is

x1(t1) = p1t1 + p′1, y1(t1) = q1t1 + q′1.

Then we get py1(t1)− qx1(t1) = pq′1 − qp′1. As for the exponential families,
let us go back in the proof of Lemma 11.5.
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The exponential families of the lemma are contained in the family

(13.7) x(s) = E′Rs0 +A, y(s) =
p

q
E′Rs0 +

F ′

p
s+G′ (s ∈ Z, s ≥ 0)

in (11.34) and (11.35), and possibly a second family of the same type cor-
responding to the − sign in (11.28). (Recall that in (13.7), y(s) is not nec-
essarily an integer.)

Now, F ′ 6= 0 in (13.7) and we get py(s) − qx(s) = F ′s + pG′ − qA′,
and the intersection with the linear family leads to parameters s with F ′s+
pG′ − qA′ = pq′1 − qp′1. Hence we get at most one such parameter s. As we
have to consider at most two families of type (13.7), the assertion follows.

Lemma 13.3. Suppose that one of (13.1), (13.2) is exceptional of type
1 and the other is exceptional of type 2. Suppose that hypothesis (H) holds
true. Let L1 be the union of the exponential families (12.5) coming from
(13.1), and similarly L2 from (13.2). Then

(13.8) |L1 ∩ L2| ≤ 2252s7 .

P r o o f. We suppose without loss of generality that (13.1) is of type 1
and (13.2) of type 2. As in the proof of Lemma 13.2, we go back to (11.34),
(11.35).

Therefore L1 is contained in the union of two exponential families x1(s1),
y1(s1) where

x1(s1) = E1R
s1
1 +A1 (s1 ∈ Z)

with E1 ∈ Q∗, A1 ∈ Q and R1 ∈ Z, |R1| > 1. Similarly L2 is contained in
the union of two exponential families x2(s2), y2(s2), where

x2(s2) = E2R
s2
2 + Fs+G

with E2 ∈ Q∗, R2 ∈ Z, |R2| > 1, F ∈ Q∗, G ∈ Q. Moreover, as R1 is an
integral power of α1 and R2 an integral power of α2, R1 and R2 are both
S-units. The equation x1(s1) = x2(s2) leads to an equation

(13.9) E1R
s1
1 = E2R

s2
2 + (Fs2 + C) · 1s2 ,

and hence is of the type covered by Theorem 1 (notice that the left hand
side and the right hand side in (13.9) are not related). The conclusion is
that (13.9) has not more than

2251s7

solutions (s1, s2) ∈ Z2. Allowing a factor 4 for the two alternatives we possi-
bly have in L1 as well as in L2, we finally get the bound 2252s7 , as asserted.
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Lemma 13.4. Suppose that both (13.1) and (13.2) are exceptional of
type 1. Suppose, moreover , that |α1| > 1 and |α2| < 1. Assume that hypothe-
sis (H) holds true. Then the intersection of the set of exponential families L1

corresponding to (13.1) and the set of exponential families L2 corresponding
to (13.2) is empty.

P r o o f. Let (x1(s1), y1(s1)) be an exponential family belonging to α1 and
(x2(s2), y2(s2)) be an exponential family belonging to α2. The construction
of the families in Section 11 is such that (cf. Lemma 11.3) for si ∈ Z, si ≥ 0,
we have py1(s1) − qx1(s1) > 0 and py2(s2) − qx2(s2) < 0. The assertion
follows.

Lemma 13.5. Suppose that both (13.1) and (13.2) are exceptional of
type 1. Suppose, moreover , that |α1| > 1 and |α2| > 1. Assume that hy-
pothesis (H) holds true. Let L1 be the union of the exponential families
from (13.1) and L2 the union of the exponential families from (13.2). Then
it is decidable whether L1∩L2 is infinite or not. L1∩L2 is infinite if and only
if f1 and f2 have the same rational zero and αu1

1 = αu2
2 for some nonzero

integers u1, u2. Moreover :

(a) If L1 ∩ L2 is finite, then it is of cardinality at most

(13.10) M := 221080s7 .

(b) If L1 ∩ L2 is infinite, then it consists of exponential families xj(t),
yj(t) (t ∈ Z, t ≥ 0) (1 ≤ j ≤ c(d, k,H)) of the type (12.5), plus at most M
further elements. These families are effectively computable. Here the param-
eter R of the families is an integral power of both α1 and α2.

P r o o f. To get in (13.10) a bound M that is independent of heights, it
is suitable not to use directly the different exponential families we have in
Proposition 12.2, but to go back to the proof of Lemma 11.5, as we have
already done in proving Lemmata 13.2 and 13.3. We got our exponential
families (12.5) by intersecting (11.34) and (11.35), i.e.,

(13.11) x(s) = E′Rs0 +A, y(s) =
q

p
E′Rs0 +

F ′

p
s+

G′

p
(s ∈ Z, s ≥ 0)

with Z2. (There may be two such families, if in (11.25) the − sign occurs as
well.)

To keep L1 ∩ L2 under control, we first study the intersection of two
families (13.11) (never mind whether the points are in Z2 or not) and only
when we have this intersection under control, will we ask for points in the
intersection whose components are integers.
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We have to solve a system

(13.12) x1(s1) = x2(s2), y1(s1) = y2(s2)

where xi(si), yi(si) is of the type (13.11). The first equation in (13.12) yields
a relation

E(1)R
(1)s1
0 +A(1) = E(2)R

(2)s2
0 +A(2),

say. We may apply Theorems 1 and 2 and conclude that apart from possible
solutions in a set of cardinality ≤ 221080s7 , this implies

(13.13) E(1)R
(1)s1
0 = E(2)R

(2)s2
0 , A(1) = A(2),

where s1, s2 ∈ Z, s1, s2 ≥ 0.

We recall from (11.1) and (11.34) that A(1), A(2) are the zeros of f1 and f2

respectively. As R(1) and R(2) are integral powers of α1, α2 respectively, R(1)

and R(2) are bounded in terms of d and H. So, either we have a relation

(13.14) R(1)w1 = R(2)w2

with w1, w2 ∈ N and bounded in terms of d and H, or (13.13) has not more
than one solution. (The bound in (13.10) is so generous that it easily takes
care also of such a single additional solution.) If (13.14) is solvable, then the
solutions (s1, s2) of (13.13) are of the shape

s1 = w1t+ s
(0)
1 , s2 = w2t+ s

(0)
2 (t ∈ Z, t ≥ 0),

where w1, w2 is a minimal solution of (13.14) and where s(0)
1 , s

(0)
2 is a minimal

solution of (13.13). It is clear that w1, w2, s
(0)
1 , s

(0)
2 are computable. We next

have to check the second equation in (13.12). In view of (13.13), and with
our values of s1, s2, this reduces to

F (1)(w1t+ s
(0)
1 ) +G(1) = F (2)(w2t+ s

(0)
2 ) +G(2) (t ∈ Z, t ≥ 0),

and hence it either has at most one solution t or it is an identity in t.
In the latter case, we have to apply the considerations of Section 11 to

the family

(13.15)
x(t) = E(1)R

(1)s(0)
1

0 (R(1)w1
0 )t +A(1),

y(t) =
q

p
E(1)R

(1)s(0)
1

0 (R(1)w1
0 )t +

F (1)

p
w1t+

F (1)s
(0)
1 +G(1)

p

(t ∈ Z, t ≥ 0)

to guarantee that we get only values y(t) ∈ Z. So we follow the considerations

after (11.36) with E′ replaced by E(1)R
(1)s(0)

1
0 , R0 replaced by R

(1)w1
0 , F ′
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replaced by F (1)w1, and G′ replaced by F (1)s
(0)
1 + G(1). Again we see that

either we get no solutions t at all, or we get solutions t that make up certain
residue classes. The details may be left to the reader.

Since R(1) is an integral power of α1 and R(2) is an integral power of α2,
it also follows from (13.14) that the parameter R0 = R

(1)w1
0 occurring in the

final families we get is an integral power of both α1 and α2.

We now treat alternative (ii), where α1 and β1 are roots of unity.

Lemma 13.6. Suppose that

(13.16) max{deg f1, deg g1} > 0.

Suppose, moreover , that (13.2) is exceptional and admits a set L2 of expo-
nential families (12.5) among its solutions. Then the intersection of L2 with
the set of solutions (x, y) of (13.1) has cardinality not exceeding

(13.17) 4k2.

P r o o f. L2 is contained in two families xi(s), yi(s), i = 1, 2, each of the
shape (11.34), (11.35), i.e.,

(13.18) x(s) = ERs +A, y(s) =
q

p
ERs + Fs+G (s ∈ Z)

with |R| > 1, R ∈ Z, F 6= 0, E,A, F,G ∈ Q. Since α1 and β1 are roots of
unity, (13.1) implies

(13.19) f1(x(s))f1(x(s)) = g1(y(s))g1(y(s)).

Combination of (13.18) and (13.19) gives an equation of the type

(13.20) P0(s)R(2k−2)s + P1(s)R(2k−3)s + . . .+ P2k−3(s)Rs + P2k−2(s) = 0,

where the Pi in (13.20) are polynomials with real coefficients and of degree
≤ i (0 ≤ i ≤ 2k − 2). Since F 6= 0 in (13.18), and by (13.16), we may
conclude that not all polynomials Pi in (13.20) are identically zero.

But then an easy application of Rolle’s Theorem (cf. Pólya–Szegö [6],
p. 48, Aufgabe 75) shows that (13.20) has less than 2k2 solutions s ∈ R.
Allowing a factor two for the possible second family x2(s), y2(s) making up
L2, we get the assertion.

Lemma 13.7. Suppose that in (13.1) we have f1(x) = a, g1(x) = b. Sup-
pose, moreover , that (13.2) is exceptional and admits a set L2 of exponential
families of type (12.5) among its solutions. Then the intersection of L2 with
the set of solutions (x, y) of (13.1) consists of a finite set which is effectively
computable and possibly a finite set of exponential families again of type
(12.5), and these families are effectively computable.

P r o o f. Let w be the smallest natural number such that

(13.21) αw1 = βw1 .
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By Lemma 6.1, w ≤ 2d2. Write x = wx′ + wx and y = wy′ + wy with
0 ≤ wx < w and 0 ≤ wy < w. Thus the problem consists in determining the
intersections of exponential families x(s), y(s) with residue classes x ≡ wx
(mod w), y ≡ wy (mod w). As was shown in Section 11, this is effectively
solvable and leads to a finite set and possibly some exponential families.
(Since w ≤ 2d2, everything is under control.)

Lemma 13.8. Suppose that (13.2) is not exceptional , but has a linear
one-parameter family (12.3) among its solutions. Then the intersection of
this family with the set of solutions of (13.1) consists of a set of cardinality
not exceeding

(13.22) 2d2k

and possibly a (unique) linear family

(13.23) x(t) = pt+ p′, y(t) = qt+ q′ (t ∈ Z),

where 0 ≤ p′ < p.

P r o o f. Let (p2, q2) be a minimal pair with αp2
2 = βq22 and p2 > 0. Then

(13.2) gives the unique linear family

(13.24) x(t) = p2t+ p′2, y(t) = q2t+ q′2 (t ∈ Z)

with 0 ≤ p′2 < p2. Pick w ∈ N minimal with αw1 = βw1 . By Lemma 6.1, we
have w ≤ 2d2. Therefore, the pair p, q in (13.4) has p = vp2, q = vq2 with
v ∈ N, v ≤ 2d2.

The family (13.24) splits into v families

(13.25) x(t) = pt+ p′, y = qt+ q′ (t ∈ Z)

with 0 ≤ p′ < p (in fact, p′ = p′2 + ip2 and q′ = q′2 + iq2 for some i with
0 ≤ i < v).

Now, given a family (13.25), equation (13.1) becomes

(13.26) f1(pt+ p′)αp
′

1 = g1(qt+ q′)βq
′

1 .

This is a polynomial equation in t. Thus either (13.26) is an identity in t or it
has less than k solutions t. The minimality of the pair (p, q) in (13.4) implies
that at most one of the families (13.25) may give an identity in (13.26). As
v ≤ 2d2, we obtain (13.22).

14. Proof of Theorems 3 and 4 and of the corollaries. Let us
begin with Theorem 4. We proceed by induction on r. If r = 1, the assertion
follows from Proposition 12.2 and Lemma 13.7. Now suppose that r > 1
and that the assertion holds true for r − 1. The theorem then follows from
Lemma 13.5(b), in fact (13.10) implies the bound (1.30).

Now let us turn to Theorem 3. If r = 1, we have two possibilities.
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Either f1(x)αx1 = g1(y)βy1 is not exceptional. Then by Proposition 12.1
a set with 2s

7245d!(2k)!
elements will suffice, plus additionally 2d2k elements

from Lemma 13.8, and the theorem follows.
Or f1(x)αx1 = g1(y)βy1 is exceptional but not both f0 and g0 are constant.

Then by Lemma 13.6 a set M1 with ≤ 4k2 elements suffices.
Now suppose that r > 1. As F,G is not exceptional, we may infer that

there is a pair i, j (0 ≤ i < j ≤ r) such that the system

(14.1) fi(x)αxi = gi(y)βyi , fj(x)αxj = gj(y)βyj

is not exceptional (in an obvious sense). So, for the set of solutions of (14.1)
we may apply one of Lemmata 13.1–13.6, 13.8. The assertion follows at
once as for the exceptional set of cardinality ≤ M1 the worst cases arise
if one equation in (14.1) is not exceptional and the other involves roots of
unity, or if both equations are as in Lemma 13.5. We may conclude that an
exceptional set of cardinality

≤ max{221080s7 , 2s
7245d!(2k)!

+ 2d2k}
will suffice. The theorem follows.

As for Corollary 1, we clearly get the one-parameter family of solutions
m = t, n = t (t ∈ Z). If {um} is symmetric, then we have relations (1.34).
Hence αiαi+1 is a root of unity in K and so by Lemma 6.1 we have w ≤ 2d2,
which gives the possible second family (1.39) by Theorem 3. We still have
to prove the bound (1.36).

We apply Theorems 2 and 3. By Theorem 2 the number of solutions
(1.37) that do not satisfy (1.20) or (1.21a,b) has cardinality

(14.2) ≤ 2s
7245d!(2k3)!

.

From Theorem 3, applied to (1.20), and also to (1.21a,b) if {um} is sym-
metric, we get in addition a set of cardinality

(14.3) ≤ 2 max{221080s7 , 2s
7246d!(2k)!}.

As we assume k > 1, the sum of the bounds in (14.2), (14.3) does not exceed

2s
7246d!(2k3)!

,

and Corollary 1 follows.

Finally, let us deal with Corollary 2. The linear family corresponding to
equations (1.20), by Theorem 3 now has the shape m(t) = t, n(t) = t + t0
(t ∈ Z). It implies the polynomial identities

fi(t) ≡ b

a
fi(t+ t0)αt0i (i = 0, . . . , r).
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Hence we get (b/a)αt01 = 1 and the identity f1(t) ≡ f1(t + t0). Now either
deg f1 > 0 and t0 = 0 or deg f1 = 0. In the latter case, as k > 1, we have
at least one further root αi with i 6= 1 and (b/a)αt0i = 1. But then by
nondegeneracy t0 = 0, and so in all cases b/a = 1, which contradicts our
hypothesis.

Now assume that {um} is symmetric. As above in Corollary 1, we pos-
sibly get a one-parameter family m(t) = wt + t′, n(t) = −wt + t′′ (t ∈ Z)
with 0 < w ≤ 2d2, which induces the polynomial identities in t,

(14.4)
fi(wt+ t′)αt

′
i =

b

a
fi+1(−wt+ t′′)αt

′′
i+1

fi+1(wt+ t′)αt
′
i+1 =

b

a
fi(−wt+ t′′)α′′i

(1 ≤ i < r, i odd).

Write l = deg fi = deg fi+1. Let ai and ai+1 be the leading coefficients of fi
and fi+1 respectively.

Comparing the leading coefficients in (14.4) we get

aiw
lαt
′
i = (−1)l

b

a
ai+1w

lαt
′′
i+1, ai+1w

lαt
′
i+1 = (−1)l

b

a
aiw

lαt
′′
i ,

hence (αiαi+1)t
′−t′′ = (b/a)2. It follows that b/a is a root of unity. The

estimate (1.41) follows in the same way as (1.36) in Corollary 1.
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