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Introduction. The base change lift of an automorphic form by means
of a theta kernel was first done by Kudla in [2, 3] and Zagier in [6]. Kudla’s
paper omitted the computation of the Fourier series coefficients; he instead
referred to the paper of Niwa [4] on the Shimura lift. Knowledge of these
Fourier coefficients lets one write the L-series of the lifted form as a product
of the original L-series and its quadratic twist. In this paper the factorization
of the L-series is shown directly. Niwa’s idea of splitting the theta function
lets us explicitly compute the Mellin transform L(s, f) of the lifted form f.
It is a Rankin—Selberg convolution of the original form f with a Maass wave
form coming from the quadratic extension. The factorization of the L-series
then follows as in the work of Doi and Naganuma [1].

To avoid excessive notation, only the simplest case is considered: the
lift to Q(,/q), with ¢ an odd prime ¢ = 1 mod 4 such that h (K) = 1.
We use x to denote the Kronecker symbol (%) We take a cusp form
f(z) = > a(n)exp(2minz) of weight k for SL(2,Z), an eigenfunction of
all the Hecke operators. Recall that in Section 3 of [2] Kudla defined the
theta kernel

0(z,21,22) =y Z x(m)(—mzy 2z + az1 + “aze + n)*e{(zQ + iyR)[I]}
leL

where

e z =x+iyisin H and (z1, 22) is in H2,

e the lattice variable [ is written as [ 2 " ] with o in O, “a the Galois
conjugate, and m,n in Z,

e (Q[l] is the indefinite quadratic form —2det(l),

e cach z; = u; + iv; defines an element g; = [‘/0@ ZJ/\/\{?] in SL(2,R).

e The pair g = (g1, g2) acts on the vector space by g -1 = g5 'lgi,
e R[l] is a majorant for @ defined by tr(*(g-1)g-1).

[101]
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Then the lifting fis defined by

i dx d
f(z1,22) ff (2,21, 22)y" g,

y2

where F is a fundamental domain for Ip(q)\'H.

Splitting the theta function. Let

01.;(z,v) = y1=9)/2273 Z H;(/Ty(av'/? + Sav=1/2))

acO
x exp(2mix No — ﬂy(a% + "QQ/U))
and
02,5(z,v) = y(1=9/227 Z X(m)Hj(\/Wy(mvl/2 + nv_l/z))
m,n€Z

x exp(2mizmn — wy(vm? + n?/v)).
LEMMA. Along the “purely imaginary axis” (z1, z2) = (iv1,ive) in H2,
o _ Sk v
0(z,iv1,ivg) = (—=1)Fa~ "2 Y " (1) <21/> 91,2u< 1)92 k—2v (2, V102).
2w<k 2
Proof. Along the imaginary axis

2
UL V2o n

a” + a? +U1U2m + —

R[l] =
() U1 V1V2

and the spherical polynomial term is equal to

(—1)k m(v1v2)1/2+L—|—ia o 1/2—1—2"’04 %2 v k.
(U1U2)1/2 (%] U1

Apply to this the Hermite identity
k
(a+ib)k =277 ( )Hk _j(a)H;(b)i
j=

where H;(z) = (—1)7 exp(a?)-%> o (exp(—?)) is the jth Hermite polynomial.

dxi

Include a factor of /my (which will be needed later) to show that the spher-
ical polynomial term is

27 (1) (my) M2 zk: (?) Hye—i (m(ﬂyvlvz)m " n(&) 1/2>

7=0
UL 1/2 UL 1/2 '
(o) () )
V2 (%
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H;(z) is an odd or even function according to whether j is odd or even. If
Jj is odd, the @ and —a terms in the sum defining g; cancel and g;(z) is
identically zero. Writing 7 = 2v finishes the lemma. =

The point of this is that the Dirichlet series L(s, f) is given by the Mellin
transform

L(s, f) = f F v, iva) (v102)* ™ doy dos
®RT)?/Ut
dr d
- f f f(2)0(z,iv, zvg)yk :z:2 y(vlvg)s*k/%l dvy dvs.
(RT)?/UT Y

Here U™ is the group of totally positive units, generated by .

Change the variables to v; = v1/ve and v, = vivy (and by abuse of
notation go back to writing v; and vy). Then using the splitting of 6, the
Mellin transform becomes

Lis, f) =27 (1= 3 (-1 (f)

2w<k

p drdy dvi o pjodvs
2 . Y oo

X ffff(Z)ngy(Z,U1)§2,k—2u(zyv2)y

0 .—-1 F Yy (%1 2 Vo ’
Let
o f 912 (2 U)d’U and FEs,(z,s,0) = f§22 (z U),Us—k/Q@
v v v v\ 9y ; 22U\ <y 1} .
e

Rearranging the integrals shows that L(s, f) is equal to

/2 )
(1) 5 Z <2]j/>(_1)k_”gf(2)ggy(2)Ekzy(z,s,O)y’f Lg?J

2w<k Yy

Two ugly lemmas. Now two lemmas are required. The first is folklore,
the second is sketched in [4].

LEMMA 1. go,(2) is equal to

€
y1/27u272u f ZHQV(\/@(()&UI/Q—FU(X’L)*UQ))

el a€0
x exp(2mizNa — my(a’v + a2/v)

and is a Maass wave form of weight 2v.
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Proof. Computing the integral will show that this is the Fourier expan-
sion of a Maass form in terms of Whittaker functions. (Alternatively, one
could use the method of Vignéras [5] to see that the integral is a Maass form,
but in the end the Fourier expansion is wanted to apply the Rankin—Selberg
method.)

From ([H], Vol. 2, p. 193) Hs,(0) = (—1)"2v!/v! so the a = 0 term
contributes 272 y1/2=v(—~1)V2u! /(112 1og(¢)). For the terms a # 0 in the sum
interchange the sum and the integral and change the variables by w = £2™v

for n € Z. This gives

y1/2—1/2—21/ Z f HQ,/(\/@(O&U)U2 + O’aw—l/2))
aco/Ut 0
a#0
2 o 2 dw .
x exp(—my(a“w + ‘a* /w))— exp(2mizNa).
w
To compute the integral of the term corresponding to « in the sum change
variables again to let v = a(w/|Na|)'/? to get 272y'/2~¥ exp(2mizNa)
times

o
d
2 f Ho, ((my|Na|)Y?(v + 1/v)) exp(—my|Na|(v £+ 1/v)?) exp(27ryNoz)—U
v
0
with the £ chosen according to whether N« is positive or negative. A final
change of variables with ¢ = log(v) gives

cosh?t

sinh? ¢

5 cosht

2 Ho,  2(my|Na|)Y
f 2 < (ry|Nal) sinh ¢

— 00

) exp (—47ry|Noc| ) exp(2ryNa) dt.

For integral v the parabolic cylinder functions are defined by ([H], Vol. 2,
p. 117)

Dy, (2) = 277 exp(—22/4) Hay (2/V?2).
Thus the integral is
F ht sinh? ¢
o+l [ Dy, (20" . dt
_Ojo‘ 2 ( “sinnt ) P “ cosh?t

with a = (2my|Na|)'/2. For Na > 0 apply ([I], Vol. 2, p. 398, (20)) to see
that this is the Whittaker function

y Y| Na| Y2W, o (4my|Na|) exp(2mizNa)

when the omitted constants are included.
For Na < 0, use the imaginary phase shift

cosht = — isinh(t + inw/2) = isinh(t — im/2),
sinht = — i cosh(t + imw/2) = icosh(t — im/2)
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to get

vl f Dy, (2aicosh(t — im/2)) exp(a® sinh? (¢ + in /2)) dt.
(The + will be chosen later.)
The identity ([H], Vol. 2, p. 117)

Das(2) = (1) Z(D-2,-1(12) + D-ayoa (i2)
gives
(—1)”2““2;r _Z {D_5,_1(—2acosh(t —in/2))

+ D_g9,_1(2a cosh(t — im/2))} exp(a? sinh? (¢ + in/2)) dt.

In the first cylinder function, moving the —1 inside the cosh(t — imw/2) adds
im to the argument, giving

(—1)V2u+1j’% ]{0 {D_2,-1(2a cosh(t + im/2))

+ D_9,_1(2a cosh(t — in/2))} exp(a® sinh?(t + im/2)) dt.

Write this as two integrals, choosing sinh®(t+47/2) in the first and sinh? (¢ —
im/2) in the second. Since D_g,_; is an entire function one can shift the
line of integration by Fir/2 to get

wl
(—1)”2”*2—V f D_5,_1(2acosht) exp(a® sinh® t) dt.

V2r
Apply ([I], Vol. 2, p. 398, (21)) to see that this is the Whittaker function
JT(v+1/2)7
0=

when the omitted constants are included. Summarizing, this gives

r 1/2)?

921/(2) = 21_2”(—1)1/21/!/(V! 10g(5)y1/2_1’) + (_1)Vy—yM
T

X Z |Na|*1/2w_,,70(47ry|Noz|)exp(?m':UNa)

acO /Ut
Na<0

+y" Z |Na|~Y2W, o (4my|Na|) exp(2mizNa). =

acO/UT
Na>0

y"Y|Na|YV2W_, o(4ny|Na|) exp(2mizNa)
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LEMMA 2. Ey,(2,5,0) is equal to

1/2 vo—2v f Z HQV ( vl/2+nv—1/2))

m,n€Z

2 d
X exp < — 2mixmn — Ty <vm2 + n))vs_k/Qv
v v

and is a (non-holomorphic) Eisenstein series of weight 2v.
Proof. The Fourier transform f = [ f(s) exp(—2mist) ds of
Ha, (m(myv)'/? + (wy/v)'/2s) exp(—(m(myv)'/? + (my/v)/2s)?)
is
(=1)72% 7% (v/y)" T2 exp(2mimut) exp(—mut? [y)

by ([I], Vol. 1, p. 39, (9)) and the usual Fourier transform theorems. The
Poisson summation formula (using {f~} " (s) = f(—s) and evaluating at
mz) then gives

> Haymry)! ' =y 0

x exp(—(m(myv)/? — n(ry/v)/?)? + 2mimnz)

= (—m)"2% (v/y)" T2 (mz+n)*
; Y(mz +n)?
X exp <2mmv(mz +n)— 7ry( +n) >

= (=m)V2% (v /y) /2 Z(mz +n)* exp ( - 7r9|mz + n2> :
Yy
n
Thus Es,(z, s,0) is equal to the Mellin transform

d
Y2 ( f ZX (mz + 1) exp < _ 7r§|mz + n|2>vs+u+(1—k)/2:

= (=1)a D2 v 4+ (1—k)/2)

— —2v y
X ZX(m)(mz+n) |mz+n’25—2u+1—k

s—v+(1—k)/2

The group I(gq) has two cusps, and thus two Eisenstein series. Unfor-
tunately, the above is the one for the cusp at 0, and the one for the cusp
at oo would be more convenient. This is a result of not making the optimal
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0—
q 0
normalizes Ip(q), w, L F is another fundamental domain. Thus the integral

in (1) can be written

definition of the theta function above. To fix this, let w, = [ ] Since wy

_ dx dy
[ F(@042)80, (042) B0 (wqz, 5, 0)y(wq2)" 7
w;lf

e drdy
5

=% [ £(02)90, () By (213, 000" =
f

Here F5,(z,s,00) is equal to

(=1)r st *=D2 (s v+ (1 —k)/2)

Z ) ys—u+(l—k)/2

x x(m)(nz +m)~" P

et |7”LZ+77’L‘2S 2v4+1—k’
n=0 mod g

i.e., the Eisenstein series at oco.
To do the Rankin trick write Ex_s,(z,s,00) as

(—D)k/2mvon=st=D/2P(s 1 1/2 — V) L(25s — k + 1, X)
times a sum over Iy, \I((¢) and unfold the integral. This gives

L(s, ) = (~1)M2r o 2120025 — k4 1,x)

XZ( ) (s+1/2—v) fffqz )s+v+1/2df’3;l?/
2v<k

Y

k
_ k/2 _—s—1/2 s+1/2
= (=1)FPrme 2P L2s — k+1,x) ) <2V>F(s+1/2—y)

2v<k

= a(n)t(ng) " 579 s—1/2 dy
XZWJexp(—Qﬂnqy)WV7o(47rnqy)y e

n=1

Here ¢(n) is the cardinality of the set {« € O/UT | Na = n}, so by the
Euler product for the Dedekind zeta function t(ng) = t(n). The integral
representation of the Whittaker functions shows that W,o = W, o and
(7.621 (11)) in [G] gives the Mellin transform as a ratio of Gamma functions
I'(s)?/I'(s+1/2—v). One can show >, (Qky) = 2k=1. Finally, Doi and
Naganuma [1] have shown that L(2s — k + 1,x) 3. a(n)t(n)n~° is equal to
L(s, f)L(s, f ® x). This completes the proof of the

THEOREM.

L(s, f) = (=1)*/?2%¢"/?(2m) "> I'(s) L(s, f)L(s, f @ x).
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