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1. Introduction. Let {u,, }mez be a linear recurrence sequence, i.e., a
sequence satisfying a relation
(1.1) Utk = Vk—1Umtk—1 + -« + V1Umi1 + Vo, (M € Z)
with £ > 0 and given coefficients v; with vy # 0. Equations
(1.2) U = Up,

in unknowns (m,n) € Z? have been studied in [2] and [7]. It was shown
there that for nondegenerate {u,,}, (1.2) has only finitely many solutions
m > n > 0. More generally, the equation

(1.3) Uy, = U,

where {u,, } and {v,,} are given recurrence sequences, was treated by Laurent
[3] and the current authors [11]. They give a complete qualitative description
of the set of solutions (m,n) € Z?2 of (1.3).

It is the purpose of the present paper to derive quantitative results on
equations (1.3). Let

T

(1.4) Plz)=2F —uyp_12 -y = H(z — ;)%

i=1
with distinct roots aq, . .., o, be the companion polynomial of relation (1.1).
It is well known that there exist polynomials f1, ..., f, which are not all zero

and have deg f; < 0; — 1 such that
'
(1.5) Uy, = Zfi(m)oz;”.
i=1

Notice that in view of (1.4) we have in particular

(1.6) degfi<k (i=1,...,r).

(1



2 H. P. Schlickewei and W. M. Schmidt

The sequence {u,,} is called nondegenerate if none of the quotients a;/c;
for i # j is a root of unity.

To unify the notation in the sequel, we will consider instead of (1.5) the
function

(17) Pla) =Y filx)al

of polynomial-exponential type, where ag is a root of unity, where «;/c;
for i # j is not a root of unity, and where the f; are polynomials with

(1.8) degfi<k (0<i<r)
and with
(1.9) fi#0 fori=1,...,m

If the companion polynomial (1.4) of {u,,} does not have a zero which is a
root of unity, then we put fo(x) =0 and oy = 1.
Similarly, we write v,, = G(m) with

(1.10) Gly) =Y gy)sY,
=0

where again we suppose that the g; are polynomials with
(1.11) degg; <k (i=0,...,7"),
(1.12) gi#0 fori=1,....¢
and where we assume, moreover, that §; # 0, that 3y is a root of unity, and
Bi/B; for i # j is not a root of unity.
We will suppose throughout that both 7,7/ > 1. Thus, equation (1.3)
becomes
(1.13) F(z) = G(y),

to be solved in integers x, y.
In this paper we will study (1.13) assuming that F' and G are defined
over the algebraic numbers. So, let K be a number field of degree

(1.14) K:Q]=d

containing «q, ..., o, Bo,..., 0. We assume, moreover, that the leading
coefficients and the zeros of the polynomials f; and g; are contained in K.
We recall the following definitions from [11].

DEFINITION. F' and G are called related if

() r="r,

(ii) either fo = go =0 or fogo # 0,
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(iii) there is a reordering of [y, ..., 3, such that
(1.15) af =B (i=1,....7)
with certain nonzero integers p, q.

Now, suppose that F' and G are related with (1.15) and that r is even. F
and G are called doubly related if after reordering we have both (1.15) and

(1.16) afl = ﬂf_;l, af_/H = ﬁf/ for 1 <i<r, iodd,

with certain nonzero integers p’, ¢’

In the sequel, when F' and G are related or doubly related, we will
assume that the reorderings guaranteeing (1.15), or (1.15) and (1.16), have
been applied.

It was shown in [11] that the related pair F, G is doubly related if and
only if

(1.17) a;a11 and 3041 for 0 < ¢ < r, ¢ odd, are roots of unity.

Moreover, if p,q and p’, ¢’ are as in (1.15) and (1.16), then p/q = —p'/q .
There cannot be a third permutation with a property like (1.15) or (1.16).

A pair F, G that is related but not doubly related is called simply related.
Let us mention in this context that relatedness as well as double relatedness,
in view of Lemma 6.3 below, are decidable properties.

We denote by M (K) the set of absolute values of K and by M. (K)
the subset of archimedean absolute values in M(K). Let S be the subset
of M(K) consisting of M, (K) and those absolute values || ||, in M (K) for
which [Joy|ls # 1 or ||Bj]ly # 1 for some i with 1 <4 < r or some j with
1 <j <7r'. It is clear that the cardinality s of S is finite and has

(1.18) s <d+w,

where w denotes the number of distinct prime ideals occurring in the de-
composition of the fractional ideals («;), (5;) in K.

THEOREM 1. Suppose that F' and G are not related. Then equation (1.13)
has not more than

(1.19)

solutions (z,y) € Z>.

257245d!(k2(r+r’+2))!

Now, suppose that F' and G are related. In [11] (Proposition 1) we proved
the following:

When F and G are simply related, then all but finitely many solutions
of (1.13) satisfy the system of equations

(1.20) filx)ai = gi(y)B;  (i=0,...,7).
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When F and G are doubly related, then all but finitely many solutions
of (1.13) satisfy either (1.20) or the system

(1.21a) fi(x)af = gz‘+1(y)/6¢y+17 firi(@)aiy, = 9:(y)B] (1 <i<r, iodd),
(1.21Db) fo(@)og = go(y) 5.

If F and G are simply related, we write & for the set of solutions (x,y) €
Z? of (1.13) that do not satisfy the system (1.20).

If F and G are doubly related, we let & be the set of solutions of (1.13)
which satisfy neither (1.20) nor (1.21a,b).

THEOREM 2. Suppose that F and G are related. Then & has cardinality
(1‘22) |6| < 287245d!(2k2(r+1))!‘

Remark. If in (1.7) and (1.10), fo = go = 0, then in (1.22), r + 1 may
be replaced by r. The significant feature in Theorems 1 and 2 is that the
bounds (1.19) and (1.22) are uniform, as they involve only the degree d of
the field K, the bound k for the degrees of the polynomials f; and g;, the
numbers r and 7’ of characteristic roots and the number s of absolute values
in S. No particular care was taken in optimizing the actual shape of the
bounds; we rather tried to avoid painstaking estimates.

For F and G related, we still want some information about the solutions
(x,y) € Z? of either (1.20) or of (1.20) and (1.21a,b).
Again following [11], we call the ordered pair F,G exceptional if

(i) F and G are simply related,
(ii) there is a natural number N > 1 which is an integral power of each
«; and each §; with 1 <17 <r,
(iii) either |oy;| > 1 for 1 <i <7, or |a;| <1 for 1 <i<r,
(iv) fo and go are constant,
(v) each g; is constant and for 1 < i < r, fi(z) = a;(x — A)" where A is
rational and [; > 0.

We remark that by Lemma 6.3 below, exceptionality is decidable. Notice
that if F,G is exceptional, then by (1.15) either |5;] > 1 for 1 < i < r or
|Bi| < 1for 1 < ¢ < r. Thus, in view of (1.17), if the pair F,G is doubly
related neither F, G nor G, F' is exceptional.

If F and G are related, then as ag and [y are roots of unity, we may
extend (1.15) also to ¢ = 0 (by replacing p, ¢ by suitable multiples, if neces-
sary). So we will suppose in the sequel that we have

(1.23) ol =g fori=0,...,r

with nonzero integers p, q. And in fact, we will assume that p > 0 in (1.23),
and p is chosen minimal with this property.
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Similarly, when F' and G are doubly related we will assume instead of
(1.16) that

(1.24) af/ = f_;_l, afg_l = ﬁfl fori=1,...,r, ¢ odd,
and ocg, = ﬁg/,

with nonzero integers p’, ¢’, where again p’ > 0, p’ minimal.

The systems (1.20) or (1.21a,b) are of exactly the same type. Thus it
suffices to deal with (1.20).

Suppose that the polynomials f; in (1.7) have leading coefficients a; and
Zeros Agl), ... ,Al(f) (¢=1,...,r), and similarly define b; and ng), . B&)
with respect to the polynomials g; in (1.10). Write

(1.25)  H(F) = max{h(a;), h(a;), h(Ag-i)) over 0 <i<r, 1<j<I},
where h is the absolute height whose definition will be detailed in Section 5.

Similarly define H(G) with respect to G.
Let H be a quantity having

H > max{3, H(F), H(G)}.

We write ¢(d, k, H) for an unspecified but effective constant that depends
only upon d, k and H. So ¢(d, k, H) at different instances may have different
values.

In Sections 8-11 we will detail some arguments that may give the reader
an idea about explicit versions of these constants.

THEOREM 3. Suppose that F' and G are related, but neither F,G nor
G, F is exceptional. Then it is decidable whether (1.20) admits infinitely
many solutions (z,y) € 72 or not.

(a) If (1.20) has only finitely many solutions, then all but at most

(1.26) M,y = 2372540011(%);
solutions satisfy
(1.27) max(|zl, ly|) < c(d, k, H),

where c¢(d, k, H) is effectively computable.
(b) If (1.20) has infinitely many solutions, there is a unique linear one-
parameter family of solutions

(1.28) z(t)=pt+p, ylt)=q+q (te)

with 0 < p’ < p such that all but at most My solutions lie in this family or
satisfy (1.27).
The family (1.28) is effectively computable.
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The point of the theorem is that the solutions with (1.27) as well as the
family (1.28) may be effectively computed, while on the other hand M; is
independent of H.

Remark. The family (1.28) occurs if and only if we have the polynomial
identities

(1.29) FpX +p)ad =gigX + )8 (0<i<r).

THEOREM 4. Suppose that the pair F, G is exceptional. Then it is decid-
able whether (1.20) admits infinitely many solutions (z,y) € Z* or not.

(a) If (1.20) has only finitely many solutions, then all but at most

(1.30) My = (r —1)22"""
solutions satisfy
(1.31) max(|z|, |y|) < e(d, k, H).

(b) If (1.20) has infinitely many solutions, then there is a finite number
of one-parameter exponential families of solutions of the type

(132) .fj(t) = pEth + A, yj(t) = quRt + Ft+ Gj (t e€EZ, t> 0)

with 1 < 7 < ¢(d,k,r,H) such that all but at most Msy solutions lie in
one of these families or satisfy (1.31). The parameters p,q, E;, R, A, F,G;
determining the families are effectively computable. Moreover, in (1.32), R

s an integral power of each aq,...,a, and F is a nonzero integer that does
not depend upon the particular family.

Theorems 1-4 imply in particular that for equations u,, = v, we have
an algorithm that allows us to determine effectively all solutions, except
possibly a finite set whose cardinality is uniformly bounded.

A particular instance of our results concerns equations u,, = u, or more
generally

(1.33) Ay, = buy

with a,b € K*, where {u,,}mez is a nondegenerate linear recurrence se-
quence as in (1.1). We suppose that relation (1.1) is minimal, i.e., that wu,,
does not satisfy a relation of smaller order. Moreover, we assume that k£ > 1
and that at least one of the characteristic roots of the polynomial in (1.4) is
not a root of unity. Using the representation (1.5), we may write u,, = F(m)
with F' as in (1.7), and here by (1.4), if fo = 0 then r < k and otherwise
r 4+ 1 < k. We suppose that {u,,}, i.e., F(m), is defined over K. It is clear
that F' is related with itself. We call {u,,} symmetric if F is doubly related
with itself.

The relations (1.15) or (1.23) now simply reduce to o} = o} (i =
0,...,7r), and if F' is symmetric, then since in (1.15), (1.16) we have p/q =
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—p'/q’, the relations (1.16) or (1.24) become
(1.34) af =a; 7 for 1 <i<r, iodd,

7

where w > 0. In fact, it follows from Lemma 6.1 below that here the minimal
w has

(1.35) 0<w < 2d%
Let Hy = max{3, H(F)}.

COROLLARY 1. (i) Suppose that {un,} is not symmetric. Then all but at
most

(1.36) My 1= 95720
solutions (m,n) € Z* of the equation

(1.37) Uy = Un,

with m # n satisfy

(1.38) max{|m|,|n|} < ¢(d, k, Hy),

where c(d, k, Hy) is effective.
(ii) If {um} is symmetric, then in addition to solutions as in (i), there
may be a one-parameter family of solutions
(1.39) m(t) =wt+w', n(t)=-wt+w" (t€Z)
where w is an integer with 0 < w < 2d?, and w' has 0 < w’ < w. The family
(1.39) is effectively computable.
We next treat the slightly more general equation
(1.40) Ay, = buy,.
Let Hy = max{3, H(F),h(b/a)}.
COROLLARY 2. (i) Suppose that b/a # 1 is a root of unity. Then, apart

from at most

(1.41) M, = 25720
solutions, and apart from a possible one-parameter family as in (1.39), the
solutions (m,n) € Z* of (1.40) satisfy

(1.42) max{|m|,|n|} < c(d, k, Ha).

Again the family is effectively computable and the constant in (1.42) is ef-
fective. The family (1.39) may only occur if {u,,} is symmetric.

(ii) Suppose that a/b is not a root of unity. Then all but at most My
solutions of (1.40) have (1.42).

A qualitative version of Corollaries 1 and 2 was proved by Laurent [4]
(Théoreme 2).
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2. Polynomial-exponential equations. We consider equations
h
(2.1) > Pi(x)ar =0
i=1

in variables x = (x1,...,zy) € Z", where the P; are nonzero polynomials
with coefficients in K of total degree < §, and where o = o} ...ajy.
Here we suppose that the o;; are elements in K*. The letter S will indicate
a finite set S C M (K) which contains M, (K) as well as the nonarchimedean
absolute values v of K for which |o;|, # 1 for some pair 7,5 (1 < i < h,
1<j<N). Weset s =cardS.

When P is a partition of {1,...,h} and 7 is a subset of {1,...,h}, we
write m € P if 7 is among the subsets belonging to P. Consider the splitting
of equation (2.1) into the system

(2.1P) Y P(x)af=0 (reP).
1ET

We denote by &(P) the set of solutions x € ZY of (2.1P) which do not satisfy
a system (2.1Q) for a proper refinement Q of P. It is clear that any solution
x € ZN of (2.1) is contained in some set &(P) for a suitable P (which is
not necessarily unique). Thus, to give an upper bound for the number of
solutions of (2.1), it suffices to give an upper bound for the cardinalities of
the sets &(P) where P runs through the partitions of {1,...,h}.

Given P and elements i,j € {1,...,h}, we write i 8 j if i, 7 belong to

the same subset 7 € P. We denote by G(P) the subgroup of Z" consisting
of points x having

(2.2) af =a; for every i,j with i z J.
The following theorem is the main result of Schlickewei and Schmidt [10].
THEOREM A. Suppose that G(P) = {0}. Then

(2.3) |6(7D)| < 220N4+NS7243d!(Dh)!’

where D = (N;;é).

We mention that Theorem A is a consequence of the Subspace Theorem
in diophantine approximation.

3. Groups G(P). To prove our theorems we will apply Theorem A of
Section 2.

It is clear that equation (1.13) is a special instance of (2.1), where in
view of (1.7) and (1.10) we have h =7+ 4+ 2, N =2 and 0 < k. We will
symbolize the r + ' + 2 summands of equation (1.13) as

/
Opy Loy ooy ray Oy, Ly, oo 7y,
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Given a partition P of {0z, ...,7z, Oy,..., 7y}, the relations (2.2) are

(3.1) af =a?  for all i, j with i, X j,,
(3:2) Bl =p} foralli,j with i, Ejy,
(3-3) af =pY  for all i, j with i, < j,.

We say that P contains an essential singleton if P contains a one-element
subset {i;} or {i,} and if, moreover, in the case {i;} = {0} or {i,} = {0,}
we have fo(z) # 0 or go(x) # 0, respectively.

LEMMA 3.1. Suppose that P contains an essential singleton. Then
7244d!(k(r+r/+2))!

(3.4) |I6(P)| <2°

Proof. Suppose without loss of generality that {i,} € P. Then (1.13P)
contains the equation g;(y)3! = 0. As g; is a nonzero polynomial of degree

< k, this equation has not more than k solutions, say yi,...,yx € Z. Given
y, we write G(y) = ¢ and equation (1.13) becomes
(3.5) fo(@)ag + fi()at + ...+ fy(z)af — c-1% = 0.

Consider partitions Q of the set {0,1,...,r,r + 1}, where r + 1 symbolizes
the summand —c - 1* in (3.5).

Fither, Q contains a singleton ¢ with 1 < ¢ <r. Then f;(z)af =0, and
there are not more than k solutions = € Z. Consequently, in this case

(3.6) G(P)| < k2,

Or, for each i (1 < i <) there exists j with 0 < j <r+1and j #1
such that i ~ j. But then G(Q) is contained in the set of z € Z having
(3.7) of = aj.

(2

As we assume that F'(z) is nondegenerate, (3.7) has only the trivial solution
x = 0. Hence G(Q) = {0}. Thus we may apply Theorem A to (3.5), and
consequently, (3.5Q) has not more than

(3.8)

solutions.

Al£0wing a factor k for the number of possible values y and a factor
2(r+2)” for the number of possible partitions Q we may conclude from (3.8)
that

(39) |6(7D)| S k- 2(r+2)2 . 220+S7243d!(k(7«+2))3 S 9

It is clear that we obtain the same estimate if P contains an essential sin-
gleton {i,}, and in view of (3.6) the lemma follows.

220+S7243d!(k‘(r+2))!

87244d!(k-('r+r’+2))!
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LEMMA 3.2. Let P be a partition of {0x, ..., 7z, Oy, ..., 7} with G(P) =
{0}. Then

7244d!(k2(r+r’+2))!

(3.10) |I6(P)| < 2°
Proof. We apply Theorem A with h=r+7r"+2, N =2and § < k to
obtain, from (2.3),

2 2
|6('P)| < 2320+287243d!(k (r4+r"+2)) < 287244d!(k (r4+r"4+2))!

LEMMA 3.3. Suppose that F' and G are not related. Let P be a partition of
{02, 1as o7, Oy, Lys ooy} Then either P contains an essential singleton

or G(P) ={(0,0)}.
Proof. See Laurent [3], Lemme 2, and [11], §5.
LEMMA 3.4. Suppose that F and G are related and fo(x)go(xz) # 0. Let P

be a partition of {Og,..., 7%, Oy,..., 7y} that does not contain an essential
singleton and such that G(P) # {(0,0)}.

(i) If F and G are simply related, then

(311) P = {OIE’OQ}7{1ZE’1y}?"‘7{r$7ry}'
(ii) If F and G are doubly related, then either P is as in (3.11) or

(3.12) P ={04,0y}, {14,2y}, {22, 1}, ..., {(r = 1),y }, {ra, (r — 1), }.
Proof. See [3], Lemme 2, and [11], §5.

4. Proof of Theorems 1 and 2. As for Theorem 1, in view of Lem-
ma 3.3 we have only partitions P of {0, ..., 74,0y, ..., } that have G(P) =
{(0,0)} or contain an essential singleton. In Theorem 2 the situation is
the same by the definition of &. Therefore, we may apply Lemmata 3.1
and 3.2. Comparing (3.4) and (3.10) we see that for any partition P under
consideration we have

|6(’P)| < 257244d!(k2(r+r’+2))!'
As the number of partitions of {0z, ...,74,0y,...,7,} to be considered does
not exceed 22(+7'+2)  we get
1(k2 (r4r! !
(4.1) |6| < 287245d.(k (r4r! +2)) ’
and Theorem 1 follows. If F' and G are related, then r» = 7’ and hence (4.1)
implies Theorem 2 as well.

5. Heights. Recall that K is a number field of degree d. We denote
by M(K) an indexing set for the absolute values of K. Thus given v €
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M(K),| |, is an extension of either the standard absolute value on Q or of
a p-adic absolute value. Moreover, for a € K and v € M(K) we define

el = lafge/?,
where d, denotes the local degree. Given an element o € K*, we put
(5.1) ha)= [ max{t,fall.}.

veEM(K)

If « = (a1,...,0) is a vector in K", we define ||a|, = max{||ai],..-
-+ llanll,} and put

(5.2) He)= [ el

Thus, for o € K* we have h(a) = H(1,«). Given a subset S of M(K), we
put

(5:3) Hs(a) = [ llell..

veES
LEMMA 5.1. Given aq,...,qa; € K* we have
(5.4) (o ...aq) < h(aq)...h(ag),
(55) h(a1 + ... —i—al) < lh(al)...h(al).

Moreover, for a € K* let C be a denominator of «, i.e., a natural number
such that Ca is an algebraic integer. Then C may be chosen such that
(5.6) h(C) < h(a)?.

This is well known. A proof may be found, e.g., in Schmidt [12].

LEMMA 5.2 (Dobrowolski [1]). Suppose that A € K* is not a root of
unity. Then

1
9.7 h(A 14+ —.
LEMMA 5.3. Let ' and y' be integers. Let A’ and B’ be elements in K*
such that

(5.8) -y —A+B #0.
Suppose that H' is a quantity with

(5.9) H' > max{h(A"),(B")}.
Suppose moreover that

(5.10) max{|2’|, |y/|} > 16 H'4T3.
Then

max{|a"], |y'[}'/?

max{1, |2/ —y'|}

(5.11)  H((2' - A,y — B2’ —y — A"+ B")) >
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Proof. We may assume that |z’| > |y/| and get by (5.2), (5.8),
H((@ ~ Ay~ Bla —y — A+ BY)
= I max{llz’ = A'llo, Iy’ = B'llo, 2" =y = A"+ B'|l}

veEM(K)

> [T lle" = Al I lle" = — 4"+ B[l,
v|oo v {00

= [ = Allla’ =y = A"+ B
v|oco

On the other hand, by (5.1) and (5.5),
[Tl =y =+ B, < [ max{l o'~y ~ A"+ B'll.}
v|oo veEM(K)
=h(x' —y — A"+ B
< 3max{1, |z’ — y'|}h(A")h(B").

We denote by o1, ...,04 the isomorphic embeddings of K in C. Then, in
view of (5.10),

d d
HHx/_A/Hv:<H|x/_O_iA/> H’x‘ ‘O'zA/ 1/d

v|oo i=1

d
H 2| — HYE = |2!| = n(A)" =
Altogether, using (5.9) and (5.10) we get
H((& — Ay = Bal =y — A + BY)
> §l2'|(3max{L, [2" — y'[}h(A)W(B")) ™

|2 _ max{|2'|, [y/[}'/?

~ max{1, |2’ —y/|}  max{l,|z’ —¢'|}

2]

e~

Let

(5.12) ) = a ﬁ(ac —AD), @ A0,
and -

(5.13) g* (@) :b*f[l(x—B;‘), b* £ 0,

j
be polynomials with a*, A7, ..., A7,b*, BY,..., B}, € K. Suppose that
(5.14) max{l,m} < k.
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Let a, 8 € K* be elements with
(5.15) I1B]lv = |lally =1  for each v &€ S,
where S is as in Section 1. Thus «, 8 are “S-units”.
LEMMA 5.4. Let f(x),g(x), o, B be as in (5.12)~(5.15). Suppose that
(5.16) [>0, m>0.
Let H* be a quantity with
(5.17)  H* > max{h(a"),h(A7),...,h(A]),h(b"),h(B]),...,h(B},)}.

Let x,y,v,w be integers such that

(5.18) [r(@)a’ = g"(y)BY,
(5.19) [ (@)g"(y) # 0,
(5.20) = — A7 #y— B}  for each pairi,j (1<i<I, 1 <j<m).

Then there exists a pair ig, jo with 1 <ig <1, 1 < jo < m such that

(5:21) [T = AL lllly = Bjllole =y — A7, + B}, llo)

veS
< 34K” 8k max{1, |z — y|}4k271.
Proof. (5.15), (5.18) and (5.19) imply

5:22) TLIF @l =TT e @l = TT I @015 =TT e w1

veS vES vgS vgS
(5.23) 1f*@)llo = llg"(W)llo  for each v & 5.
Given v € M(K), we denote by A, and p, respectively subscripts having
le =A% Nl = min flo = Axfe,  lly = By, llo = min ly =Byl
We partition the set M(K)\S into two subsets Si,Sa; here Sy consists of

those v for which |ly — Bj ||, > [|l# — A} |l, and Sy of those v for which
& — A3l > ly — B, - “Then by (5.23);

(5.24) 1f*(@)llo = [[b*lully — B, |I3* for each v € Sy,
(5.25) 1£* @)l > [la*[lollz — A% ||}, for each v € Sa.
On the other hand, for each v ¢ S we have

o —y— A5, + By llo < max{llz — A% s Iy — BL o}
Therefore (5.24) and (5.25) respectively yield
(5:26) /@)l > 6"l —y — A%, + B for cach v € Sy,
(5:27) N f*(@)o = [la*|ollx —y — A, + B, |, for each v € S,.
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Let S1,x,, be the subset of S; for which (5.26) holds with (Ay, fty) = (A, p).
Then

I[I @it < IT wistle -y — AL+ Bl

’UGSL,\,H Uesl,)\,u
= I Whle—y-a5+B7
’U%Sl)\,u
< I mescf 7o} max{L |lz -y — A5 + By}
Uesl,)\,p.

< h(b*)h(x —y — AN+ B,)™.
Taking the product over 1 < A < [ and 1 < p < m and using the same
argument for (5.27), we get

m

[T @It < a@)*ho") ”’”Hth—y A5+ B,

vgS A=1p=1
and thus by (5.17) and Lemma 5.1,
H Hf ‘ 1 < Slm(l+m)h( )lm(l+m)H*2(lm+1)(l+m)'
vgS

Thus by (5.12) and (5.22) there exists 7o with 1 < iy < such that

el < (Tens?)” (T )

vES veES

< 3m(l+m)H*2m(l+m)+l*1(2z+2m+1) ‘}m(l+m).

max{1, |z —y
Similarly, we find jo with 1 < jg < m such that
T Iy - B, < 3005 2 m o G20 (1, 05
veS
Finally, by (5.14) we get

11 Iz = A5 llolly = B, llollz — y — Af, + Bj, [l
veS

<hw—y—A;, +B;) [ (Ile = Af,llully = B;,Il.)
vES

< 3(m+l)2+1H2(m+l)2+(m+l)(2l+2m+1)/(ml)+2 ‘}(l+m)2+1

max{l, |z —y
< 34K7 a8k’ max{1, |x — y\}4k2_1,

as asserted.



The intersection of recurrence sequences 15

6. Multiplicative relations

LEMMA 6.1. Let K be a number field of degree d. Denote by w the number
of roots of unity in K. Then

(6.1) w < 2d°.

Proof. The group of roots of unity in K is cyclic of order w. It is
generated by a primitive wth root of unity ¢, which is a root of the wth
cyclotomic polynomial. Thus ¢(w) = deg ( < d, where ¢ is Euler’s function.
On the other hand, p(w) > (w/2)'/2, and (6.1) follows.

LEMMA 6.2. Suppose again that K has degree d. Suppose that o € K* is
such that there exists a natural number u with " € Q. Then in fact there
exists such a u having

(6.2) u < 2d°.
Proof. We have a* = ¢ for some ¢ € Q* and therefore o = C\q|1/“,
where |g|'/* is the positive uth root of |¢| and ¢ is a 2uth root of unity. So

« is a root of the polynomial
2 — ¢ = [[ (@ - cla/*/")
¢

where ( runs through the 2uth roots of unity. On the other hand, « is in K.
Therefore the minimal polynomial of a over Q, say p(x), is of degree say
e < dand p(z)| (22— ¢?). Hence p(x) = [T°_, (@ —Gilg[/*), where C1 ..., G,
are certain 2uth roots of unity. We may infer that |¢|*/* [];_, ¢ € Q. This
implies that [[_, ¢; is real, therefore +1, and therefore lg|*/* € Q. On the
other hand, o = (;|q|"/* for some i. It follows that ¢f € K, and hence
(7 = 1. But this implies that

Q= gl = lgl € Q.
Consequently, a®” € Q. In view of Lemma 6.1 and the hypotheses we have
we < 2d3,
and the assertion follows.

LEMMA 6.3. Let a and (8 be elements in K*, and neither a root of unity.
Let H be a quantity with

(6.3) H > max{h(a),h(B)}.
Suppose that there exist nonzero integers zi, zo with
(6.4) ot p*? =1.

Then there exist such integers having

(6.5) max{|z1|, 22|} < 60d°log H.
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Proof. This follows at once from Loxton and van der Poorten [5] (The-
orem 3). In fact, they proved that there exist nonzero integers z; with (6.4)
such that

max{|z ], |z2|} <w-d-logH - A1,

where w is the number of roots of unity in K and where A is the logarithm
of the right hand side in formula (5.7) of Dobrowolski’s result as quoted in
Lemma 5.2. Thus Lemma 6.1 implies the assertion.

7. Linear equations in S-integers. Let S be a finite subset of cardi-
nality |S| = s of M(K) as in Section 1. We suppose that S contains the set
of archimedean prime divisors My, (K) of K. An element z € K is called an
S-integer if ||z||, < 1 for each v € S. We consider the equation
(7.1) ri+...+x,=0

to be solved in S-integers z; € K.
Given a vector x = (x1,...,2,) € K™ we define the S-height by

Hs(x) = [ Il
veES
with ||x]|, as in Section 5.

We will need the following result of Schlickewei [9] (Theorem 1.4).

LEMMA 7.1. Suppose that n > 3. Let § > 0. Then the set of solutions of

equation (7.1) in S-integers 1, ..., x, satisfying
(7.2) H 1o - - lznllo < HS(X)l_(s
veS

s contained in the union of not more than

937(n—1)d! 652

(7.3) t = 2n°[(4sd!) ]

proper subspaces Uy, ..., U; of the (n—1)-dimensional linear space U defined
by equation (7.1).

8. The equation f(z)a” = g(y)3Y. Let

l
(8.1) f(x) :aH(x—Ai) with a # 0
and -
(8.2) glx)=b][(x—B;) withb#0
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be polynomials with a, A1,..., A}, b, By, ..., By € K. We suppose that
(8.3) max{l,m} < k.

Assume that o, € K* are not roots of unity but are multiplicatively de-
pendent. Let (p,q) € Z?, with p > 0 minimal, such that

(8.4) afl = p1 (=94, say).
We want to study the solutions (z,y) € Z? of the equation
(8.5) f(x)a® = g(y)pY.

In a qualitative sense such equations have been studied in [2] and in [11].
Here we ask for some quantitative information about the solutions.
Throughout, we assume that H is a quantity satisfying

(8.6) H > {3,h(a), h(3), h(a), h(b),h(A1),. .., h(A),h(By1),. .., h(Bn)}.
Given (x,y) € Z? we write
(8.7) v=pa' +p, y=qy+d,

where 2,y € Z and 0 < p’ < p, 0 < ¢ < q. (Notice that p’ and ¢’ are not
fixed, but will depend upon x and y respectively.)

LEMMA 8.1. The solutions (z,y) € Z* of (8.5) with

(8.8) max{|xz|, [y|} > exp(2°d°®log® H)
satisfy
(8.9) lqz — py| < 2"9dk"® log® H log(max{|qz|, [pyl}).

Proof. Using (8.4) and (8.7), we may write (8.5) as

(Sm,fy/ _ g(y) Oé*p/ﬁq,.

f(x)
(We remark in this context that (8.8) implies f(x) # 0.) Therefore by Lem-
ma 5.1, (8.1) and (8.2),

l

h(@)* =1 < n@h(®)( T hly = B) [T bl = 40 ) nte) " In(),

i=1
and by (8.6) this is
< H? 2™ max{1, [y|}"H™ - 2' max{1, |z|}' H HIPI*d
< 92k 2Rl ], 12",
But by Lemma 6.3, we have
(8.10) max{|p|,|q|} < 60d°log H.
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Combination of Lemma 5.2 and (8.8) yields
1
30d3
< 2klog2 + (2k + 120d° log H) log H + 2k log(max{|z|, |y|})
< 4k log(max{|z[, [y[}).
Finally, by (8.10) this implies

2" — 9| -

gz — py| < |pgx’ — pay'| + |ap’| + pq|
< 3600d'% log? H - 120d%k log(max{|z|, |y|}) + 7200d*? log® H
< 2"d"klog® H log(max{|x], |y|})
< 2"d"klog® H log(max{|qx|, |pyl}),

as asserted.

9. The equation f(z)a® = g(y)3Y, continued. We assume (8.1)—(8.7)
throughout. Recall that our number field K has degree d. Let .S be the finite
subset of M (K) of Section 1 with |S| = s and assume that |||, = ||B]|, = 1
forv ¢ S.

LEMMA 9.1. Let ¢1,co,c3 be integers with cica # 0 and c¢1/ca # q/p.
Then the number of common solutions (x,y) € Z? of the two equations

(9.1) azr=cy+c, flz)a” =g(y)p’
does not exceed
(9 2) 287244d!(2k)!

Proof. We assume without loss of generality that (¢1,c2) = 1. Then
we may parametrize the solutions of the linear equation as r = xg + cof,
Yy =yo + c1t (t € Z), where xy and y, are fixed and the second equation in
(9.1) becomes

(9.3) fleat + o)™ (a)! = gt +yo) B (B7)"  (t € Z).

Equation (9.3) is of the type covered by Theorem A of Section 2. We have
to consider two partitions. The first corresponds to the vanishing of each
side in (9.3) and gives f(caot + 29) = 0. Since f # 0, deg f < k, this has less
than £ solutions.

The second partition of (9.3) has no vanishing term. The corresponding
group G(P) is defined by

(9-4) (a®)” = (B7)".

As « and S are not roots of unity and ¢;/ca # q/p, (8.4) implies that (9.4)
has only the trivial solution z = 0. By Theorem A, this partition gives not
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more than
743d!(2k)!
920+572

solutions. Since this, plus k, does not exceed (9.2), the lemma follows.
LEMMA 9.2. Suppose that in (8.1), (8.2) we have

(9.5) min{l,m} > 0.

Let H be as in (8.6). Then the number of solutions (z,y) € Z* of equation

(8.5) satisfying

(9.6) qx—qA; #py—pB; for each pairi,j (1 <i<Il, 1<j<m)

and

(9.7) max{|z/, |y|} > exp(2!°%*d®log® H)

does not exceed

(9.8)

$745d!(2k)!

— 2d%K3.

Proof. We first remark that (9.7) implies that we are only considering
solutions (z,y) with f(z)g(y) # 0. Given a solution (z,y), we consider the
product

l m
(9:9) [[@-a)[[w-B)

i=1 j=1
corresponding to f(z)g(y) (but omitting the leading coefficients). We par-
tition the solutions (x,y) into classes £ = L(i,j) (1 <i <1, 1 <j<m)as
follows: (z,y) belongs to £(4, j) if the term (z — A4;)(y— B;) in (9.9) is small
in the sense of (5.21) of Lemma 5.4. Two different classes may overlap, but
this is of no importance. We will give an upper bound for the number of
solutions in each single class. As the total number of classes is

(9.10) Im < k2,

our assertion (9.8) will eventually follow.

We now restrict ourselves to solutions x,y in a fixed class say L(ig, jo),
and so we may assume in the sequel that Lemma 5.4 holds true for the pair
(40, o). To simplify the notation we will omit subscripts in what follows,
and we will write A, B instead of 4, Bj,. Recall (8.7), i.e.,

z=p'+p, y=q/+¢d (0<p <p, 0<¢ <lql).

Let D be a common denominator of A and B. By Lemma 5.1, D may be
chosen to satisfy

(9.11) D < H*,
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Put
x1 = Dgx — DqA, x3 = —(Dpy — DpB),
x3 = —(Dgx — Dpy — DqA + DpB).
The definition of D implies that x1,xo, x3 are algebraic integers, and hence
in particular they are S-integers. Moreover,

(9.12)

(913) x1 + 29+ 23 = 0.

We want to apply Lemma 7.1 to equation (9.13). To do so, we have to
verify hypothesis (7.2). For this purpose we apply Lemma 5.4. We rewrite
equation (8.5) as

l m
(9.14) aD ¢! H(qu — DqA;)a® =bD "p™™ H(Dpy — DpB;)B3Y
i=1 j=1
and apply Lemma 5.4 with
l m
f*(Dgz) = a* [[(Dgx — 47),  g"(Dpy) =" [[(Dpy — B;),
i=1 j=1

where a* = aD~lq7!, A = DqA;, b* = bD~™p™™, B} = DpB;. It is clear
that f*(Dqx) = f(z), ¢*(Dpy) = g(y) and so (8.5) becomes f*(Dqx)a”® =
g*(Dpy)BY. Hypothesis (5.20) of Lemma 5.4 is now hypothesis (9.6).

The conclusion of Lemma 5.4 will be true with

H* = max{h(a*), (A7), h(b"), h(B})}.
By Lemma 6.3 we have (cf. (8.6))
(9.15) max{|p|, |¢|} < 60d°log H.
Combining (9.15) and (9.11), by Lemma 5.1 we obtain
H* < (60dS log H)* H*+2kd < okd,

By Lemma 5.4 we may conclude (using (9.11)) that the z; in (9.12), (9.13)
satisfy

2 3 2
9.16) T llzallollz2llollzs)lo < 3% H*F 9 max{1, |Dgx — Dpy[}**
ves 4k? r744k3d 4k -1
<37 H™" “max{l, |qz —py|}™" .

On the other hand, by Lemma 5.3 and (9.7) we get
(917) H(l‘l,mg,{ﬂg)
= H(Dqx — DgA, Dpy — DpB, Dgx — Dpy — DgA + DpB)

max{|qz|, [py|}1/2
max{1, |qgx — py[}

= H(qx — qA,py — pB,qx —py — qA + pB) >
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provided that
(9.18) max{|qz|, [py|} > 16 max{h(qA), h(pB)}***.
By (9.15) we have
16h(qA)4+3 < 24(2548 log H)H3 HAT3 < (23¢H)04+18
and similarly
16h(pB)d+3 < (23dH)6d+18.

Therefore (9.18) will be satisfied if max{|z|,|y|} > (23dH)54+18 but this is
amply guaranteed by (9.7).

We want to obtain (7.2) with 0=1/2. Since Hs(x1, x2, x3)>H (x1, z2, T3),
and by (9.16), (9.17), this will be true if we have

2 3 2
(9.19) max{|qz|, [py|} > 3'%% H'* ¢ max{1, |gz — py|}'°*".

We are going to use Lemma 8.1, which is allowed since (9.7) implies (8.8).
We obtain

max{1l,[qz — pyl} - 3- H'* < 22'kd"® log? H - H''" log(max{|qz], [py|}),
and hence (9.19) will be satisfied if we have

(9.20) 2*'kd"® H'*¥log? H log(max{|qz|, |pyl}) < (max{|qz], |py|})"/***".

But it is easily checked that (9.7) implies (9.20).
So hypothesis (7.2) of Lemma 7.1 is indeed satisfied with ¢ = 1/2. We
may conclude that the solutions x1, z2, z3 of (9.12), (9.13) satisfy one of

(9.21) 2. 3% (4sd))2" " s
linear relations, each of which may be taken as
(9.22) 121 +caxo =0

with ¢1,¢c2 € K, (c1,c2) # (0,0).

Suppose first that in (9.22) we have ¢; = 0. Then (9.12) implies y = B
and therefore g(B) = 0, which is impossible by (9.7). Similarly, we may
conclude that ¢y # 0.

Next assume that ¢; = ¢3. Then (9.22) entails gz — gA — py + pB = 0,
which is excluded by (9.6).

Therefore, we may assume that in (9.22), cico # 0 and ¢1 # co. In view
of (9.12), (9.22) is a relation between x and y of the shape

(9.23) diz = day + d3,

and here dydy # 0 and dy/ds # q/p. Now, if a relation (9.23) involves two
different solutions (z(M,yM), (2(2), y?), then (dy,ds, d3) is proportional to
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a vector with integral components. Thus we may apply Lemma 9.1. Conse-
quently, each relation (9.23) leads to not more than

28724401!(%)!

solutions (x,y). Taking into account the number of possible relations (9.23)
as estimated in (9.21) and allowing a factor k? from (9.10) for the number
of classes L, we finally get the bound

k? -2 3%(4sd))

274d!

6 7o44d!(2k)! 7045d!(2k)!
s 425 2 < 25 2

—2d°K°.
The lemma follows.

LEMMA 9.3. Let f and g be as in (8.1)—(8.3). Suppose that
(9.24) min{l, m} > 0.

Let i,j with 1 < i <[, 1 < j < m be fizred. Consider the system of two
equations

(9.25(i, 5)) qr — qA; = py — pB;
where ¢ and p are as in (8.4), and

(926) f(@)a® = g(y)BY
in (z,y) € Z*. Set

(9.27) M = 2d°k.

We distinguish two cases.

(a) There exist no integers p' and q' having
(9.28) 0<p <p, ¢ =B+ % (0 — Ay)

such that we have the polynomial identity

(9-29) Fot+p)a? = glgt + )57 .
Then (9.25(3, 7)) and (9.26) have at most M common solutions.

(b) There exist unique integers p’,q" with (9.28) and (9.29). Then the
common solutions of (9.25(i, 7)) and (9.26) consist of the linear one-parame-
ter family
(9.30) r=pt+p, y=qt+q (t€),

plus at most M further solutions.

Remark. By Lemma 6.3, p and ¢ in (8.4) satisfy the estimate max{p, |¢|}
< 60d®log H. Thus by (9.28) it is decidable whether we get a family (9.30)
or not. In fact, if there is a solution family (9.30), then its data p,q,p’, ¢
are effectively computable (at least in principle).
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Proof of Lemma 9.3. Let (z,y) be a solution of (9.25(7, j)). Then
writing x = pt + p’ with 0 < p’ < p we get y = qt + ¢’ with ¢’ as in (9.28).
So the solutions of (9.25(4, 7)) in fact split into families

Fp: xz=pt+p, y=q+q, 0<p <p,

as in (9.30).
Given a family F,/, in view of (8.4) equation (9.26) becomes
(9.31) f(pt+p")a? = glat +q')57 .

Now, if we had two families 7 , 7, for which (9.31) is an identity, then com-
paring the leading coefficients we get a1 / e = P2 / (9. Hence aP1—P2 =
39~% and by the minimality of (p,q), (P — p5,q) — ¢b) is a multiple of
(p, q). In conjunction with |p} — pb| < p this gives p} = ph, whence ¢} = ¢5.
Therefore, if there exist integers p’, ¢’ with (9.28) and (9.29), then they are
uniquely determined.

It remains to be shown that the union of the families 7, for which we do
not have an identity (9.29) contains not more than M solutions (x,y), with
M asin (9.27). In fact, the solutions (z, y) of (9.25(3, j)) satisfy y = (¢/p)z+c
with ¢ = B; — (¢/p)A;. Thus (9.26) becomes

(932) f([l?)(lw — g<zx + C) ﬁ(Q/P)erc.

Notice that in (9.32) the exponent (¢/p)z + ¢ of (3 is an integer; therefore
the quotient 5(‘1/”)1’“/041 lies in K and so is a pth root of 391P¢/aP® in K.
But by (8.4), 5%* = aP*. Thus the quotient is a pth root of 5P¢ in K. Let
(3¢ be such a pth root. Then (9.32) splits into equations of the shape

(9.33) fla) = g(f}x + c) ¢,

where ¢ runs through the pth roots of unity in K. Given (, either (9.33)
holds identically in x or, since max{deg f,deg g} < k, it has not more than
k solutions. Since the number of roots of unity in K is < 2d?, solutions x
where (9.33) is not an identity are contained in a set of cardinality < 2d*k,
as asserted in (9.27).

Comparing the leading coefficients in (9.33), it follows, since 3 is not
a root of unity, that there exists at most one root of unity ¢ such that
(9.33) holds identically in z. It is clear that only such a ¢ can give rise to a
one-parameter family F,/ as in (9.30) having (9.29), and the lemma follows.

10. Equations f(z)a® = bpY. In Section 9 we have treated equa-
tion (8.5) under the assumption that both f and g have positive degrees.
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In this section we study equation (8.5) assuming that

(10.1) 9(y) = b,

i.e., that m = 0. We assume again that we have (8.4) and that (p,q) is
minimal. For the sake of completeness in our applications we state

LEMMA 10.1. Let a and b be elements of K*. Suppose that o, 3 € K* are
not roots of unity. Then the equation

(10.2) aa® = b3

either has mo solution (z,y) € Z* at all, or the set of solutions consists of
the one-parameter family

(10.3) r=pt+p, y=qt+q ()
where (p',q') € Z? is the unique solution of the equation aa? = bﬂq/ with
0<p' <p,q €Z. Moreover, if H> max{h(a),h(3),h(a),h(b)}, then
p' <60d°logH and |q'| <2''d°log H.
Proof. Only the assertion on p’ and ¢’ needs some comments. By

Lemma 6.3, we have p’ < 60d°log H. But, moreover, 37 = (a/b)ap/ im-
plies 2(3)17'1 < h(a)h(b)h(a)?", hence by Lemma 5.2,

(¢’ +2)logH,

lq'] 1o
30d3 =

and the assertion follows.

LEMMA 10.2. Let f(x) and g(z) be given by (8.1) and (10.1) respectively.
Suppose that f has at least two distinct zeros. Let H be a quantity with

(10.4) H > max{2,h(a),h(A1),...,h(4;),h(b)}.
Then the number of solutions (z,y) € Z* of equation (8.5) having
(10.5) || > H240+2)°
does not exceed
(10.6) 9s" 2%
Proof. Equation (8.5) now reads a(x — Ay)...(x — A4;) = bfYa~". Let
D be a common denominator of a, Ay, ..., A;,b. By Lemma 5.1, D may be
chosen with
(10.7) D < HU+2),
We have

(10.8) Da(Dx — DA,y)...(Dx — DA;)) = D' 'ppva™".
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Notice that here Dx — DA; # 0 for each i (1 < i <1). Now (10.8) implies
(10.9) [ Dall|[Dz — DAy, ... || Dz — DA, = [ 1Dl

veS vES
By the definition of D, each factor on the left hand side of (10.9) is > 1. We
suppose without loss of generality that A; # Ay and obtain from (10.9),

[ 1Dz — DAy |u||Dz — DA, < [T ID"*0]0.

veS veES
Thus, we may conclude that

(10.10) ] 1Dz — DAy ||| Dz — DAs|l,|| DAy — DAs|,
veES

< TP bl ]| DAy — DAy,
veS

< D"*2](b) - 2h(A1)h(Ay) < HAH3 =2
On the other hand, we get

(1011) H((D.’E - DAl, Dx — DAQ,DAl — DAQ))
== H(($ — Al,l’ — AQ,Al — Ag))

> [T e = Aullo I 1141 = As,

v|oo vtoo
= [T llz = AvllollAr — As) 5"
v|oo

Let o1,...,04 be the isomorphic embeddings of K in C. Then (10.4) and
(10.5) entail

d
H |z — Aill, = (H|.%'—O’ZA1) H 2] — |os Ay |)1/4

v|oo
. ||
| | || — HHY = |¢| — H? > 5

Moreover, we have
[T 141 = Azlly < 2h(A1)R(A,) < 2H?.
v]oo

Therefore, (10.11) implies

(10.12) H((Dz — DAy, Dz — DAy, DA, — DAy)) > |Z H2,
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Comparing (10.12) with (10.10) we obtain using (10.5),

(10.13) ] 1Dz — DAy ||| Dz — DAs|l,||DAy — DAs|,

vES
< fdi+3)* -2 < |~’U‘21/2H—1

< H((Dx — DAy, Dz — DAy, DA, — DAy))*/?
< Hg((Dx — DAy, Dz — DAy, DA, — DA5))Y/2.
We apply Lemma 7.1 to the equation x1 + x2 + x3 = 0 with
(10.14) 1 =Dx — DAy, xo=-Dx+ DAy, x3=DA;— DA,.

In view of (10.13), hypothesis (7.2) is satisfied with § = 1/2. The conclusion
is that the solutions x1, xs, x3 satisfy one of

(10.15) 2. 2%(4sdN)2” """
linear relations, each of which may be taken as

(10.16) c1x1 + cox2 = 0,

with ¢1, ¢ € K, (c1,¢2) # (0,0). If here ¢; = ¢, then by (10.14) we get A; =
As, a contradiction. Therefore each relation (10.16) implies an equation of
the shape x + c¢3 = 0, and hence determines x uniquely.

On the other hand, given = there is at most one value y such that
f(z)a® = bBY. Thus (10.6) follows from (10.15).

LeEMMA 10.3. Suppose that f(x) = a(x — A)! and g(x) = b, with a,b, A €
K, ab+# 0. Let H be a quantity satisfying

(10.17) H > max{2, h(a), h(A),h(b)}.
Suppose that

(10.18) A¢Q.

Then the number of solutions (x,y) € Z* of the equation
(10.19) f(@)a® =g(y)BY

(i.e., of (8.5)) with
(10.20) || > H24°(k+2)°
does not exceed

(10.21)

!
S7 280dA
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Proof. Let o1,...,04 be the isomorphic embeddings of our field K in
an algebraic closure. Then (10.19) implies

d d d

d d
[[o@[[@- o) o = [[o® [

=1 =1 i=1

Write [T 0i(a) = C, 03(A) = A; (i = 1,...,d), [T, 04(0) = B, [I 1, 04()
=a, H?:1 o;(8) = . Then we get

d
(10.22) Cl]= - A)'a’” = BB™.
=1

Since by (10.18), A ¢ Q, we may suppose that A; # As. So (10.22) is an
equation of the type studied in Lemma 10.2.

The only problem with (10.22) is that the zeros A; of the polynomial on
the left hand side in general will not lie in K but in the normal closure of K.
Conceivably this could have some impact in the application of Lemma 7.1.
However, the proof of Lemma 7.1 (cf. [9], Section 2, and [8], Section 2) is such
that in fact the result in Lemma 7.1 covers even the solutions in the normal
closure of K (this is the reason that (7.3) involves the parameter d! instead
of simply the degree d of K). Now, analyzing the proof of Lemma 10.2
we see easily that in our context everything goes through if we replace the
parameter H by H?. Thus hypothesis (10.5) becomes (10.20). With this new
hypothesis the conclusion remains the same, and (10.21) follows from (10.6).

We may summarize the results of this section as follows.

LEMMA 10.4. Let f(z) be given by (8.1) and g(x) = b with b # 0. Suppose
that deg f > 0 and that f is not of the shape a(x — A)' with A € Q. Let H
be a quantity with

(10.23) H > max{3, h(a), (A1), .., h(A), h(b), h(a)}.

Suppose that o € K* is not a root of unity. Then the number of solutions
(x,y) € Z? of the equation

(10.24) f(@)a® = g(y)B*
with

(10.25) |z > H24 (h+2)°
does not exceed

(10.26) 9s"2%%

Moreover, solutions (z,y) € Z* where (10.25) is violated have
(10.27) ly| < H2TER
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Proof. It suffices to prove (10.27). We get

BY = %(:1: —A})...(z — A)a”,

and hence by Lemma 5.1,
(B < H? - 2l x| H I,
Thus Lemma 5.2 and (10.25) imply
1
mwl < (I +2+ |z|)log H 4 llog|z| + llog 2
< (k+2+ H2P DT 4 k24 (k + 2)H + kH,

and (10.27) follows with a simple computation.

11. Equations f(z)a” = b#Y, continued. In this section, we study the
special case of equation (8.5) given by
(11.1) a(z — A)la® = bpY

where a,b € K*, A € Q, o, € K*, a and § are not roots of unity and
where [ > 0.
We suppose, moreover, that we have (8.4), i.e.,

(11.2) ol =p1  (=9)
and that here p > 0 is minimal.

LEMMA 11.1. Suppose that for all integers u # 0 we have o™ ¢ Q. Then
(11.1) has at most two solutions (x,y) € Z2.

Proof. As [ is not a root of unity, it is clear that given x € Z, there
is at most one y € Z such that (z,y) is a solution of (11.1). For a solution
(z,y) the relations (11.1), (11.2) imply

aPi(x — A)pql(;qw — pPaSPY .
Write w = py — gx. Then we get
(11.3) aPi(x — A)Pal = pPagw,
Now, suppose that we have two solutions (z1,w1), (r2,w2) € Z? of (11.3).
Then
(CCl — A)pql
(.Tg — A)pql
Our hypothesis implies that 0% € Q for u € Z is only possible for u = 0. Thus
by (11.4), we have w; = wy and consequently (z; — A)P4 = (2o — A)P4, Tt

follows that either x; = x5 or x1 + x5 = 2A. Thus given a solution (x1,w1),
every solution (z,w) has x = z; or x = 2A — z;.

— Jwi—w2

(11.4)
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Remark. The hypothesis of Lemma 11.1 may be effectively verified. In
fact, by Lemma 6.2, it suffices to check the powers a" with

(11.5) 1<u<2d
In the sequel we will suppose that some nonzero integral power of « lies

in Q. Then naturally the same holds true for § = a”.
Define u; as the least positive integer such that

(11.6) s € Qre
and define Q) € Q by
(11.7) Qrat = 5,
Since § = oP, (11.7) together with (11.5), (8.6) and (6.5) implies
(11.8) h(Q) < exp(120d° log® H).
LEMMA 11.2. Suppose that Q € Z. Let H be a quantity with
(11.9) H > max{3, h(a), h(b),h(A), h(a),h(5)}.
Then the solutions (x,y) € Z* of (11.1) satisfy
(11.10) py — qr < 222d**k1og* H.
Similarly, if Q= € Z, then the solutions (z,y) € Z* of (11.1) satisfy
(11.11) qz — py < 222d**klog* H.
Proof. Put py — gz = w; then (11.1) implies
(11.12) aPl(z — AP = pPasw,
Write
(11.13) w = U1z + Uo

with uy as in (11.6), z € Z and 0 < uy < ug. We infer from (11.5) and (6.5)
that

(11.14) uy < 2d3|pq|l < 7200kd*® log® H.
Now combination of (11.6), (11.7) and (11.12) yields
(11.15) (b/a)Pis™ = ((x — A)Q*)P € QlPel,

If there exists ug in the range 0 < ug < u; with (b/a)P46%0 € QP9 i.e. with
(11.15), then by the definition of uq, such a ug is uniquely determined. (If
there is no ug with this property, then (11.1) has no solution (z,y) € Z? at
all.) It is clear by (11.4) that there exists an algorithm to decide whether ug
exists and to determine uq effectively, if it exists.

Now suppose that ug is as in (11.15). Define the rational number r by

(11.16) Pl = (b/a)Pe6".
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Then by (11.14) we get

(11.17) h(r) < h(b)h(a)h(5)*" .
Combination of (11.15) and (11.16) yields
(11.18) r=A+rQ* withzx,z¢€Z.

Suppose that @ ¢ Z. Then for z € Z with 2% > h(A)h(r), (11.18) entails
that x ¢ Z. Thus in (11.18) we have necessarily

z < 2(log h(A) + log h(r)).
Using the definition of z in (11.13) together with (11.14) and (11.17) we
obtain
(11.19) w = u1z + ug < 2d°|pq|l(2(log h(A) + log h(r)) + 1)
< 22¢%10g" H,
and this is (11.10).

(11.11) follows in the same way.

LEMMA 11.3. Suppose that Q ¢ Z. Let H be as in (11.9). Then the
solutions (z,y) € Z? of (11.1) with

(11.20) py —qx >0

satisfy

(11.21) lz| < exp(2Bd*®log* H), |y| < exp(2'*d'®log* H).
Similarly, if Q=1 € Z, then the solutions (z,y) € Z* of (11.1) with
(11.22) py —qxr <0

satisfy (11.21).
Proof. We have (11.3), i.e.,
aPl(z — A)pql — pPaSPY—IT
So if (11.20) holds true, we have
h(z — A) < (h(b)h(a)h(8)Py—az)/Ipaly1/1
and therefore since py — gz = w and by (11.19),
2] < (hO)R(@h(3) P a2 )y ()
< H?log h(6) exp(4d?(log h(A) + log h(r))) + h(A).

Recall that § = a”, so that by (6.5), logh(§) < 60d°log® H, and from
(11.17) we get

1. ogh(r) <2log H + og < og” H,
11.23 log h 2log H + 120d° log? H < 27d° log® H
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which finally implies that |z| < exp(2'3d'®log* H). But then (11.10) and
(11.20) in conjunction with (9.15) give |y| < exp(2'*d*®log* H), and so
(11.21) follows.

The combination (11.22), (11.21) may be shown in the same way.

To finish our study of equation (11.1), we still have to deal with the cases
when @ in (11.7) satisfies

(11.24) QeZ or Qe

It turns out that this is the most complicated case. In [11] we called an
equation

f(z)a® = g(y)BY
exceptional of type 1 if f has exactly one root A (of arbitrary multiplicity)
and if this root lies in Q, if ¢ is a nonzero constant and «, 3 € K* are not
roots of unity but such that there exist nonzero integers p, ¢ with of = 9 =
J, and such that moreover some power 6" with v € Z\{0} lies in Z. We called
the equation exceptional of type 2 if the roles of f and g are interchanged.

So let us now deal with the exceptional equation of type 1. Suppose
Q € Z. Equation (11.1) gives (11.18), i.e.,

(11.25) r=AxrQ
and we ask for solutions (z, z) € Z2. Put
(11.26) A=B/D, r=C/D withD >0

and with B,C,D € Z, (B,C,D) = 1. Then D < h(A)h(r) and thus by
(11.23) and (6.5),

(11.27) D < exp(28d°log® H).
Then x given by (11.25) lies in Z if
(11.28) B+CQ*=0 (mod D).

Put D = Dy D5, where Dy is made up of primes dividing () and D5 of other
primes. Then for z with 2* > D; we get @* =0 (mod D;), and in view of
(11.28) this entails

LEMMA 11.4. Suppose that Q € Z and that B # 0 (mod Dy). Then the
solutions (z,y) € Z* of (11.1) satisfy

(11.29) lz| < exp(2t7d®log* H), |y| < exp(2'¥d®log* H).

Proof. By Lemma 11.3 we may suppose that py — qr > 0. Recall the
definition of z in (11.13). We have uj z+ug = py—qgx. Our hypothesis implies
that only such z are admitted for which 2% < D;. We infer from (11.27) that
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necessarily z < 29d° log? H. Combining this with (11.14), we get
py — qr < 2'°d"|pq|llog® H.
The proof may now be finished in exactly the same way as in Lemma 11.3.

It is clear that we get a result analogous to Lemma 11.4 if Q—! € Z.

We now suppose that B in (11.28) has B =0 (mod D). We detail only
the case when in (11.28) we have the + sign. By Lemma 11.3, it suffices to
find the solutions z € Z, z > 0, of the congruence

(11.30) B+ CQ*=0 (mod D),

since for z < 0 we have py — gr < 0 and that case is treated in (11.22),
(11.21). Values z with 2% < D; lead to solutions x,y of (11.1) with (11.29)
(this follows at once from the proof of Lemma 11.4).
If (11.30) has a solution z with 2* > D; at all, then it has such a solution

2T in the range

log Dy < log D4
log 2 ~ log2
Let 2™ be minimal with (11.31) such that (11.30) is satisfied for z = z*. By
(11.27), 2T is effectively computable. By definition of Dy, we have (Q, D) =
1. Let v > 0 be the least solution of Q¥ =1 (mod Ds). Again by (11.27) we
have

(11.32) 0 < v < @(Dy) < exp(28d”log® H).

It is now clear that the solutions z of (11.30) with z > (log D1)/log2 are
given by

(11.33) z=z2"+uvs (s€Z, s>0).

(11.31)

2.

In view of (11.18) we therefore obtain

(11.34) c=rQ° Q") +A=FER,+A (s€Z, s>0),

where E' = T’QZ+ and Ry = QV. Now by (11.3) we get

(11.35) py=w+qr = w1z +ug + qr = ¢E' Ry + uyvs + uizt +ug + gA
=qFE'Ry + F's + &,

say, with I/ = ujv and G’ = uy2z+ +ug + gA. But y needs to be an integer.

So the question is: for which s do we have

(11.36) ¢E'Ri+ F's + G' =0 (modp)?

Write p = p1ps where p; is a product of primes dividing Ry, and po is a
product of other primes. If s is so large that 2° > h(r)p, then the rational
number ¢E’R§ will have a numerator = 0 (mod p;). In view of (11.23)
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and (6.5) this will be satisfied if
(11.37) s> 28d%1og® H.

Solutions where (11.36) is violated lead to z = 2+ 4+ vs < exp(2°d° log? H)
by (11.27), (11.32) and (11.37), and this implies an effective bound for the
corresponding solutions x and y of (11.1) (cf. the proof of Lemma 11.3).
So it suffices to solve (11.36) for s > s with so = [2%d”log® H + 1], and
consequently we have to solve simultaneously

(11.38) F's+ F'sg+G =0 (mod p;)
and
(11.39) qE'RY°Ry+ F's + F'sp+ G' =0 (mod p2)

with s € Z, s > 0.

If the congruence (11.38) is solvable at all, then the solutions s run
through certain residue classes mod p;, and since we have effective bounds
for all parameters in (11.38), we may compute these classes effectively. Now,
given such a residue class s = p1t+p) (t € Z, t > 0), we have to solve (11.39)
for s in this class, i.e.,

(11.40) qE/Rgo—i_p/1 (REV)' + F'pit + F'(so + p}) + G' =0 (mod po)
(teZ, t>0).

Since (Ro, p2) = 1, the residue class of (RL')" (mod p2) depends only upon
the residue class of ¢ mod ¢(p2) and the solutions ¢ of (11.40) lie in suit-
able residue classes mod pa(p2) (if there are solutions t at all). Again since
we have effective bounds for all the parameters in (11.40), it is decidable
whether (11.40) admits solutions, and in the affirmative case we may deter-
mine effectively all residue classes.

Collecting our results, we see that the solutions s of (11.36) consist of
certain residue classes mod p;p2p(p2) and these classes are effectively com-
putable. Let Pt+ P’ (t € Z, t > 0) be such a residue class. Then by (11.34)

we get z(t) = rQ* QT (QF)! + A, and so

(11.41) z(t) = EpR'+A (t€Z, t>0),
where
(11.42) E=rQ" tFP'p=l R=Q"

Moreover, we obtain
Py =qr+w=qr+uz+ ug :qa:+uws+ulz++uo
= qx + w v Pt + uvP’ + uizt + uo,
and hence by (11.41),
(11.43) y(t) = BEqR' + Ft+ G (t€Z, t > 0),
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where
(11.44) F=uvP, G=qA+uvP +uzt +up.

All this was when @ € Z and we have the + sign in (11.28). If we have the —
sign in (11.28), then defining 2~ with respect to the congruence B—CQ* =0
(mod D) in the same way as we got 27, all the above still holds true mutatis
mutandis.

If, however, Q! € Z, then in the above construction we have to study
solutions x,y with 0 > w = py — gx = w12 + ug, and we have to focus on
z with z < 0. Again we obtain exponential families x(t),y(t) of the type
(11.41), (11.43). We only have to replace z* by —z" or 2~ by —z~ respec-
tively, and v by —v. We remark that in (11.41) and (11.43), the quantities
R and F do not depend upon the particular residue class mod P and that,
moreover, we have F' # 0.

We summarize what we have shown.

LEMMA 11.5. Suppose that equation (11.1) is exceptional of type 1. Then
apart from finitely many solutions x,y which may be effectively computed,
the solutions (x,y) of (11.1) make up a finite number (possibly zero) of one-
parameter exponential families, each of type (11.41), (11.43). There exists
an algorithm to decide whether such exponential families do occur at oll. If
such families do occur, then they are effectively computable.

12. Summary on equations f(z)a® = g(y)3Y. We collect the results
on equation (8.5) proved in the preceding sections. We assume throughout

that (8.1)—(8.6) are valid.

PROPOSITION 12.1. Suppose that (8.5) is not exceptional. Then there
exists an algorithm to decide whether (8.5) has infinitely or only finitely
many solutions.

(a) If (8.5) has only finitely many solutions, then all but at most

(12 1) M— $7045d!(2k)!
solutions have
(12.2) max(|zl, y|) < e(d, k, H)

with effectively computable c(d, k, H).

(b) If (8.5) has infinitely many solutions, then there is a unique linear
one-parameter family
(12.3) z(t)=pt+p, ylt)=qt+q (e

with 0 < p’ < p, such that all but at most M solutions lie in this family
or have (12.2). The family (12.3) and the bound c(d,k, H) are effectively
computable.
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Proof. The case when both f and g have positive degree follows from
Lemmata 9.2 and 9.3. The bound in (12.1) is the sum of the bounds in (9.8)
and k? times the bound in (9.27).

Lemma 10.1 covers the case when both f and g are constants. The re-
maining cases are treated in Lemmata 10.4, 11.1 and 11.3.

We remark that the bound 257280d! in Lemma 10.4 is smaller than the
bound in (12.1) since k > 1.

PROPOSITION 12.2. Suppose that (8.5) is exceptional of type 1. Then
there ezists an algorithm to decide whether (8.5) has infinitely many or only
finitely many solutions. Moreover:

(a) If (8.5) has only finitely many solutions, then each solution satisfies
(12.) max(fz], y]) < e(d &, H).

(b) If (8.5) has infinitely many solutions, then they make up finitely
many one-parameter exponential families, each of the type

(12.5)  z;(t) =pE;R'+ A, y;(t) =qE,R'+Ft+G; (t€Z, t>0)

(1<j<eldk,H)), and possibly some further solutions with (12.4).

Here the families (12.5) are effectively computable. Moreover, E;,G; are
rational numbers, F' is a nonzero integer that does not depend upon the
particular family, and R = o™ € Z for some u € Z\{0}. The constant in
(12.4) is effective.

Proof. The assertion follows at once from Lemmata 11.3 and 11.4 and
from formulas (11.41)—(11.44) in the proof of Lemma 11.4.

13. Intersections of solution families. We consider a system of equa-
tions

(13.1) f@)al =gi(y)By,

(13.2) fa(x)ag = g2(y) B3,

Here we suppose that f1, fa2, g1, g2 are nonzero polynomials as in (8.1), (8.2),
of respective degrees I, ls,m1, mo, with

(133) max{ll,lg,ml,mz} < k.

(z,y) € 72,

We assume that oy, s, 81,082 € K*, that as and [y are not roots of unity
and that

(13.4) o =g fori=1,2,

where p and ¢ are nonzero integers such that p > 0 is minimal with a relation
(13.4). Our hypotheses are such that at least equation (13.2) is of the shape
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studied in Sections 8-12. In studying simultaneously (13.1) and (13.2) we
distinguish the following cases.

(i) @ and (31 are not roots of unity;
(ii) a7 and (1 are roots of unity.

We first treat alternative (i).
We will make throughout the hypothesis

(H) Both (13.1) and (13.2) admit infinitely many solutions.
In view of Propositions 12.1 and 12.2 this will be no restriction.

If we choose (p1,q1) and (p2, g2) in Z? minimal such that ot = 3%, then
the pair (p,q) in (13.4) will be such that p is the least common multiple of
p1 and po.

LEMMA 13.1. Suppose that neither (13.1) nor (13.2) is exceptional and
that we have (H). Then the intersection of the linear families

(13.5) z1(t) =pita + 07, wvi(t) =qti +4q; (b €7Z)
and
(13.6) zo(ta) = pata + 15, y2(te) = qata +q5  (t2 € Z)

from (12.3) either is empty or equals

w(t) =pt+p, yt)=q+q (te),
where p is the least common multiple of py and ps and where 0 < p’ < p is
uniquely determined.

Proof. Suppose that the intersection of the families (13.5) and (13.6) is

not empty. Let tgo)’tgo) € Z be parameters having

ot 4l = ot 4l @tl? + g = @t + g

Then the intersection consists of points
w(t) = prtr + it 0, y(t) =at + ot v (4 € Z),

where t; satisfies the equation p1t; = pote with ¢1,t5 € Z. Here ¢; may be
written as 1 = pat/(p1,p2) with ¢t € Z and the assertion follows.

LEMMA 13.2. Suppose that one of (13.1), (13.2) is exceptional and the
other is not. Suppose, moreover, that we have hypothesis (H). Then the
intersection of the linear family (12.3) with the union of the exponential
families (12.5) contains at most two points (z,y).

)

Proof. Suppose without loss of generality that the linear family is

z1(t1) = pita + 01, vi(t) = aita + g1
Then we get py;(t1) — qx1(t1) = pqy — qp’. As for the exponential families,
let us go back in the proof of Lemma 11.5.
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The exponential families of the lemma are contained in the family

!

F
(13.7)  a(s) = E'Ry+ A, y(s) = SE/RS +s+ G (s€Z,520)

in (11.34) and (11.35), and possibly a second family of the same type cor-
responding to the — sign in (11.28). (Recall that in (13.7), y(s) is not nec-
essarily an integer.)

Now, F' # 0 in (13.7) and we get py(s) — qz(s) = F's + pG' — ¢4/,
and the intersection with the linear family leads to parameters s with F’s+
pG' — qA" = pq| — qp}. Hence we get at most one such parameter s. As we
have to consider at most two families of type (13.7), the assertion follows.

LEMMA 13.3. Suppose that one of (13.1), (13.2) is exceptional of type
1 and the other is exceptional of type 2. Suppose that hypothesis (H) holds
true. Let Ly be the union of the exponential families (12.5) coming from

(13.1), and similarly Lo from (13.2). Then
(13.8) Ly N Ly| < 22757

Proof. We suppose without loss of generality that (13.1) is of type 1
and (13.2) of type 2. As in the proof of Lemma 13.2, we go back to (11.34),
(11.35).

Therefore L; is contained in the union of two exponential families 1 (s1),
y1(s1) where

:1:1(31) = E1Ril + A1 (81 S Z)
with F1 € Q*, A; € Q and Ry € Z, |Ry| > 1. Similarly Lo is contained in
the union of two exponential families x2(s2), y2(s2), where

zo(sg) = EoR? + Fs+ G

with Fy € Q*, Ry € Z, |R2| > 1, F € Q*, G € Q. Moreover, as R; is an
integral power of a; and Ry an integral power of ay, R; and Ry are both
S-units. The equation x1(s1) = x2(s2) leads to an equation

(139) ElRil = EQR;Q + (F32 + C) - 1°%2,

and hence is of the type covered by Theorem 1 (notice that the left hand
side and the right hand side in (13.9) are not related). The conclusion is
that (13.9) has not more than

225187

solutions (s1, s2) € Z2. Allowing a factor 4 for the two alternatives we possi-
bly have in L; as well as in Ly, we finally get the bound 225287, as asserted.



38 H. P. Schlickewei and W. M. Schmidt

LEMMA 13.4. Suppose that both (13.1) and (13.2) are exceptional of
type 1. Suppose, moreover, that |aq| > 1 and |as| < 1. Assume that hypothe-
sis (H) holds true. Then the intersection of the set of exponential families Ly
corresponding to (13.1) and the set of exponential families Lo corresponding
to (13.2) is empty.

Proof. Let (x1(s1),y1(s1)) be an exponential family belonging to o and
(z2(s2),y2(s2)) be an exponential family belonging to as. The construction
of the families in Section 11 is such that (cf. Lemma 11.3) for s, € Z, s; > 0,
we have py1(s1) — qr1(s1) > 0 and pya(s2) — qza(s2) < 0. The assertion
follows.

LEMMA 13.5. Suppose that both (13.1) and (13.2) are exceptional of
type 1. Suppose, moreover, that |aq| > 1 and |ag| > 1. Assume that hy-
pothesis (H) holds true. Let Ly be the union of the exponential families
from (13.1) and Lo the union of the exponential families from (13.2). Then
it is decidable whether L1N Ly is infinite or not. L1 N Ly is infinite if and only
if f1 and fa have the same rational zero and af' = ay® for some nonzero
integers uy,us. Moreover:

(a) If Ly N Ly is finite, then it is of cardinality at most

o 2108057

(13.10) M :=2

(b) If L1 N Ly is infinite, then it consists of exponential families x;(t),
yi(t) (t€Z,t>0) (1 <j<c(dk, H)) of the type (12.5), plus at most M
further elements. These families are effectively computable. Here the param-
eter R of the families is an integral power of both a1 and «s.

Proof. To get in (13.10) a bound M that is independent of heights, it
is suitable not to use directly the different exponential families we have in
Proposition 12.2; but to go back to the proof of Lemma 11.5, as we have
already done in proving Lemmata 13.2 and 13.3. We got our exponential
families (12.5) by intersecting (11.34) and (11.35), i.e.,

/ /

F
(13.11) z(s) = E'R§+ A, y(s) = %E'RS + ;s + C; (seZ, s>0)

with Z2. (There may be two such families, if in (11.25) the — sign occurs as
well.)

To keep L N Lo under control, we first study the intersection of two
families (13.11) (never mind whether the points are in Z? or not) and only
when we have this intersection under control, will we ask for points in the
intersection whose components are integers.
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We have to solve a system

(13.12) z1(s1) = 22(s2),  y1(s1) = ya(s2)

where z;(s;), yi(s;) is of the type (13.11). The first equation in (13.12) yields
a relation

EORMP 4 AQ) = p@REs2 4 4@),

say. We may apply Theorems 1 and 210%1(; conclude that apart from possible
solutions in a set of cardinality < 22 *", this implies

(13.13)  EWRM = p@RP= A0 = 4@

where s1,82 € Z, s1,582 > 0.

We recall from (11.1) and (11.34) that A®M), A®) are the zeros of f; and fo
respectively. As R™) and R(®) are integral powers of a, oo respectively, R(!)
and R® are bounded in terms of d and H. So, either we have a relation

(1314) R(l)wl — R(Q)wQ

with wy,ws € N and bounded in terms of d and H, or (13.13) has not more
than one solution. (The bound in (13.10) is so generous that it easily takes
care also of such a single additional solution.) If (13.14) is solvable, then the
solutions (s1,s2) of (13.13) are of the shape

s1 = wit + 350), So = wat + Sgo) (t S Z, t> 0),

where w1, w2 is a minimal solution of (13.14) and where Sgo), Sg)) is a minimal

solution of (13.13). It is clear that wy, wo, s§°), sg)) are computable. We next

have to check the second equation in (13.12). In view of (13.13), and with
our values of s1, so, this reduces to

FO @it + s+ G0 = FO(wyt + s+ G (tezZ, t>0),

and hence it either has at most one solution ¢ or it is an identity in ¢.
In the latter case, we have to apply the considerations of Section 11 to
the family
RO w
a(t) = BORS (R 4 A,
(13.15)

RO w O F1) g0 (1)
o) = LB R iy g E g OS2 60

(teZ, t>0)

to guarantee that we get only values y(t) € Z. So we follow the considerations

©
after (11.36) with E’ replaced by E(I)R(gl)Sl , Ro replaced by R((]l)wl, F’
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replaced by F(Mw;, and G’ replaced by F(l)sgo) + G, Again we see that
either we get no solutions ¢ at all, or we get solutions ¢ that make up certain
residue classes. The details may be left to the reader.

Since RM) is an integral power of a; and R® is an integral power of ao,
it also follows from (13.14) that the parameter Ry = R(()l)w1 occurring in the
final families we get is an integral power of both a; and as.

We now treat alternative (ii), where ay and (3, are roots of unity.

LEMMA 13.6. Suppose that
(13.16) max{deg f1,deg g1} > 0.

Suppose, moreover, that (13.2) is exceptional and admits a set Lo of expo-
nential families (12.5) among its solutions. Then the intersection of Lo with
the set of solutions (x,y) of (13.1) has cardinality not exceeding

(13.17) 4k2.

Proof. Ly is contained in two families z;(s), y;(s), i = 1,2, each of the
shape (11.34), (11.35), i.e.,

(13.18) 2(s) = ER*+ A, y(s) = %ERS +Fs+G (s€Z)

with |[R| > 1, R€ Z, F # 0, E, A, F,G € Q. Since oy and (3; are roots of
unity, (13.1) implies

(13.19) fila(s) f(@(s) = g1(y()71(y(s)).
Combination of (13.18) and (13.19) gives an equation of the type
(13.20) Po(s)RP*=2% 4 Pi(s)RZF=3 4 4 Pyp_3(s)R® + Pay_a(s) = 0,

where the P; in (13.20) are polynomials with real coefficients and of degree
< i (0 <i<2k—2). Since FF # 0 in (13.18), and by (13.16), we may
conclude that not all polynomials P; in (13.20) are identically zero.

But then an easy application of Rolle’s Theorem (cf. Pélya—Szego [6],
p. 48, Aufgabe 75) shows that (13.20) has less than 2k? solutions s € R.
Allowing a factor two for the possible second family z5(s), y2(s) making up
Lo, we get the assertion.

LEMMA 13.7. Suppose that in (13.1) we have fi(x) = a, gi1(x) =b. Sup-
pose, moreover, that (13.2) is exceptional and admits a set Lo of exponential
families of type (12.5) among its solutions. Then the intersection of Lo with
the set of solutions (z,y) of (13.1) consists of a finite set which is effectively
computable and possibly a finite set of exponential families again of type
(12.5), and these families are effectively computable.

Proof. Let w be the smallest natural number such that
(13.21) af = [y
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By Lemma 6.1, w < 2d?. Write z = w2z’ + w, and y = wy’ + w, with
0 <w, <wand 0 <w, <w. Thus the problem consists in determining the
intersections of exponential families z(s),y(s) with residue classes = = w,
(mod w), y = w, (mod w). As was shown in Section 11, this is effectively
solvable and leads to a finite set and possibly some exponential families.
(Since w < 2d?, everything is under control.)

LEMMA 13.8. Suppose that (13.2) is not exceptional, but has a linear
one-parameter family (12.3) among its solutions. Then the intersection of
this family with the set of solutions of (13.1) consists of a set of cardinality
not exceeding

(13.22) 2d°k
and possibly a (unique) linear family
(13.23) z(t)=pt+p, yt)=q+q (t€),

where 0 < p’ < p.

Proof. Let (p2,g2) be a minimal pair with ab? = 83* and ps > 0. Then
(13.2) gives the unique linear family

(13.24) z(t) =pat +py, y(t) =qt+qy (t€Z)

with 0 < p}, < po. Pick w € N minimal with o} = §{*. By Lemma 6.1, we
have w < 2d?. Therefore, the pair p,q in (13.4) has p = vps, ¢ = vqe With
veN v< 2d2.

The family (13.24) splits into v families

(13.25) at)=pt+p, y=q+q (t€Z)

with 0 < p’ < p (in fact, p’ = ph + ips and ¢’ = ¢} + ige for some i with
0<i<uw).
Now, given a family (13.25), equation (13.1) becomes

(13.26) fipt +p)ak = gi(at + )87

This is a polynomial equation in ¢. Thus either (13.26) is an identity in ¢ or it
has less than k solutions ¢. The minimality of the pair (p, ¢) in (13.4) implies
that at most one of the families (13.25) may give an identity in (13.26). As
v < 2d?, we obtain (13.22).

14. Proof of Theorems 3 and 4 and of the corollaries. Let us
begin with Theorem 4. We proceed by induction on r. If r = 1, the assertion
follows from Proposition 12.2 and Lemma 13.7. Now suppose that r > 1
and that the assertion holds true for r — 1. The theorem then follows from
Lemma 13.5(b), in fact (13.10) implies the bound (1.30).

Now let us turn to Theorem 3. If r = 1, we have two possibilities.
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Fither fi(z)af = g1(y)3} is not exceptional. Then by Proposition 12.1
a set with 2572 clements will suffice, plus additionally 2d?k elements
from Lemma 13.8, and the theorem follows.

Or fi(z)af = g1(y)BY is exceptional but not both fy and go are constant.
Then by Lemma 13.6 a set M; with < 4k? elements suffices.

Now suppose that r > 1. As F, G is not exceptional, we may infer that
there is a pair 4,7 (0 <14 < j <r) such that the system

(14.1) filw)ai = gi(y)B!,  fi(x)af = g;(y)B]

is not exceptional (in an obvious sense). So, for the set of solutions of (14.1)
we may apply one of Lemmata 13.1-13.6, 13.8. The assertion follows at
once as for the exceptional set of cardinality < M; the worst cases arise
if one equation in (14.1) is not exceptional and the other involves roots of
unity, or if both equations are as in Lemma 13.5. We may conclude that an
exceptional set of cardinality

91080 ;7 7545d!(2k)!

< max{2° °,2° + 2d%k}

will suffice. The theorem follows.

As for Corollary 1, we clearly get the one-parameter family of solutions
m=t,n=t(te€Z).If {u,} is symmetric, then we have relations (1.34).
Hence a1 1 is a root of unity in K and so by Lemma 6.1 we have w < 2d2,
which gives the possible second family (1.39) by Theorem 3. We still have
to prove the bound (1.36).

We apply Theorems 2 and 3. By Theorem 2 the number of solutions
(1.37) that do not satisfy (1.20) or (1.21a,b) has cardinality

7245du2k3ﬂ

(14.2) < 29

From Theorem 3, applied to (1.20), and also to (1.21a,b) if {u,,} is sym-
metric, we get in addition a set of cardinality

$746d!1(2k)!

14.3 < 2max{22"7", 2
( ,
As we assume k > 1, the sum of the bounds in (14.2), (14.3) does not exceed

7 o46d!(2k3)!
s72 6d!(2k°)!
Y

and Corollary 1 follows.

Finally, let us deal with Corollary 2. The linear family corresponding to
equations (1.20), by Theorem 3 now has the shape m(t) = ¢, n(t) =t +to
(t € Z). It implies the polynomial identities

fit) = gfi(t +to)ale  (i=0,...,7).
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Hence we get (b/a)al® = 1 and the identity fi(t) = fi(t + to). Now either
deg fi1 > 0 and tg = 0 or deg f; = 0. In the latter case, as k£ > 1, we have
at least one further root a; with i # 1 and (b/a)al® = 1. But then by
nondegeneracy to = 0, and so in all cases b/a = 1, which contradicts our
hypothesis.

Now assume that {u,,} is symmetric. As above in Corollary 1, we pos-
sibly get a one-parameter family m(t) = wt +t', n(t) = —wt + " (t € Z)
with 0 < w < 2d?, which induces the polynomial identities in t,

’ b "
filwt +t')af = 5fi+1(—Wt + ")y

(14.4) (1 <i<r, iodd).

/ b
fl+1(wt + t/)af_'_l = Efl(_wt _|_ t//)afil

Write | = deg f; = deg f;1+1. Let a; and a;41 be the leading coeflicients of f;
and f;41 respectively.
Comparing the leading coefficients in (14.4) we get

it 1b 1t 1t l
aw'a; = (—1) LW Xy, i 1W Qi = (1) P

l 17

t
Ozi,

hence (oaip1)! " = (b/a)?. Tt follows that b/a is a root of unity. The
estimate (1.41) follows in the same way as (1.36) in Corollary 1.
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