On prime primitive roots

by

Amora Nongkynrih (Madras)

Notation. The letters p, q and l denote prime numbers. For a positive real number H, N(H,p) denotes the number of primes $q \leq H$ which are primitive roots (mod p). $N(\sigma, T, \chi)$ denotes the number of zeros of the Dirichlet L-function $L(s, \chi)$ in the rectangle $\sigma \leq \text{Re } s \leq 1$, $-T \leq \text{Im } s \leq T$.

For a given prime p, let

$$F_p(s) = \prod_{\chi \pmod{p}} L(s, \chi).$$

For any positive integer k, $\log_k x$ is defined as follows: $\log_1 x := \log x$ and for $k \ge 2$, we inductively define $\log_k x = \log_{k-1} \log x$.

[x] denotes the integral part of x.

1. Introduction. The purpose of this paper is to prove a result on the distribution of primitive roots, similar to one which appeared in a paper of Elliott [3], in which he obtained an asymptotic formula for N(H, p), valid for "almost all" primes p. More precisely, he obtained the following (Theorem 1 of [3]):

Let ε and B be arbitrary positive constants. Then there is a set of primes E, and a positive constant $F = F(\varepsilon, B)$, so that for all p not in E the estimate

$$N(H,p) = \frac{\phi(p-1)}{p-1} \, \pi(H) \bigg\{ 1 + O\bigg(\frac{1}{(\log H)^B}\bigg) \bigg\}$$

holds uniformly for $H \ge \exp(F \log_2 p \log_3 p)$. Moreover, the sequence E satisfies $E(x) = O(x^{\varepsilon})$ for all large values of x.

In proving the result, Elliott had applied the first fundamental lemma (Lemma 4 of [3]), but there appears to be some discrepancy in the choice of the parameters in the application of the lemma. In this paper, we use a zero density estimate for L-functions and Brun's sieve to obtain an asymptotic formula for N(H, p) which holds uniformly, for "almost all" primes p, in a

larger range for H than that stated in [3]. This arises as a special case of the asymptotic formula for N(H,p) which holds for "almost all" p, in a wider range for H at the expense of a weaker error term.

The theorem to be proved is the following:

THEOREM 1.1. Let α be a real number satisfying $0 < \alpha e^{1+\alpha} \le 1$. Then for almost all primes p, the following statement is true:

Let $\alpha \geq c/(\log_2 p)^{1/2}$, for a suitable constant c. Then, given B > 0, there exists C = C(B) such that whenever $H \geq \exp((C \log_2 p)/\alpha)$,

(1)
$$N(H,p) = \frac{\phi(p-1)}{p-1} \pi(H) (1 + O(\alpha^{B/\alpha})).$$

Furthermore, the number of primes up to Y for which (1) does not hold is

$$O\bigg(\exp\bigg(\frac{G\log Y\log_2 Y}{\log H}\bigg)\bigg)$$

where G is a constant.

Choosing $\alpha = \log_4 p / \log_3 p$ in Theorem 1.1, we get the following:

Theorem 1.2. Let ε and B be arbitrary constants. Then for almost all primes p, the following holds:

(2)
$$N(H,p) = \frac{\phi(p-1)}{p-1} \pi(H) \left(1 + O\left(\frac{1}{(\log H)^B}\right) \right)$$

whenever

$$H \geq \exp{\left(\frac{C\log_2 p \log_3 p}{\log_4 p}\right)},$$

for some constant $C = C(\varepsilon, B)$. Furthermore, the number of primes up to Y for which (2) does not hold is $O(Y^{\varepsilon})$.

COROLLARY 1.3. If E(Y) denotes the number of primes up to Y for which (1) does not hold, then $E(Y) = O((\log Y)^F)$ when $H \geq Y^{\delta}$, for some δ and for some F, with $0 < \delta < 1$ and $F = F(\delta)$.

2. The exceptional primes. Call a prime p an exceptional prime if (1) does not hold for p.

We need a lemma which was proved in a paper of Burgess and Elliott [1]. However, for our purposes, we require a different approach. We shall use Perron's formula to prove this lemma, and then apply a zero density estimate for L-functions. This will show that the number of exceptional primes is small.

To start with, we recall below the notation of Burgess and Elliott [1]: Let $\{\beta_{d,p}\}$ denote a double sequence of real numbers satisfying

$$0 \le \beta_{d,p} \le 1/\phi(d).$$

Define

$$T_p = \sum_{\substack{d \mid p-1 \\ d > 1}} \beta_{d,p} \sum_{\chi_d \pmod{p}} \left| \sum_{q \le H} \chi_d(q) \right|$$

where χ_d runs through the characters \pmod{p} whose order is d. Let

$$\varrho(p) = \sum_{\substack{d \mid p-1\\\beta_{d,p} > 0}} 1.$$

Let λ , R be positive real numbers, $Y \geq 3$. Define

$$S_1 = S_1(\lambda, R) = \{ p \le Y : \varrho(p) < R, \ T_p > \pi(H)/\lambda \}.$$

LEMMA 2.1. If p is a prime for which $L(s,\chi)$ does not vanish for any character χ modulo p (that is, $F_p(s) \neq 0$) in Re $s > 1 - \varepsilon$, and $\varrho(p) < R$, then $T_p = O(\pi(H)/\lambda)$, provided

$$\varepsilon \ge \max \left(\frac{4 \log R}{\log H}, \frac{2 \log \lambda}{\log H}, \frac{12 \log_2 p}{\log H} \right).$$

Proof. Let a and T be real numbers such that a>1 and T is sufficiently large. By Perron's formula, we have

$$\sum_{n \le H} \chi_d(n) \Lambda(n) = \frac{1}{2\pi i} \int_{a-iT}^{a+iT} \{ L'(s, \chi_d) / L(s, \chi_d) \} \frac{H^s}{s} \, ds + O\left(\frac{H^a \log^2 pT}{T}\right)$$

since $L'(s, \chi_d)/L(s, \chi_d) = O(\log^2 pT)$ in $-1 < \text{Re } s \le 2$, for a suitable choice of Im s = T. (See, for example, [2].) Choose $a = 1 + 1/\log H$.

Since we are considering only primes p with $F_p(s) \neq 0$ in Re $s > 1 - \varepsilon$, moving the line of integration to Re $s = 1 - \varepsilon$ gives

$$\sum_{n \le H} \chi_d(n) \Lambda(n) = \frac{1}{2\pi i} \int_{1-\varepsilon - iT}^{1-\varepsilon + iT} \{ L'(s, \chi_d) / L(s, \chi_d) \} \frac{H^s}{s} ds + O\left(\frac{H \log^2 pT}{T}\right)$$
$$= O(H^{1-\varepsilon} \log^2 pT \log T).$$

In particular, choosing T = p, we get

(3)
$$\sum_{n \le H} \chi_d(n) \Lambda(n) = O(H^{1-\varepsilon} \log^3 p).$$

Notice that

$$\sum_{q < H} \chi_d(q) \log q = \sum_{n < H} \chi_d(n) \Lambda(n) + O(H^{1/2})$$

and that

$$\sum_{n < m} \chi_d(n) \Lambda(n) = O(m^{1-\varepsilon} \log^3 p) \quad \text{ for all } m < H.$$

Thus, using Abel's identity and (3) it follows that

(4)
$$\sum_{q < H} \chi_d(q) = O(H^{1-\varepsilon} \log^3 p).$$

Therefore,

$$T_{p} = \sum_{\substack{d \mid p-1 \\ d>1}} \beta_{d,p} \sum_{\chi_{d} \pmod{p}} \left| \sum_{q < H} \chi_{d}(q) \right|$$

$$\ll H^{1-\varepsilon} \log^{3} p \sum_{\substack{d \mid p-1 \\ d>1}} \beta_{d,p} \phi(d) = H^{1-\varepsilon} \log^{3} p \left(\sum_{\substack{d \mid p-1 \\ \beta_{d,p} > 0}} 1 \right)$$

$$= H^{1-\varepsilon} (\log^{3} p) R = H^{1-\varepsilon/4} \lambda^{-1} (H^{-\varepsilon/2} \lambda) (H^{-\varepsilon/4} R) \log^{3} p.$$

Hence $T_p = O(\pi(H)/\lambda)$ whenever the following conditions hold: (i) $H^{-\varepsilon/2}\lambda < 1$, (ii) $H^{-\varepsilon/4}R < 1$ and (iii) $\log^3 p < H^{\varepsilon/4}$.

This completes the proof of the lemma.

We choose $R = (\log p)^A$, where A is a sufficiently large constant, and $\lambda > R^2$; the value of λ will be chosen in due course.

Lemma 2.2.

$$\#S_1 \ll \log^{14} Y \exp\left(C \frac{\log \lambda \log Y}{\log H}\right).$$

Proof. Let $\varepsilon = 2 \log \lambda / \log H$. Then

$$\varepsilon \geq \max\bigg(\frac{4\log R}{\log H}, \frac{2\log \lambda}{\log H}, \frac{12\log_2 p}{\log H}\bigg).$$

Further, for any $p \in S_1$, $T_p > \pi(H)/\lambda$. Therefore, by Lemma 2.1, it follows that

$$S_1 \subseteq \{p \leq Y : F_p(s) = 0 \text{ for some } s \text{ in the rectangle } \}$$

$$1 - \varepsilon < \operatorname{Re} s < 1, -Y < \operatorname{Im} s < Y \}.$$

Using the estimate

$$\sum_{p \leq Y} \sum_{\chi}' N(\sigma, T, \chi) \ll (Y^2 T)^{2(1-\sigma)/\sigma} (\log Y T)^{14}$$

(here $\sum_{\chi}' =$ the sum over all primitive characters χ modulo p) for $4/5 \le \sigma \le 1$ (cf. Montgomery [5], p. 99), and also using our specific choice of ε , we see that

$$\sum_{Y$$

$$\ll Y^{(C\log\lambda)/\log H}(\log Y)^{14}$$

Hence $\#S_1 \ll (\log Y)^{14} \exp(C \log \lambda \log Y / \log H)$, which proves the lemma.

3. Derivation of the asymptotic formula. In this section, we consider only those primes for which $F_p(s) \neq 0$ in Re $s > 1 - \varepsilon$, with ε as chosen in Section 2. Given a prime p with this property, we obtain an asymptotic formula for the number of prime primitive roots (mod p) which are less than H.

Notice that if $d \mid p-1$, then

$$\frac{1}{d} \sum_{\substack{\chi \pmod{p} \\ \text{ord } \chi \mid d}} 1 = \begin{cases} 1 & \text{if } d \mid \text{ind } q, \\ 0 & \text{otherwise,} \end{cases}$$

where "ind q" stands for the index of q with respect to a fixed primitive root mod p.

Let l denote a prime divisor of p-1. Then

 $\#\{q \le H : q \text{ is not a primitive root } (\text{mod } p)\}\$

$$\leq \sum_{l|p-1} \frac{1}{l} \sum_{\text{ord } \chi|l} \sum_{q \leq H} \chi(q) = \pi(H) \sum_{l|p-1} \frac{1}{l} + \sum_{l|p-1} \frac{1}{l} \sum_{\chi_l} \sum_{q \leq H} \chi_l(q).$$

We break each sum into two parts: (i) $l \leq \log^2 p$, (ii) $l > \log^2 p$.

Lemma 3.1 below deals with the sum in (i) using Brun's sieve, and in Lemma 3.2 we estimate the sum in (ii) using Lemma 2.1. With notations as in [4], we state the following theorem, which is Brun's sieve in the form needed for our application (cf. [4], p. 57).

Theorem 3.1. Assume that the following conditions hold:

(a)

$$1 \le \frac{1}{1 - \omega(p)/p} \le A_1$$

for some suitable constant $A_1 \geq 1$.

(b) For suitable constants $\kappa > 0$ and $A_2 \geq 1$,

$$\sum_{w$$

if $2 \le w \le z$.

(c)
$$|R_d| \le \omega(d)$$
 if $\mu(d) \ne 0$ and $\omega(d) \ne 0$.

Let α be a real number satisfying $0 < \alpha e^{1+\alpha} \le 1$, and let b be a positive integer. Then

(5)
$$S(\mathcal{A}; \wp, z) \leq XW(z) \left\{ 1 + 2 \frac{\alpha^{2b+1} e^{2\alpha}}{1 - \alpha^2 e^{2+2\alpha}} \exp\left(\frac{(2b+3)c_1}{\alpha \log z}\right) \right\} + O(z^{2b+\{2.01/(e^{2\alpha/\kappa}-1)\}})$$

and

(6)
$$S(\mathcal{A}; \wp, z) \ge XW(z) \left\{ 1 - 2 \frac{\alpha^{2b} e^{2\alpha}}{1 - \alpha^2 e^{2 + 2\alpha}} \exp\left(\frac{(2b + 2)c_1}{\alpha \log z}\right) \right\} + O(z^{2b - 1 + \{2.01/(e^{2\alpha/\kappa} - 1)\}})$$

where

$$c_1 = \frac{A_2}{2} \left\{ 1 + A_1 \left(\kappa + \frac{A_2}{\log 2} \right) \right\}.$$

Remark 1. The constants implied by the use of the O-notation do not depend on b and α .

Remark 2. The replacement of the condition (c) of the theorem by the more general $|R_d| \leq L\omega(d)$ changes the theorem only to the extent of introducing a factor L into the last error term in each of (5) and (6).

LEMMA 3.1 (Application of Brun's sieve). Let p be a prime for which $F_p(s)$ is non-zero in $\operatorname{Re} s > 1 - (2 \log \lambda / \log H)$. Let $\mathcal{A} = \{\operatorname{ind} q : q \leq H\}$, $z = \log^2 p$, and $\wp = the$ set of all prime divisors l of p-1. Then

$$S(\mathcal{A}; \wp, z) = \frac{\phi(p-1)}{p-1} \pi(H) (1 + O(\alpha^{B/\alpha}))$$

where α is a real number satisfying $0 < \alpha e^{1+\alpha} \le 1$, $\alpha \gg 1/(\log z)^{1/2}$, and B is a constant.

Proof. With these choices of \mathcal{A} , \wp and z, it follows that

$$\omega(p) = 1$$
 if $p \in \wp$, $X = \pi(H)$, $\kappa = 1$,

and

$$W(z) = \prod_{\substack{q|p-1\\q \le z}} \left(1 - \frac{1}{q}\right).$$

We see that

$$\#\{q \le H : d \mid \text{ind } q, \ d \mid p-1\} = \frac{1}{d} \sum_{q \le H} \sum_{\substack{\chi \, (\text{mod } p) \\ \text{ord } \chi \mid d}} \chi(q).$$

Hence,

$$|\mathcal{A}_d| = \frac{1}{d} \sum_{\substack{\chi \pmod{p} \\ \text{ord } \chi \mid d}} \sum_{q \le H} \chi(q) = \frac{1}{d} \pi(H) + \frac{1}{d} \sum_{\substack{\chi \ne \chi_0 \\ \text{ord } \chi \mid d}} \sum_{q \le H} \chi(q)$$
$$= \frac{1}{d} \pi(H) + \frac{1}{d} \sum_{\substack{t \mid d \\ t > 1}} \sum_{\chi_t} \sum_{q \le H} \chi_t(q)$$

where χ_t runs through characters of order t. Therefore,

$$R_d = \frac{1}{d} \sum_{\substack{t \mid d \\ t > 1}} \sum_{\chi_t} \sum_{q \le H} \chi_t(q).$$

Using (4), we get

$$|R_d| \ll \frac{1}{d} \sum_{t|d} \sum_{\chi_t} \left| \sum_{q \le H} \chi_t(q) \right| \ll \left(\frac{1}{d} \sum_{t|d} \sum_{\chi_t} 1 \right) H^{1-\varepsilon} \log^3 p$$
$$\ll \left(\frac{1}{d} \sum_{t|d} \phi(t) \right) H^{1-\varepsilon} \log^3 p = H^{1-\varepsilon} \log^3 p \ll \pi(H) / \lambda.$$

The last step follows as in the proof of Lemma 2.1. We take $b = [1/\alpha]$ in Theorem 3.1, and Brun's sieve then gives

(7)
$$S(\mathcal{A}; \wp, z) \leq \pi(H)W(z) \left\{ 1 + 2 \frac{\alpha^{2b+1}e^{2\alpha}}{1 - \alpha^2e^{2+2\alpha}} \exp\left(\frac{(2b+3)c_1}{\alpha \log z}\right) \right\} + O\left(\frac{\pi(H)}{\lambda} z^{2b+\{2.01/(e^{2\alpha}-1)\}}\right)$$

and

(8)
$$S(\mathcal{A}; \wp, z) \ge \pi(H)W(z) \left\{ 1 - 2 \frac{\alpha^{2b} e^{2\alpha}}{1 - \alpha^2 e^{2 + 2\alpha}} \exp\left(\frac{(2b + 2)c_1}{\alpha \log z}\right) \right\} + O\left(\frac{\pi(H)}{\lambda} z^{2b - 1 + \{2.01/(e^{2\alpha} - 1)\}}\right)$$

with

$$W(z) = \prod_{q|p-1} \left(1 - \frac{1}{q} \right) \prod_{\substack{q|p-1\\q \ge z}} \left(1 - \frac{1}{q} \right)^{-1}$$
$$= \frac{\phi(p-1)}{p-1} \left(1 + O\left(\frac{1}{\log p \log_2 p}\right) \right).$$

With our choice of b, we now estimate the error terms in (7). Similar estimates can be obtained for the inequality (8). The estimate for the first error term is

$$\frac{\alpha^{2b+1}e^{2\alpha}}{1-\alpha^2e^{2+2\alpha}}\exp\frac{(2b+3)c_1}{\alpha\log z}\ll \alpha^{B/\alpha}$$

whenever $\alpha^2 \gg 1/\log z$. Since α is small, the last O-term satisfies

$$\frac{\pi(H)}{\lambda} \exp((2b + \{2.01/(e^{2\alpha} - 1)\}) \log z) \ll \frac{\pi(H)}{\lambda} z^{B'/\alpha}$$

for a constant B'. We choose $\lambda > z^{B'/\alpha} = (\log p)^{2B'/\alpha}$. For our purposes, we take λ to satisfy $\log \lambda = (C' \log_2 p)/\alpha$, for a sufficiently large constant C'.

Using the estimates in (7) and (8), it follows that

$$S(\mathcal{A}; \wp, z) = \frac{\phi(p-1)}{p-1} \pi(H) \left(1 + O\left(\frac{1}{\log p \log_2 p}\right) \right) (1 + O(\alpha^{B/\alpha})) + O\left(\frac{\pi(H) z^{B'/\alpha}}{\lambda}\right).$$

Therefore, we get

$$S(\mathcal{A}; \wp, z) = \frac{\phi(p-1)}{p-1} \pi(H) (1 + O(\alpha^{B/\alpha})),$$

which proves the lemma.

We now consider the sum in (ii).

Lemma 3.2. Let

$$L = \sum_{l > \log^2 p} \frac{1}{l} \Big(\pi(H) + \sum_{\chi_l} \sum_{q \le H} \chi_l(q) \Big).$$

Then $L = O(\pi(H)/\log p)$.

Proof.

$$L = \pi(H) \sum_{l > \log^2 p} \frac{1}{l} + \sum_{l > \log^2 p} \frac{1}{l} \sum_{\chi_l} \sum_{q \le H} \chi_l(q).$$

Then

$$|L| \le \frac{\pi(H)}{\log p} + \sum_{l > \log^2 p} \frac{1}{l} \sum_{\chi_l} \Big| \sum_{q \le H} \chi_l(q) \Big| \ll \frac{\pi(H)}{\log p} + \frac{\pi(H)}{\lambda},$$

applying Lemma 2.1 to the second sum on the right with

$$\beta_{l,p} = \begin{cases} 1/l & \text{if } l \mid p-1, \ l > \log^2 p, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, $L = O(\pi(H)/\log p)$.

Proof of Theorem 1.1. Lemmas 3.1 and 3.2 imply that for almost all primes p,

$$N(H,p) = \frac{\phi(p-1)}{p-1}\pi(H)(1 + O(\alpha^{B/\alpha}))$$

where $\alpha \gg 1/(\log_2 p)^{1/2}$ and whenever $H \geq \exp((C\log_2 p)/\alpha)$ for some constant C = C(B). Lemma 2.2 shows that the number of exceptional primes up to Y is

$$\ll (\log Y)^{14} \exp{\left(\frac{C \log Y \log_2 Y}{\alpha \log H}\right)}.$$

This completes the proof of Theorem 1.1. ■

(2518)

Acknowledgements. This paper is the result of a suggestion made by Professor M. Ram Murty. I would like to thank him and Professor R. Balasubramanian for constant guidance and encouragement.

References

- [1] D. A. Burgess and P. D. T. A. Elliott, On the average value of the least primitive root, Mathematika 15 (1968), 39–50.
- [2] H. Davenport, *Multiplicative Number Theory*, 2nd ed., Graduate Texts in Math. 74, Springer, New York, 1980.
- [3] P. D. T. A. Elliott, The distribution of primitive roots, Canad. J. Math. 21 (1969), 822–841.
- [4] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
- [5] H. L. Montgomery, *Topics in Multiplicative Number Theory*, Lecture Notes in Math. 227, Springer, Berlin, 1971.

THE INSTITUTE OF MATHEMATICAL SCIENCES C.I.T. CAMPUS MADRAS 600113, INDIA

E-mail: AMORA@IMSC.ERNET.IN

Received on 10.11.1993 and in revised form on 13.5.1994