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Notation. The letters p, ¢ and [ denote prime numbers. For a posi-
tive real number H, N(H,p) denotes the number of primes ¢ < H which
are primitive roots (modp). N(o,T, x) denotes the number of zeros of the
Dirichlet L-function L(s,x) in the rectangle 0 < Res <1, =T <Ims < T.

For a given prime p, let

Fys)= J[ Lsx).

x (mod p)

For any positive integer k, log,,  is defined as follows: log; = := log  and
for k > 2, we inductively define log, x = log;,_; log x.
[x] denotes the integral part of x.

1. Introduction. The purpose of this paper is to prove a result on the
distribution of primitive roots, similar to one which appeared in a paper of
Elliott [3], in which he obtained an asymptotic formula for N (H, p), valid for
“almost all” primes p. More precisely, he obtained the following (Theorem 1
of [3]):

Let e and B be arbitrary positive constants. Then there is a set of primes
E, and a positive constant F = F(e, B), so that for all p not in E the

estimate N(H.p) qﬁijp_—ll) 7T(171){1 + O<(10g1H)3>}

holds uniformly for H > exp(F log, plogs p). Moreover, the sequence E sat-
isfies E(x) = O(x°) for all large values of x.

In proving the result, Elliott had applied the first fundamental lemma
(Lemma 4 of [3]), but there appears to be some discrepancy in the choice of
the parameters in the application of the lemma. In this paper, we use a zero
density estimate for L-functions and Brun’s sieve to obtain an asymptotic
formula for N(H,p) which holds uniformly, for “almost all” primes p, in a

(45]
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larger range for H than that stated in [3]. This arises as a special case of the
asymptotic formula for N(H,p) which holds for “almost all” p, in a wider
range for H at the expense of a weaker error term.

The theorem to be proved is the following:

THEOREM 1.1. Let a be a real number satisfying 0 < ael™™ < 1. Then
for almost all primes p, the following statement is true:

Let a > ¢/(log, p)'/2, for a suitable constant c. Then, given B > 0, there
exists C' = C(B) such that whenever H > exp((C'logy p)/a),

) Nt p) = Y= ()14 0(@).

Furthermore, the number of primes up to'Y for which (1) does not hold is

GlogY log, Y
oo (Fiar )

where G is a constant.
Choosing « = log, p/logs p in Theorem 1.1, we get the following:

THEOREM 1.2. Let € and B be arbitrary constants. Then for almost all
primes p, the following holds:

(2) N(va)Zqzb;p__ll)”(H)QJ“O((l%lH)B))

whenever
H > exp <Clogzplog3p>,
logy p
for some constant C' = C(e, B). Furthermore, the number of primes up to
Y for which (2) does not hold is O(Y®).

COROLLARY 1.3. If E(Y) denotes the number of primes up to Y for
which (1) does not hold, then E(Y) = O((logY)¥) when H > Y?, for some
d and for some F, with 0 < § < 1 and F = F(9).

2. The exceptional primes. Call a prime p an ezceptional prime if (1)
does not hold for p.

We need a lemma which was proved in a paper of Burgess and Elliott
[1]. However, for our purposes, we require a different approach. We shall
use Perron’s formula to prove this lemma, and then apply a zero density
estimate for L-functions. This will show that the number of exceptional
primes is small.

To start with, we recall below the notation of Burgess and Elliott [1]:
Let {84} denote a double sequence of real numbers satisfying
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Define
1, = Z Ba.p Z ‘ Z Xd(Q)‘
d|p—1 xa (mod p) ¢<H
d>1

where x4 runs through the characters (mod p) whose order is d. Let

olp)= Y L

d|lp—1
Ba,p>0

Let A, R be positive real numbers, Y > 3. Define
S1=8S1(MNR)={p<Y:op) <R, T,>n(H)/A\}

LEMMA 2.1. If p is a prime for which L(s,x) does not vanish for any
character x modulo p (that is, F,(s) # 0) in Res > 1 — ¢, and o(p) < R,
then T, = O(n(H)/\), provided

4log R 2log X 12log,p
€ > max , , .
logH " logH = logH

Proof. Let a and T be real numbers such that a > 1 and T is sufficiently
large. By Perron’s formula, we have

1 a+:iT it el 9 T
> xamAm) == [ {L/(s,xa)/Lls, xa)} — ds + 0<0gp>
n<H T i s T

since L' (s, xa)/L(s, xa) = O(log® pT') in —1 < Re s < 2, for a suitable choice
of Ims =T. (See, for example, [2].) Choose a =1+ 1/log H.

Since we are considering only primes p with Fj(s) # 0 in Res > 1 — ¢,
moving the line of integration to Res = 1 — € gives

1—eiT 2
1 H*® Hlog” pT
S xamAm) = — [ {L(s,xa)/L(s.xa)} —ds + O "= L
2 A s T
n<H 1—e—iT
= O(H' ¢ log? pT'log T)).
In particular, choosing T' = p, we get
3) > xa(m)A(n) = O(H' < log® p).

n<H
Notice that
Z xa(q) loggq = Z Xa(n)A(n) + O(H'?)
q<H n<H
and that
Z xa(n)A(n) = O(m'~log®p) for all m < H.

n<m
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Thus, using Abel’s identity and (3) it follows that

(4) > xalq) = O(H"“log’ p).
q<H
Therefore,
L= B Y | wala)
d|p—1 Xa (mod p) q<H
d>1
< H'log’p Z Bapd(d) = H ¢ log3p< Z 1)
d|lp—1 d|lp—1
d>1 Bd,p>0

= H'¢(log® p)R = H'~¢/*\=Y(H/2\)(H~*/*R) log® p.
Hence T), = O(n(H)/)\) whenever the following conditions hold: (i) H~%/2)
<1, (ii) H=*/*R < 1 and (iii) log® p < H*/*.
This completes the proof of the lemma.
We choose R = (logp)?, where A is a sufficiently large constant, and
A > R?; the value of \ will be chosen in due course.
LEMMA 2.2.

14
Y
#51 < log exp (C log H

log)\logY>
Proof. Let ¢ = 2log A/log H. Then

4log R 2log A 12log,p
logH " logH’ logH )’

Further, for any p € Sy, T, > n(H)/\. Therefore, by Lemma 2.1, it follows
that

S1 C{p <Y :Fy(s) =0 for some s in the rectangle
1—e<Res<1l, -Y<Ims<Y}

52max<

Using the estimate
> Y 'N(o,T,x) < (V?T)* =7/ (log YT)*
p<Y X

(here } 7\ = the sum over all primitive characters x modulo p) for 4/5 <
o <1 (cf. Montgomery [5], p. 99), and also using our specific choice of €, we
see that

Y ) NA-gY,x) < (V¥ (logy)*™
Y <p<2Y x (mod p)

< Y(C log \)/ log H (10g Y) 14
Hence #5; < (log Y ) exp(Clog AMlogY/log H), which proves the lemma.



On prime primitive roots 49

3. Derivation of the asymptotic formula. In this section, we consider
only those primes for which Fj,(s) # 0 in Res > 1 — ¢, with ¢ as chosen in
Section 2. Given a prime p with this property, we obtain an asymptotic
formula for the number of prime primitive roots (modp) which are less
than H.

Notice that if d|p — 1, then

1 |1 ifd|indg,
d Z 1_{0 otherwise,
X (mod p)
ord x|d

where “ind ¢” stands for the index of ¢ with respect to a fixed primitive root
modp.
Let [ denote a prime divisor of p — 1. Then

#{q < H : q is not a primitive root (modp)}

D ID I RIS IR R PR B eIt}

llp—1 ordx|lgq<H lp—1 ljp—1 X1 q<H

We break each sum into two parts: (i) I < log? p, (i) I > log? p.

Lemma 3.1 below deals with the sum in (i) using Brun’s sieve, and in
Lemma 3.2 we estimate the sum in (ii) using Lemma 2.1. With notations
as in [4], we state the following theorem, which is Brun’s sieve in the form
needed for our application (cf. [4], p. 57).

THEOREM 3.1. Assume that the following conditions hold:
(a)

1
l<—— <A
S l-wlp)/p

for some suitable constant Ay > 1.

(b) For suitable constants k > 0 and As > 1,

yo wlplosr o0 Z g,
p B w
w<p<lz

if 2<w<z.
(©) Rl < w(d) if u(d) 0 and w(d) #0.

Let o be a real number satisfying 0 < ae't® < 1, and let b be a positive
integer. Then

Q2b+1 20 (2b + 3)¢
. < — 5 515 EPNE P
(5)  S(Aip,2) < XW(Z){l 2 ez P ( alogz >}
n O(Zzb+{2.01/(e2“/“—1)})
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and

6) S(A;p,z) > XW(z){l — Qﬂ exp <(25+2)01>}

1 — a2e2t2a alog z
+ O(ZQb—l—Q—{Q.Ol/(e?"‘/’“—1)})

A Ay
- foa(er )

Remark 1. The constants implied by the use of the O-notation do not
depend on b and «.

where

Remark 2. The replacement of the condition (c) of the theorem by
the more general |Rq| < Lw(d) changes the theorem only to the extent of
introducing a factor L into the last error term in each of (5) and (6).

LEMMA 3.1 (Application of Brun’s sieve). Let p be a prime for which
F,(s) is non-zero in Res > 1 — (2log A\/log H). Let A = {indq : ¢ < H},
z =log?p, and p = the set of all prime divisors | of p— 1. Then

dlp—1)

L Pw(H)(1+0(a”)

S(A; p,2) =

12 and

where « is a real number satisfying 0 < ae!™ < 1, a > 1/(log 2)
B is a constant.
Proof. With these choices of A, p and z, it follows that

wp)=1 ifpecp, X=n(H), w=1,

and
1
W(z) = 1-—-
=10 (1)
qlp—1
q<z
We see that
. 1
#{q<H:d|indgq, d|p—1} = p Z Z x(q)-
q<H x (mod p)
ord x|d
Hence,

Ad=2 S S x@=grm s S Y x)

X (mod p) g<H Xx#xo q<H
ord x|d ord x|d

= %W(H)Jrézz > xilq)

tld xt q<H
t>1
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where x; runs through characters of order t. Therefore,

Ri= 233 o).

tld xt q<H
t>1

Using (4), we get

R < 53S0 S o) < (;221)H1—610g3p

tld xt gq<H tld Xt
1
< <d Z qb(t))H1_€ log®p = H' ¢ log®p < w(H)/\.
t|d

The last step follows as in the proof of Lemma 2.1. We take b = [1/a] in
Theorem 3.1, and Brun’s sieve then gives

(7) 5@&@&)§w0ﬁﬂd@{1+2 a?tiet wp(@b+$Q>}

1 — a2e2t2a alog z
L0 (W(ff) 22b+{2.01/(62°‘1)}>

and

®  S(io) = aEwE{1-2 o oxp (2201

1 — a2e?t2a alog z
+ O<7T()1:—I) Z2b—1+{2.01/(e2”‘—1)}>

with

)
p—1 1+Ol%ﬂ%w '

With our choice of b, we now estimate the error terms in (7). Similar esti-
mates can be obtained for the inequality (8). The estimate for the first error
term is
a2b+162a (2b + 3)01
exp
1 — a2e?t2a alog z
whenever a? > 1/log z. Since « is small, the last O-term satisfies

W(f) exp((2b + {2.01/(e** — 1)})log 2) < 7r()\H)zB,/a

< aB/a

for a constant B’. We choose A > 2B/« = (log p)QB’/a. For our purposes, we
take A to satisfy log A = (C’log, p)/«, for a sufficiently large constant C”.
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Using the estimates in (7) and (8), it follows that

S(A; p,2) = ¢@:5%Uﬂ<1+O<M%m&w>>u+0@ﬁm»
—+O<”Uff37a>.

Therefore, we get

S(ipn) = L2 D)1+ 0?1,

which proves the lemma.
We now consider the sum in (ii).
LEMMA 3.2. Let

L= Z %(w(H)—I—Z ZXl(Q))'

I>log? p xt g<H

Then L = O(w(H)/logp).

Proof.
L=nt) Y 1+ 3 1YY wl
I>log? p 1>log? p X1 g<H
Then
H
L] <Z Z Z‘Z ’ logp)—i_ﬂ-()\)7

lo
gp I>log? p X1 g<H

applying Lemma 2.1 to the second sum on the right with

5 :{UlﬁHle>b§g
P 0 otherwise.

Therefore, L = O(n(H)/logp).

Proof of Theorem 1.1. Lemmas 3.1 and 3.2 imply that for almost
all primes p,

-1
Nt p) = =D ainy1+ 0(a?/)
where o > 1/(logyp)'/? and whenever H > exp((Clog, p)/a) for some
constant C' = C(B). Lemma 2.2 shows that the number of exceptional

primes up to Y is

< (log V)" exp <

This completes the proof of Theorem 1.1. =

ClogYlog, Y
alog H ’
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