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1. Introduction. This paper is about the infimum (θ0) of those con-
stants θ for which almost all of the intervals [n, n+nθ] contain primes (here
“almost all” signifies that there can only be o(N) exceptions with integer
n ≤ N). It is not known if θ0 = 0, but by 1943 Selberg [31] had shown that
θ0 ≤ 19/77. In the same paper he proved that if the Riemann Hypothesis
is true, then almost all of the intervals [n, n + f(n)(log n)2] will contain a
prime; provided only that f(n) → ∞. Heath-Brown [11] has reduced the
power of the logarithm to 1, (the limit) subject to an additional assumption
about the vertical distribution of the zeros of ζ(s).

It has been shown unconditionally by Motohashi [28] that, for ε > 0, al-
most all the intervals [n, n+nε] contain numbers with exactly two prime fac-
tors. And this has seen successive improvements by Wolke [35], by Harman
[7] and, most recently, by Mikawa [24], so that now one can put f(n)(log n)5

in place of nε (provided f(n)→∞).
Building upon a method of Halász, Montgomery obtained new results on

the distribution of zeros of ζ(s). With these he proved that θ0 ≤ 1/5 and
that Hoheisel’s asymptotic formula,

(1.1) π(x)− π(x− y) ∼ y

log x

(where π(x) is the number of primes p ≤ x), is valid with y = xθ, for
any fixed θ > 3/5 (see [25], Chapter 14). Huxley [14] reduced 3/5 to 7/12
through an improvement of the Halász–Montgomery method. His zero den-
sity estimate yields θ0 ≤ 1/6.

For (1.1), the exponent 7/12 has yet to be improved upon, but Iwaniec
and Jutila [17] have combined a linear sieve with the analytic methods in
an argument that gives

(1.2) π(x)− π(x− y)� y/log x

with y = xθ, for any fixed θ > 5/9. This was reduced to 11/20 by Heath-
Brown and Iwaniec [13], and further progress was made by authors whom we
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shall mention later. Then Harman [8] used a linear sieve to prove θ0 ≤ 1/10.
In unpublished work, which was reported in [9], he has improved this to
θ0 ≤ 1/12 through an unconventional approach (developed in [9] for a
different problem) to the application of the linear sieve. An independent
proof (also unpublished, but sketched in [12]) was found at around the
same time by Heath-Brown. In his forthcoming paper [19] Jia Chaohua
has got θ0 ≤ 1/13. Li Hongze has a manuscript [21] improving this to
θ0 ≤ 2/27.

In this paper we aim to show that θ0 ≤ 1/14. To this end we shall
consider the integer intervals A = (x − y, x] ∩ Z with X/2 < x < X and
y/x = Y/X, where X and Y are given and Xθ < Y < X/2. We find it
convenient to write

f(x, y) = O(F ),

when y = y(x) is understood and

(1.3)
(

1
X

X∫
X/2

|f(x, y(x))|2 dx
)1/2

= O(F ).

Note that, by a Minkowski inequality,

(1.4) O(F1) + . . .+O(Fr) = O(F1 + . . .+ Fr),

where the implicit constant on the right is the maximum of those on the left.
The bound θ0 ≤ 1/14 is an immediate consequence of the following result:

Theorem 1. If E ≥ 1 and Y ≥ X1/14(logX)3E+13, then

π(x)− π(x− y) ≥ cy

logX
+OE(Y (logX)−E),

where c is an absolute positive constant and the conventions are those of the
preceding paragraph.

Our calculations, the results of which are summarised in Section 6, show
that c = 1/6 is admissible in Theorem 1. This is not the optimal value
obtainable by the methods employed here.

In the course of revising this paper the author received a preprint from
Li Hongze and another [20] (due to appear soon) from Jia Chaohua: both
about θ0. Jia can show θ0 ≤ 1/14. His method differs from ours in several
respects, and it is remarkable that it succeeds with only the fourth power
moment of the Riemann zeta-function where we have used our Theorem
2 (below). The new work [22] of Li Hongze has θ0 ≤ 1/15. In it several
results of this paper get used (Proposition 3.1, Lemma 5.1 and Lemma
5.3).

Montgomery and Vaughan [27] have observed that results like Theorem
1 can help to show that a short interval contains lots of Goldbach numbers
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(even numbers representable as a sum of two primes). Indeed, if (1.2) holds
with y = xθ for some fixed θ > 0, if α is a constant such that Theorem 1
remains true with α in place of the exponent 1/14, and if π2(x) denotes the
number of Goldbach numbers not exceeding x, then

π2(x)− π2(x− y)� y,

with y = xβ , for any fixed β > θα. We are grateful to Professors J. Pintz and
A. Perelli, from whom we learned of this. As they pointed out in the intro-
duction to [30], the proof is essentially Ramachandra’s. For deeper results
about Goldbach numbers in short intervals see [30], [19] and [20].

The proof of Theorem 1 occupies the remaining sections of this paper.
Note that the theorem is trivial for X = O(1), so that whenever it becomes
desirable that X ≥ C (some constant) we will be able to assume that this
is indeed the case. The value of X may remain the same throughout, but
alternative values of Y need consideration at several junctures, and it is only
at the conclusion that Y > X1/14 will be a necessary assumption.

Two new ingredients facilitate the improvement over θ0 ≤ 1/10, the last
result with a published proof [8]. The first ingredient, from Harman’s paper
[9], is a way of using linear sieve results as part of a procedure to obtain
useful formulae:

(1.5)
∑
m

amS(Am, Xφ) = (1 +O(δ))yλ(x) +Oδ,j(Y (logX)−j)

where (am) is a suitable sequence of non-negative real numbers, Am = {n ∈
A : n ≡ 0 (mod m)}, S(Am, z) = #{n ∈ Am : n 6∈ Ap, for all primes
p < z} and λ(x) does not depend on Y . Harman employs the (elementary)
Buchstab identity,

(1.6)
∑
m

amS(Am, Xφ) =
∑
m

amS(Am, Xδ)−
∑
m

am
∑

Xδ≤p<Xφ
S(Amp, p),

which is valid for 0 ≤ δ ≤ φ when (am) is a sequence with am = 0 for
values of m that are divisible by at least one prime p < Xφ (in which case
we refer to (am) as an Xφ-sifted sequence). We utilise (1.6) in a much less
subtle way than Harman does in [9], where (1.6) is applied arbitrarily many
times in an induction argument (see [10] for an analysis of the method).
Here the motivating problem is different and just a few applications of (1.6)
suffice.

The other new ingredient is the following mean-value result from the
author’s paper [34]:
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Theorem 2. Let |bn| ≤ 1 for n = 1, 2, . . . Then, for T ≥ N4 and ε > 0,

I(T,N) =
1
T

T∫
0

∣∣∣
N∑
n=1

bnn
it
∣∣∣
2
∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
4

dt�ε T
εN.

For the estimation of the O-term in (1.5) we rely exclusively on mean-
square bounds for Dirichlet polynomials (see Section 2); just such a bound
(Proposition 2.2) is an easy corollary of Theorem 2. For δ sufficiently small,
Proposition 2.2 allows one to obtain formulae like (1.5) for the single sum
on the right of (1.6) subject to constraints on (am) which are weaker than
the corresponding constraints in, for example, [8].

The proof of Theorem 2 followed the work [4], [5] of Deshouillers and
Iwaniec. In [5] those authors found a different bound for I(T,N) which im-
plies the case T ≥ N5 of Theorem 2, and can give better results for sequences
(bn) that are in some sense sparser than those we need consider here. Their
result was used by Iwaniec and Pintz [18] to prove (1.2), with y = xθ, for
θ > 11

20 − 1
406 . This was reduced to 11

20 − 1
386 by Mozzochi [29], and then quite

substantially to 11
20 − 1

220 = 0.5454 . . . , by Lou and Yao [23]. Very recently
Baker and Harman have announced that they can improve this to θ ≥ 0.535.
Their manuscript [1] introduces new combinatorial techniques to the prob-
lem, including the fundamental idea from [9] which we use here. Although
we expect that Theorem 2 would make at most a small improvement to
these figures (see [29]), it has a more worthwhile effect when bounds for θ0

are sought.
Theorem 2 can be applied quite directly when δ = 0 and S(Am, Xδ) =

#Am, subject only to quite simple conditions on the sequence (am). Other
factors, however, demand that δ > 0, so some sieving is required. We use the
linear Rosser–Iwaniec sieve (Lemma 3.1) and control the remainder terms
using Theorem 2. Usually the sieving would complicate the conditions on
(am), but it is a nice feature of the Harman approach that, by taking the
sieving level to be D = X∆ with ∆2 = δ, and ∆ > 0 (for example), one
can ensure that as δ → 0 the conditions on (am) relax and converge towards
those at δ = 0. At the end of Section 6 it is shown that, for a sufficiently
small fixed value of δ, the whole proof of Theorem 1 goes through to a
successful conclusion.

No sieving is necessary in order to get a formula like (1.5) for the double
sum in (1.6). Exceptionally bad behaviour is ruled out, because

(1.7)
∑
p

pit �A,B P log−A P (logA P < t < PB)

when A and B are arbitrary positive constants and p runs over the primes
in any subinterval of an interval [P/2, P ]. This is a corollary of results of
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Vinogradov about ζ(s) and ζ ′(s)/ζ(s) with s = σ + it near σ = 1 (see,
for example, [8], p. 346). After (1.7), Harman’s application (Lemma 2.6)
of Huxley’s Halász Lemma (Lemma 2.5) is enough. For Y = Xθ with θ <
1/2 we certainly need (1.7) with t as large as X1−θ > X1/2. Hence t <
PB implies P > X1/(2B). This is the origin of the requirement that δ > 0.
Lemma 2.5, which determined Huxley’s exponent 7/12, also determines (via
Proposition 2.1) the maximum permissible value of φ here: for θ = 1/14 it
is φ = 12/77.

To apply the formulae (1.5) we appeal to the Buchstab identity (1.6).
This gives (as in [12], (7)),

S = S(A, X1/2) = π(x)− π(x− y)(1.8)

= S(A, Xφ)−
∑

Xφ≤p<X1/2

S(Ap, p)

= S(A, Xφ)−
∑

Xφ≤p<X1/2

S(Ap, Xφ) +
∑∑

Xφ≤q<p<X1/2

S(Apq, q)

= Σ1 −Σ2 +R (say)

where p and q run over the primes. Formulae like (1.5) can be obtained for
Σ1 and Σ2 here, even without recourse to Theorem 2 (see the remark after
Proposition 2.2). Using the prime number theorem in the form

(1.9) π(x) =
x∫

2

du

log u
+OA(x log−A x),

where A is an arbitrary positive constant (see [3], Chapter 18), one can show
that in the formulae for Σ1 and Σ2 the corresponding functions λ1(x) and
λ2(x) (say) may be replaced by terms c1/ logX and c2/ logX with explicit
positive constants c1, c2.

Note that in order to make use of (1.9) we take Y = X log−B X, for some
constant B. Nevertheless, the functions ci/ logX and λi(x) are independent
of Y , so that if the formula for Σi is valid for all Y in some set contain-
ing X log−B X then the corresponding formula obtained by replacing λi(x)
with ci/ logX will hold for the same set of Y values. The general principle
involved here is used with abandon throughout this paper (see, for example,
the proofs of Lemmas 2.3, 3.4, 5.1 and 5.4).

Inconveniently c2 > c1 when θ = 1/14 and φ = 12/77 (see Section 4), but
Theorem 2, through the important Proposition 3.1, allows formulae similar
to (1.5) to be found for two marginally modified parts of the remaining sum
R in (1.8) (see Lemmas 5.1 and 5.3). Lemma 5.5 can handle certain other
parts: those where a Hölder inequality involving three factors is particularly
effective. The rest of R (R−R′, say) is trivially non-negative; and we are
able to prove Theorem 1 with c = c1 − c2 + c′ + O(δ) > 0, where R′ ≥
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(c′ +O(δ))y/ logX for almost all of the sets A.
D. R. Heath-Brown has pointed out that the exponent 1/14 in Theo-

rem 1 is not especially significant and can certainly be improved to some
extent at the cost of reducing the constant c (see [22]). Indeed, the optimal
constant c obtainable by elaboration of the arguments laid out in this pa-
per must be a continuous function of θ. The discontinuities (with respect
to θ) of the hypotheses for Proposition 2.1 do not contradict this. But to
replace the condition Y ≥ X1/14(logX)3E+13 by any condition of the shape
Y ≥ Xθ with θ ≤ 1/14 would considerably complicate the proof of Theo-
rem 1.

The author is indebted to Glyn Harman for his original suggestion that
Theorem 2 might be used to improve the upper bound on θ0, and for several
enlightening discussions that aided the completion of this work. He would
also like to thank D. R. Heath-Brown for communicating details of his un-
published work. Thanks are due to the referee for helping to improve the
clarity of some sections. Some results mentioned in the introduction were
made known to the author by Professors R. C. Baker, J. B. Friedlander and
A. Schinzel.

The research was largely completed while the author was a research as-
sociate at the University of Wales College of Cardiff. It was written up into
a paper while the author resided at Göttingen as a guest of the Sonder-
forschungsbereich 170 “Geometrie und Analysis”. The author is grateful to
Frau Christina Gieseking for typing the manuscript.

Notation. Greek and Roman letters in the usual typeface denote complex
numbers or functions. The letters d, h, k, l, m, n, r always denote positive
integers. The letters p and q always denote primes.

The integer and fractional parts of x ∈ R are written as [x] and {x}
(although we sometimes use {x} to denote a set containing one element, x).
The divisor function τr(n) is the coefficient of n−s in the Dirichlet series for
ζr(s). We write µ(d) for the Möbius function and (m,n) for the greatest
common divisor of m and n. If B is a set, then #B denotes the cardinality
of B.

As usual O(F ) denotes a term z satisfying |z| ≤ cF , where c is a positive
constant. The notation f � g means the same as f = O(g), and the notation
f � g is short for: f � g � f . In all these notations, variables upon which
the implicit constants necessarily depend will appear as suffixes (to O, �,
or �). This practice extends to the O-notation defined by (1.3).

The functions ξ(u) and ω(s) have particular meanings. The former is the
characteristic function of the interval (x− y, x]. The latter is the Buchstab
function defined in Lemma 4.1 and extended so that ω(s) = 0 for s < 1.

All other unusual conventions and notations have already been explained
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in the introduction. In particular we note: the conventions, governing X, Y ,
x, y and A, that were brought in before Theorem 1, and the definitions of
Am and S(Am, z). The z-sifted sequences, which crop up quite often, were
defined under (1.6).

2. Dirichlet polynomials. In this section we present some lemmas
which show how results of the form

(2.1)
∑

x−y<h≤x
ηh = yλ(x) +O

(
Y

logj X

)

depend on mean square estimates for Dirichlet polynomials

(2.2) H(t) =
∑

1≤h≤CX
ηhh

it,

where C is a constant and C ≥ 1. The relevant estimates are given at
the end of the section. They include the only new result in this section,
Proposition 2.2.

The sequences (ηh) that we consider will satisfy

(2.3) |ηh| ≤ τr(h)

for h = 1, 2, . . . , with some fixed integer r ≥ 1.

Lemma 2.1. For r, l ≥ 1 and θ ≥ ε > 0,
∑

X−Xθ<h≤X
τ lr(h)�r,l,ε X

θ(logX)r
l−1.

In particular , for r ≥ 1, ε > 0 and h� X, τr(h)�r,ε X
ε.

P r o o f. The first bound is a result of Shiu [32], Theorem 2. The second
bound is a corollary of the first.

Lemma 2.2. Let H(t) and (ηh) be as in (2.2) and (2.3). Suppose that
2 ≤ T0 ≤ T ≤ X1−ε. Then, for X/2 < x < X and 0 < y < x/2,

1
y

∑

x−y<h≤x
ηh = λ(x) + f(x, y) +Or,ε

((
X log T
yT

+
T 2

0 y

X

)
(logX)r−1

)
,

where

λ(x) =
T0

πx

∑

1≤h≤CX
ηh

sin(T0 log(x/h))
T0 log(x/h)

and

f(x, y) =
1

2πi

{ −T0∫
−T

+
T∫

T0

}(
xit − (x− y)it

y

)
H(−t)dt

t
.
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P r o o f. This is a straightforward application of the formula

1
2πi

T∫
−T

(%it − 1)
dt

t
= O

(
1

T |log %|
)

+
{

1/2 if % > 1,
−1/2 if 1/% > 1

(from [12]), with % = x/h or % = (x − y)/h. Note that with % = x/h, for
example, one can do better in the range |h − x| < x/T ≤ x/2, where the
above integral is bounded by

T∫
−T
|t log %|dt|t| � T

∣∣∣∣ log
x

h

∣∣∣∣� 1.

The remaining h fall into O(log T ) ranges of the form H/2 < |h − x| ≤ H,
with X � H � X/T ≥ Xε. Hence Lemma 2.1 applies and the first of
the O-terms comes out. The second arises when the integral over the range
−T0 ≤ t ≤ T0 is simplified using

xit − (x− y)it

it
− yxit−1 = −

x∫
x−y

x∫
u

(it− 1)vit−2 dv du� y2

x2 |t+ i|

and, from Lemma 2.1 again, H(t)�r X(logX)r−1.

Lemma 2.3. Under the same conditions as Lemma 2.2, and with K,L ≥
1, KL = X, K/K1 = L1/L = C, we have

1
y

∣∣∣∣
∑

K1<k≤K
ηk

([
x

k

]
−
[
x− y
k

]
− y

k

)∣∣∣∣

≤ |f∗(x, y)|+ |f∗(x, z)|+Or,ε

((
X log T
yT

+
T0

(L logX)1/2

)
(logX)r

)
,

where z = x/T0(L logX)1/2 and f∗(x, y) is f(x, y) with H(t) replaced by

H∗(t) =
∑

K1<k≤K
ηkk

it
∑

L/4<l≤L1

lit =
∞∑

h=1

η∗hh
it,

say (so that , in place of (2.3), one has |η∗h| ≤ τr+1(h)).

P r o o f. This approximates a result from Heath-Brown and Iwaniec [13],
Section 4. We prove it here by first observing

(2.4) g(y) =
∑

K1<k≤K
ηk

({
x− y
k

}
−
{
x

k

})
�r K(logX)r−1

(see Lemma 2.1). Hence the lemma is trivial unless y < z, which we hence-
forth assume. The sum to be bounded is

g(y)
y

=
1
y

∑

x−y<h≤x
η∗h −

∑

K1<k≤K

ηk
k
.
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And, as L ≥ 1, we have 0 < z/x < 1/2. Therefore Lemma 2.2 applies to
give

g(y)
y
− g(z)

z
= f∗(x, y)− f∗(x, z) +Or,ε

((
X log T
yT

+
T 2

0 z

X

)
(logX)r

)
,

and the lemma follows by (2.4) with y = z.

The next lemma shows that the term f(x, y) from Lemma 2.2 will be
O(log−j X), consistent with (2.1), if

(2.5)
T∫

T0

|H(t)|2 dt� X2(logX)−2j ;

and hence that the same can be said of f∗(x, y) and f∗(x, z) in Lemma 2.3,
subject to an identical condition on H∗(t).

Lemma 2.4. Assuming the same hypotheses and conventions as Lemma
2.2,

X∫
X/2

|f(x, %x)|2 dx� 1
X

T∫
T0

|H(t)|2 dt,

uniformly for 0 < % ≤ 1/2.

P r o o f. See Harman [8], Lemma 2. A logarithm can be saved by working
with

2∫
1

βX∫
X/(2β)

|f(x, %x)|2 dx dβ.

The classical mean value theorem for Dirichlet polynomials is:

(2.6)
T∫

0

∣∣∣
H∑

h=1

ηhh
it
∣∣∣
2
dt = (T +O(H))

H∑

h=1

|ηh|2

(see [26]). For T � X (and H � X) the bounds (2.6), (2.3) and Lemma 2.1
give (2.5) with j = (1 − r2)/2 ≤ 0, which just falls short of being useful to
us. We end this section with some results supplying that little extra which
is required for a non-trivial formula (2.1).

We shall assume that H(t) can be written as a suitable product of Dirich-
let polynomials:

(2.7) M(t) =
∑
m

amm
it, N(t) =

∑
n

bnn
it, L(t) =

∑

l

cll
it,

where L,M,N ≥ 1, am = 0 for m > M , bn = 0 for n > N , and cl = 0 for
l > L. Certainly some assumption is necessary as (2.6) is best possible in
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the general case. For t ∈ R the Cauchy–Schwarz inequality yields,

(2.8) |M(t)|2h ≤Mh
∑
r

∣∣∣
∑

. . .
∑

m1m2...mh=r

am1am2 . . . amh

∣∣∣
2

= MhGh,

say. Huxley [14], Section 2 has obtained the following “large-values” result:

Lemma 2.5 (Halász–Montgomery–Huxley). Suppose that , for r = 1, 2, . . .
. . . , R, we have |M(tr)| ≥ V > 0, with tr ∈ R. Suppose also that 1 ≤
|tr − ts| ≤ 2T for 1 ≤ r < s ≤ R. Then for h = 1, 2, . . . ,

R� GhM
hV −2h +G3

hM
hTV −6h log2(4MhT ).

Using this and the classical mean-value theorem (2.6) Harman [8], Lemma
4 could get the following useful lemma:

Lemma 2.6 (Harman). Let T ≥ 2 and 2h ≤ β < 6h, where h is an
integer. Let m be a measurable subset of the interval [−T, T ], and suppose
that M(t) from (2.7) satisfies |M(t)/M |β−2h ≤ µ (t ∈ m). Then

∫
m

|M(t)|β dt�
(

1 +
T/µ

Mh log(TMh)

(
λ2T/µ

M2h

) β−2h
6h−β

)
Mβµλ,

where λ = GhM
−h log(TMh) with Gh as in (2.8).

For bounded sequences (am), Lemma 2.1 could be used to estimate Gh
in (2.8). In dealing with Xδ-sifted sequences, however, we make use of the
following observation: if (a(1)

m ), . . . , (a(h)
m ) are Xδ-sifted sequences of numbers

whose absolute values do not exceed unity, then for 1 ≤ r ≤ XC ,

(2.9)
∑

. . .
∑

m1...mh=r

a(1)
m1

. . . a(h)
mh
�h,δ,C 1.

Hence, when Lemma 2.6 applies to such a sequence (am) and

(2.10) M(t)�δ M(logM)−A (t ∈ m)

with some A ≥ 0, then it will show that

(2.11)
∫
m

|M(t)|β dt�δ,h M
β(logM)1−(β−2h)A

provided that

(2.12) Mβ+2h ≥ T 4(logM)4(β−2h)(A+1).

Proposition 2.1. Let X = MN , M ≥ Xδ ≥ 2 and

X1−θ(logX)−2A−1 = T ≥ 2

with A ≥ 0 and 1/(2k + 2) ≤ θ < 1/(2k) for some integer k ≥ 4. Let
M(t) and N(t) be Dirichlet polynomials of the form given in (2.7), where
the sequences (am) and (bn) are now both Xδ-sifted and satisfy |am| ≤ 1,
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|bn| ≤ 1 for all m and n. Suppose further that M(t) satisfies (2.10) with A
as above and with m a measurable subset of the interval [−T, T ]. Then∫

m

|MN(t)|2 dt�δ,A X
2(logX)1−2A,

provided that

M ≤ Xθ+ 1−θ
2k−1 (logX)−A.

P r o o f. In essence we follow the argument of Harman in [8], Lemma 5.
Note first that the upper bound on M implies that N ≥ T 1−1/(2k−1) ≥ T 6/7.
If N ≥ T , then by Lemma 2.6 (with β = 2h = 2 and µ = 1) we have

(2.13)
∫

M

|N(t)|2 dt� N2 logN,

where M can be taken to be the whole interval [−T, T ]. This, together with
(2.10), suffices to prove the proposition in the case N ≥ T . Similarly, in
proving the proposition in the case N ≤ T one may take, in m’s stead, any
measurable set m1 ⊂ m for which M = m \m1 satisfies (2.13). We shall use

m1 = {t ∈ m : |N(t)| ≤ T 1/4N1/2 logN}.
The corresponding integral in (2.13) with M = m\m1, is bounded above by
the supremum of all possible sums of |N(t)|2 taken over t = t1, . . . , tR ∈M
with |tr − ts| ≥ 1 for r 6= s. Such a sum S can be split into O(logN) sums
S(V1), S(V2), . . . by dividing the range for |N(t)| into intervals [Vj/2, Vj ]
with T 1/4N1/2 logN ≤ Vj ≤ 2N . Then, by Lemma 2.5,

S(Vj)� N2 +N4TV −4
j log2N

and

S � N2 logN +N4T (T 1/4N1/2 logN)−4 log2N,

showing, as required, that M satisfies (2.13).
Given an integer h ≥ k and a real number α with 0 ≤ α ≤ 1, we use

Hölder’s inequality to bound the integral over m1, in terms of

(2.14)
∫

m1

|M(t)|2(h+α) dt and
∫

m1

|N(t)|2γ dt,

where 1/(h+ α) + 1/γ = 1. For t ∈ m1, we have

|N(t)| ≤ T 1/4N1/2 logN ≤ N19/24 logN �A,h N(logN)−A(h+α).

Using this bound and the trivial bound |M(t)| ≤ M (instead of (2.10)) we
apply Lemma 2.6 to the integrals in (2.14). This results in a proof of the
proposition in the case where h�δ 1,

M2(h+α)+2h ≥ T 4(logX)8α
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and

N2(1+ 1
h+α−1 )+2 ≥ T 4(logX)

8(A(h+α)+1)
h+α−1

(see (2.10)–(2.12)).
The latter two conditions are satisfied for

M ∈ [T
2

2h+α (logX)
4α

2h+α , T
θ

1−θ+ 1
2h−1+2α (logX)

2A+1
1−θ −

4(A(h+α)+1)
2h−1+2α ]

= [Lh(α), Uh(α)] = Ih(α), say.

Here Lh(α) and Uh(α) are continuous functions of α ∈ [0, 1]. Suppose that,
for k ≤ h ≤ H (say), they are also monotonic decreasing functions of α
with Lh+1(1) ≤ Lh(1) ≤ Uh+1(0) and Lh(α) ≤ Uh(α), for 0 ≤ α ≤ 1.
Then, for k ≤ h ≤ H, the intervals Ih = [Lh(1), Uh(0)] are covered by
the intervals Ih(α) with 0 ≤ α ≤ 1. Furthermore, consecutive intervals in
the sequence Ik, Ik+1, . . . , IH overlap, so that Ik ∪ Ik+1 ∪ . . . ∪ IH is an
interval I∗H = [LH(1), Uk(0)]. The assumptions we have made about Lh(α)
and Uh(α) can be verified by dint of a calculation (which we omit), provided
that X is sufficiently large in terms of A and H. This proves the proposition
for M ∈ I∗2k+1, since we know from the inequalities Xδ ≤ M < X1/k that
2k + 1�δ 1.

We complete the proof by showing that L2k+1(1) ≤ M ≤ Uk(0). The
upper bound,

M ≤ Xθ+ 1−θ
2k−1 (logX)2A+1− 4(Ak+1)+2A+1

2k−1 ,

is slightly weaker than the bound already given in the statement of the
proposition. As we are in the case N ≤ T ,

M =
X

N
≥ X

T
= Xθ(logX)2A+1.

This gives the required lower bound:

M ≥ X 2(1−θ)
4k+3 (logX)

4−2(2A+1)
4k+3 .

Lemma 2.7. Let X = MNL, M ≥ Xε ≥ 2 and suppose that M(t),
N(t) and L(t) are Dirichlet polynomials of the form given in (2.7), where
the sequences (am), (bn) and (cl) are all Xε-sifted and satisfy |am| ≤ 1,
|bn| ≤ 1 and |cl| ≤ 1, for all m,n and l. Let A ≥ 0, T ≥ 2, and let m be
a measurable subset of [−T, T ] for which (2.10) holds. Finally , let r be the
greatest integer strictly less than % = 1/(1− 1/h− 1/k), where h and k are
given integers with 2 ≤ h < k, and suppose that

M ≥ T 2/(%+r)(logX)
4(A+1)(%−r)

%+r , N ≥ T 1/h and L ≥ T 1/k.

Then ∫
m

|MNL(t)|2 dt�ε,A,k X
2(logX)1−2( %−r% )A.
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P r o o f. This is a straightforward application of Hölder’s inequality fol-
lowed by Lemma 2.6 (see (2.10)–(2.12)).

We shall only use the above lemma for a few small values of h and k. But
we remark that in any case, (%− r)/(%+ r) ≤ 1/3 and (%− r)/% ≥ 1/(hk).

Lemma 2.8. Let C > 1 and let L(t) be a Dirichlet polynomial of the
form given in (2.7) with coefficients cl = 1, for L/C < l ≤ L, and cl = 0,
otherwise. Then for T ≥ 2 and −T ≤ t ≤ T ,

|L(t)|2 �C L(log T )
T∫

−T

∣∣∣∣ζ
(

1
2

+ i(τ + t)
)∣∣∣∣

2
dτ

|τ + i|

+
L2

|t+ i|2 +
L2 log2 L

T 2 + 1.

P r o o f. We follow Harman [8], formula (20) in applying the Perron for-
mula [33], Lemma 3.12 and in shifting the contour of integration. Where he
uses the bound |ζ(σ + it)| � t1/6, we use a result,

inf
T/2<t<T

2∫
1/2

|ζ(σ + it)| dσ � log T,

which was observed in a similar connection by Iwaniec and Jutila [17] and
is a corollary of [33], Theorem 7.2(A).

Proposition 2.2. Let X = MNL. Let M(t), N(t) and L(t) be Dirichlet
polynomials of the form given in (2.7), where now |am| ≤ 1, |bn| ≤ 1, for
all m and n, and the coefficients cl are as in Lemma 2.8. Let

2 ≤ Xε ≤ T0 < T ≤ X1−ε

and suppose also that

N4 ≤ T ≤ X−εL2N.

Then
T∫

T0

|MNL(t)|2 dt�C,ε X
2−ε/3.

P r o o f. By Lemma 2.8 the last integral is OC(H), where

H = ZL(log T )2 + PL2 +QL2(logL)2T−2 +Q

with

Z = sup
−T≤τ≤T

T∫
T0

∣∣∣∣ζ
(

1
2

+ i(t+ τ)
)∣∣∣∣

2

|MN(t)|2 dt,
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P =
T∫

T0

|MN(t)|2 dt

|t+ i|2 �M2N2T−1
0

(trivially) and, by the classical mean-value theorem (2.6),

Q =
T∫

T0

|MN(t)|2 dt�
(

1 +
T

MN

)
M2N2 log3X

(see also Lemma 2.1). We now have

PL2 � X2T−1
0 ≤ X2−ε, QL2 � T

N
X2 log3X,

QL2(logL)2T−2 � 1
T
X2 log5X �ε X

2−ε/2

and

Q� T

L2N
X2 log3X �ε X

2−ε/2,

so that certainly
H = ZL(log T )2 +Oε(X2−ε/3).

We complete the proof of the proposition by showing that the first term on
the right can be hidden in the Oε-notation of the second term.

By the Cauchy–Schwarz inequality and a change of variable,

Z2 ≤
T+τ∫

T0+τ

∣∣∣∣ζ
(

1
2

+ it

)∣∣∣∣
4

|Nτ (t)|2 dt
T∫

T0

|M2N(t)|2 dt,

where τ is some number from the interval [−T, T ] and Nτ (t) = N(t − τ).
With Lemma 2.1 at our disposal, Theorem 2 and the classical mean-value
theorem (2.6) now yield

Z2 �ε T
1+ε/8N

(
1 +

T

M2N

)
M4N2 log8X

�ε X
ε/4
(

T

L2N
+
T 2

X2

)
M4N4L2

≤ Xε/4(X−ε +X−2ε)X4L−2 � X4−3ε/4L−2

and, as required, ZL(log T )2 �ε X
2−3ε/9.

Note that the conditions N4 ≤ T ≤ X−εL2N may be replaced with
a single condition L ≥ XεT 1/2. This follows from the case N = 1 of the
proposition, which was already known as a corollary of the fourth power
moment for ζ(s) (see Harman [8], Lemma 6 and Titchmarsh [33], (7.6.2)).

3. Sums of the form
∑
m amS(Am, Xφ). By the Buchstab identity

(1.6) we have two types of sum to consider. For the first type (the single
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sum) we need the following results from sieve methods.

Lemma 3.1 (Rosser–Iwaniec linear sieve). Let B be any finite integer
sequence. Let N ≥ 0 and for d ≥ 1 define

R(B, d) = #Bd −N/d,
where Bd = {b ∈ B : b ≡ 0 (mod d)}. Let D ≥ z ≥ 2, s = (logD)/ log z,

P (z) =
∏
p<z

p, V = V (z) =
∏
p<z

(
1− 1

p

)

and put S = S(B, z) = #{b ∈ B : (b, P (z)) = 1}. Then, for s ≥ 1,

NV (1 +O(e−s)) + E− ≤ S ≤ NV (1 +O(e−s)) + E+,

where
E± =

∑

d<D

µd(z)%±d (D)R(B, d),

with (%+
d ) and (%−d ) being some sequences of 0’s and 1’s entirely determined

by D, and with µd(z) = µ(d), the Möbius function, if d |P (z), but µd(z) = 0
otherwise.

P r o o f. This is an abridged version of a special case of [15], Theorem 1.
In the statement of this theorem E± is given as a sum of absolute values,
but it is clear from [15], Section 3 that the form of E± given here is valid.
Mertens’ Theorem

(3.1) V (z) =
e−γ

log z
+O((log z)−2)

(see [6]) implies the inequality

∏

w≤p<z

(
1− 1

p

)−1

≤
(

log z
logw

)(
1 +O

(
1

logw

))
,

which is the hypothesis [15], (1.3) with ω(p) = 1 (for all p) and κ = 1. We
remark, for future reference, that this inequality implies another:

(3.2)
∑

w≤p<z

1
p
≤ log

(
log z
logw

)
+O

(
1

logw

)
.

Lemma 3.2. Let Xδ ≥ 2 and suppose that (am) is a finite Xδ-sifted
sequence with am ≥ 0 for all m. Then, for s ≥ 1,

yλ(1 +O(e−s)) +R− ≤
∑
m

amS(Am, Xδ) ≤ yλ(1 +O(e−s)) +R+,

where

λ = V (Xδ)
∑
m

am
m
,
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R± =
∑

d<Xsδ

µd(Xδ)%±d (Xsδ)
∑
m

amR(A, dm),

and

R(A, n) = #An − y

n
=
[
x

n

]
−
[
x− y
n

]
− y

n
.

P r o o f. Lemma 3.1 is applied to the term amS(Am, Xδ) with N = y/m,
and the result is summed over m. Note that when amµd(Xδ) 6= 0 we have
(m, d) = 1 and R(Am, d) = R(A,md).

We remark that [16] permits a flexibility in arranging the above summa-
tion over d, which is often very useful, and was exploited by Harman in [8].
In our use of Lemma 3.2 however, we adopt Harman’s later approach (see
[9]) and ensure that the summation over d is too short to play a significant
rôle.

The next lemma gives a formula similar to the case φ = δ of (1.5), but
with the sequence (am) having been replaced by a multiplicative convolution
of two sequences (am) and (bn).

Lemma 3.3. Let 0 < 8∆ < θ < 1/2 and put δ = ∆2. Let Xδ ≥ 2
and suppose that (am) and (bn) are Xδ-sifted sequences with am = 0 for
m > M , bn = 0 for n > N and 0 ≤ am, bn ≤ 1 for all m and n. Suppose
further that

N4 ≤ X1−θ+∆ and M2N ≤ X1+θ−4∆.

Then, for Xθ ≤ Y ≤ X/2,
∑
m

am
∑
n

bnS(Amn, Xδ) = yλ(1 +O(e−1/∆)) +O∆(Y X−∆/7)

with

λ = V (Xδ)
∑
m

∑
n

ambn
mn

.

P r o o f. By Lemma 3.2 with s = 1/∆ the proof reduces to the estimation
of two sums, R+ and R−. These can each be split into O(log3X) subsums
of the form:

R±(D,M1, N1)

=
∑

D/2<d<D

µd(Xδ)%±d (X∆)
∑

M1/2<m≤M1

∑

N1/2<n≤N1

ambnR(A, dmn),

with D ≤ X∆, M1 ≤ M and N1 ≤ N . Using (1.4) one can show that the
lemma is a consequence of the bound

(3.3) R±(D,M1, N1) = O∆(Y X−∆/6).
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To prove (3.3) we begin by writing R±(D,M1, N1) as a sum over k =
dmn, so that it assumes the same form as the sum in Lemma 2.3. The
relevant ηk’s will all be Oδ(1), since µd(Xδ) = 0 unless d is a product of
primes all less than Xδ while (am) and (bn) are both Xδ-sifted sequences
(see (2.9)). On taking K = DM1N1, K1 = K/8, T0 = X∆ and T = X1−θ+∆,
Lemma 2.3 yields

1
y
|R±(D,M1, N1)| ≤ |f(x, y)|+ |f(x, z)|+Oδ((X−∆ +X∆L−1/2) log2X),

where L = X/K and f(x, y) is as in Lemma 2.2 with

H(t) =
∑

D/2<d≤D
µd(Xδ)%±d (X∆)

∑

M1/2<m≤M1

am

×
∑

N1/2<n≤N1

bn
∑

L/4<l≤8L

(dmnl)it

= D(t)M1(t)N1(t)L(t) (say).

We have N4
1 ≤ N4 ≤ X1−θ+∆ = T and

X−∆L2N1 = X2−∆/D2M2
1N1 ≥ X2−3∆/M2N ≥ T.

Hence Proposition 2.2 applies to give

T∫
T0

|H(t)|2 dt�∆ X2−∆/3.

This shows, by Lemma 2.4, that f(x, y) and f(x, z) are both O∆(X−∆/6).
The bound (3.3) and the lemma both follow as L ≥ T 3/8 ≥ X3/16 > X3∆.

Lemma 3.3 can give useful formulae for the single sum on the right-hand
side of (1.6). Lemma 3.4 (below) treats the double sum. These two results
are combined in Proposition 3.1, which is central to much of what follows.

Lemma 3.4. Let 0 < δ < 1/(2k + 2) ≤ θ < 1/(2k) and set φ = θ +
(1− θ)/(2k − 1) − δ with k some integer satisfying k ≥ 4. Let Xδ ≥ 4,
A ≥ 3 and suppose that (am) is an Xφ-sifted sequence with 0 ≤ am ≤ 1, for
all m, and am = 0, for m > X1−2φ−δ. Then, for Xθ(logX)3A+1 ≤ Y ≤
X(logX)1−3A, we have
∑
m

am
∑

Xδ≤p<Xφ
S(Amp, p)

= yλ(x) +Oδ,A

(
Y

log2X

∑
m

am
m

)
+Oδ,A(Y (logX)3−A),

where λ(x) does not depend on Y .
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P r o o f. We begin by rewriting the sum over m and p as

Σ =
∑
m

am
∑

Xδ≤p<Xφ

∑

l

S({l}, p)ξ(mpl),

where S({l}, p) is as in Lemma 3.1 and ξ(u) is the characteristic function of
the interval (x− y, x]. An equivalent form of (1.6) is the identity

(3.4) S({l}, z) = S({l}, w)−
∑

q|l
w≤q<z

S({l/q}, q),

for 0 ≤ w ≤ z. Hence,

Σ =
∑
m

am
∑

Xδ≤p<Xφ

∑

l

S({l}, d−p )ξ(mpl)

−
∑
m

am
∑

Xδ≤p<Xφ

∑

d−p ≤q<p

∑
r

S({r}, q)ξ(mpqr)

= Σ− − σ− (say),

where d−n = 2b with b the integer such that 2b < n ≤ 2b+1. Similarly, with
d+
n = 2d−n ,

Σ+ =
∑
m

am
∑

Xδ≤p<Xφ

∑

l

S({l}, d+
p )ξ(mpl)

= Σ −
∑
m

am
∑

Xδ≤p<Xφ

∑

p≤q<d+
p

∑
r

S({r}, q)ξ(mpqr)

= Σ − σ+ (say).

The sums Σ± above are subdivided into O(log2X) sums of the form

Σ(M1, P ) =
∑

M1/2<m≤M1

am
∑

P/2<p≤P
Xδ≤p<Xφ

∑

l

S({l}, Q)ξ(mpl),

where M1 and P are integer powers of 2 and Q = d±P . What has been
achieved is a separation of the variable p by means of butchery, rather than
through a more precise application of Perron’s formula (as in [8], formula
(25)).

To each sum Σ(M1, P ) we now apply Lemma 2.2 with

T0 = (logX)A, T = X1−θ(logX)−2A−1.

For Y in the assumed range, this gives

1
y
Σ(M1, P ) = λ(x) + f(x, y) +O((logX)1−A),
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where λ(x) does not depend on Y . Here f(x, y) is given in terms of the
Dirichlet polynomial

H(t) =
∑

M1/2<m≤M
am

∑

P/2<p≤P
Xδ≤p<Xφ

∑

L/4<l≤4L

S({l}, Q)(mpl)it

= M1(t)P (t)L(t) (say),

with L = X/M1P . Note that here Q ≥ Xδ/2 ≥ Xδ/2, so that, by (2.9), the
coefficients ηh of H(t) are all Oδ(1).

We now appeal to Proposition 2.1 with M(t) = P (t) and N(t) =
M1(t)L(t). The bound (2.10) is supplied by (1.7) with B = 1/δ. The rele-
vant sequences are Xδ/2-sifted and bounded by Oδ(1). Furthermore we have
P < 2Xφ. Hence, assuming that X is sufficiently large in terms of δ and A,
Proposition 2.1 yields

T∫
T0

|H(t)|2 dt�δ,A X
2(logX)1−2A.

This shows that f(x, y) = Oδ,A((logX)1−A) (see (2.5) and Lemma 2.4).
Collecting our results for all the Σ(M1, P )’s we find (using (1.4))

(3.5) Σ = Σ± ± σ± = yλ±(x)± σ± +Oδ,A(Y (logX)3−A),

with λ+(x) and λ−(x) independent of Y . Hence,

(3.6) λ−(x)− λ+(x) =
σ+ + σ−

y
+Oδ,A((logX)3−A).

For all Y we have,

0 ≤ σ+ + σ− ≤
∑
m

am
∑

Xδ≤p<Xφ

∑

p/2≤q<2p

S(Ampq, Xδ/2).

To the right-hand side we apply Lemma 3.2, setting s = 1 and bounding the
remainder terms R± trivially by |R(A, n)| < 1. This yields the upper bound

σ+ + σ− � yV (Xδ/2)
∑
m

∑

Xδ≤p<Xφ

∑

p/2≤q<2p

am
mpq

+Xδ/2
∑
m

∑

Xδ≤p<Xφ

∑

p/2≤q<2p

am

�δ

(
Y

log2X
+
X1−δ/2

logX

)∑
m

am
m
,

by the implicit bound mpq < 2X1−δ (see the hypotheses of the lemma) fol-
lowed by applications of (3.1) and (3.2). Therefore, when Y = X(logX)1−3A
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(say) we will have

σ+ + σ−

y
�δ,A

1

log2X

∑
m

am
m
.

Returning with this to (3.6) one finds that, for all Y in the assumed range,

σ+ + σ− = Oδ,A

(
Y

log2X

∑
m

am
m

)
+Oδ,A(Y (logX)3−A).

Since σ+ and σ− are both non-negative, one can replace σ+ + σ− with σ±

here. Then (3.5), with either choice of sign, yields the stated result of the
lemma.

Proposition 3.1. Let 0 < 8∆ < 1/(2k + 2) ≤ θ < 1/(2k), δ = ∆2

and φ = θ + (1− θ)/(2k − 1)− δ with k some integer satisfying k ≥ 6. Let
Xδ ≥ 4, A ≥ 3 and suppose that (am) and (bn) are Xφ-sifted sequences
with am = 0 for m > M , bn = 0 for n > N , and 0 ≤ am, bn ≤ 1 for all m
and n. Then, provided that

N4 ≤ X1−θ+∆ and M2N ≤ X1+θ−4∆,

we have∑
m

am
∑
n

bnS(Amn, Xφ)

= yλ(x) +O

(
δY

logX

∑
m

∑
n

ambn
mn

)
+Oδ,A(Y (logX)3−A),

for Xθ(logX)3A+1 ≤ Y ≤ X(logX)1−3A, with λ(x) independent of Y .

P r o o f. First observe that the sequence (a∗m) given by

a∗m =
∑
rn=m

arbn

is Xφ-sifted, satisfies a∗m = 0 for m > MN and 0 ≤ a∗m �δ 1 otherwise.
In particular we can replace all the am’s in Buchstab’s identity (1.6) with
a∗m’s. Then, to the first sum on the right-hand side, we can immediately
apply Lemma 3.3. The remaining double sum can be dealt with by Lemma
3.4, since we have MN ≤ X1−∆−3(1−θ)/8 where ∆ > δ and 3(1− θ)/8 > 2φ
(by virtue of the condition k ≥ 6). Hence

∑
m

a∗mS(Am, Xφ) = y(λ− λ1(x)) +O(Y λe−1/∆)

+Oδ,A

(
Y

log2X

∑
m

a∗m
m

)

+O∆(Y X−∆/7) +Oδ,A(Y (logX)3−A)
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in the stated range for Y . Here

λ = V (Xδ)
∑
m

a∗m
m
� (δ logX)−1

∑
m

a∗m
m
,

by (3.1). The proposition follows since δ−1e−1/∆ = ∆−2e−1/∆ � ∆2 = δ,
X∆/7 �∆,A logAX, and Oδ,A(1/ logX)� δ +Oδ,A((logX)−A).

4. A negative constant. In this section we consider the sums Σ1 and
Σ2 from (1.8). We assume henceforth that θ, φ,∆, δ and X are as in Propo-
sition 3.1 and that E ≥ 1. By (3.2), Proposition 3.1 applies to give

(4.1) Σi = yλi(x) +Oθ

(
δY

logX

)
+Oδ,E(Y (logX)−E)

for

(4.2) Xθ(logX)3E+10 ≤ Y ≤ X(logX)−3E−8

and i = 1, 2. We shall show independently that when A ≥ 1 and Y =
X(logX)−A one has

(4.3) Σi = ci
y

logX
+OA,δ(Y (logX)−2)

for X/2 < x < X and i = 1, 2, with constants c1, c2 depending only on φ.

Lemma 4.1 (Buchstab–Selberg). Let A ≥ 1, y > 0, x − y ≥ z ≥ 2 and
s = (log x)/log z ≤ n, where n is an integer. Take A = (x− y, x]. Then, for
y ≤ x(log x)−A,

S(A, z) = ω(s)
y

log z
+OA,n

(
x

(log x)2A+2

)
,

where ω(s) is the continuous real function on [1,∞) satisfying sω(s) = 1,
for 1 ≤ s ≤ 2, and (sω(s))′ = ω(s− 1), for s > 2.

P r o o f. This can be proved by induction on n (as in [2]). The case n = 2
is just the prime number theorem (1.9). For n ≥ 3 the induction step can
be accomplished by means of a Buchstab identity such as (1.6).

Lemma 4.2. Let ε > 0, 2 ≤ a ≤ b/2, a ≥ bε, and suppose that f(x) is a
positive valued , piecewise continuously differentiable function on [a, b] with

d

dx
log f(x) = O

(
1
x

)

except at the finitely many points where f ′(x) is undefined. Then, for any
A ≥ 1,

∑

a≤p<b
f(p) = (1 +OA,ε((log a)−A))

b∫
a

f(x)
log x

dx.
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P r o o f. This is a standard result and follows quite easily from the prime
number theorem (1.9) through integration by parts.

When Y = X(logX)−A, with A ≥ 1, and X/2 < x < X, Lemma 4.1
gives

Σ1 = S(A, Xφ) = ω

(
log x
φ logX

)
y

φ logX
+OA,δ

(
x

(log x)2A+2

)
.

As δ < φ < 1/6 and (log x)/ logX = 1 + O(1/ logX), and as ω(s) is con-
tinuous for s ≥ 1, this yields the case i = 1 of (4.3) with c1 = ω(1/φ)/φ.
Similarly,

Σ2 =
∑

Xφ≤p<X1/2

S(Ap, Xφ)

=
∑

Xφ≤p<X1/2

ω(s)
(y/p)
φ logX

(
1 +OA,δ

(
1

logX

))
,

where s = s(p) = (1 − (log p)/(logX))/φ. Here we apply Lemma 4.2 to
obtain

∑

Xφ≤p<X1/2

ω(s)
φp

=
(

1 +Oδ

(
1

logX

)) X1/2∫
Xφ

ω(s(u))
φu log u

du.

A change of variables now yields the case i = 2 of (4.3) with

c2 =
1/φ−1∫

1/(2φ)

ω(s)
1− φs ds.

By comparing (4.1) and (4.3) at Y = X(logX)−3E−8, we find that

(4.4) λi(x) =
ci

logX
+Oθ

(
δ

logX

)
+Oδ,E((logX)−E).

Substituting (4.1) and (4.4) into (1.8) one obtains

(4.5) S −R = (1− c3 +Oθ(δ))
y

logX
+Oδ,E(Y (logX)−E),

for Y satisfying (4.2) and c3 = 1−(c1−c2). Integrating by parts and making
use of the definition of ω(s), given in Lemma 4.1, we have

(4.6) c3 = 2ω(2)− 1
φ
ω

(
1
φ

)
+

1/φ−1∫
1/(2φ)

ω(s)
1− φs ds

=
1/(2φ)−1∫

1

ω(s) log(s+ 1) ds+
1/φ−2∫

1/(2φ)−1

ω(s) log(1/φ− 1− s) ds
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=
1/2∫

α=φ

α∫
β=φ

ω

(
1− α− β

β

)
dα dβ

αβ2 ,

where ω(s) = 0 for s < 1 (so that a condition α + 2β ≤ 1 is implied). For
an alternative proof of this apply Lemmas 4.1 and 4.2 to R and S in (1.8).

To prepare for the numerical estimation of c3, or one of the many other
constants that we shall define in terms of integrals involving ω(s), one can
use either (sω(s))′ = ω(s−1) (with integration by parts) or explicit formulae
for ω(s), got by iterating

sω(s) = 1 +
s−1∫
1

tω(t)
dt

t
(s > 2).

For θ = 1/14 the largest value of s encountered will be (1− 2φ)/φ = 53/12
< 5. Hence it is practical to write down all the constants in terms of multiple
or (more often) single integrals that can be estimated by machine calcula-
tion. We shall be content to give only the results of these calculations (to
four decimal places, unrounded), leaving out all details of the intervening
preparation and calculation.

Suppose now that θ = 1/14. Then for Proposition 3.1 we must have
k = 6 and φ = 12/77− δ. Unfortunately, with δ = 0,

(4.7) c3 = 1.5965 . . . ,

so that c1 − c2 = 1− c3 is negative and (4.5) in conjuction with the trivial
bound R ≥ 0 gives nothing. For a comparison, when θ = 1/12 and φ = 5/27
the value of c3 is approximately 0.9825, and when θ = 1/16 and φ = 7/52
it is about 2.302.

In the next section we apply Proposition 3.1 to special subsums of the
sum R in (1.8). This recovers certain regions of the integral over α and β in
(4.6). Some more regions are recovered by virtue of Lemma 2.7. The proof
that we recover enough to get Theorem 1 is given in Section 6.

5. Sums of the form
∑
p

∑
q apqS(Apq, q). We give five (really three)

lemmas for dealing with such sums. Lemmas 5.1 and 5.3 depend on Propo-
sition 3.1. Their applications in the case θ = 1/14 are worked out in Lem-
mas 5.2 and 5.4 (respectively). The section ends with some applications of
Lemma 5.5, which is a corollary of the simple Lemma 2.7. We continue to
assume that θ, φ,∆, δ and X are as in Proposition 3.1 and that E ≥ 1.

Lemma 5.1. Let

R1 =
∑∑

Xφ≤q<p
p2q3≤x1+θ−5∆

S(Apq, q), R13 =
∑∑∑∑

Xφ≤q′<p′<q<p
p2q3≤x1+θ−5∆

S(Apqp′q′ , q′).
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Then, for Xθ(logX)3E+13 ≤ Y ≤ X(logX)−3E−11, we have

R1 −R13 = yλ(x) +Oθ

(
δY

logX

)
+Oδ,E(Y (logX)−E),

where λ(x) is independent of Y .

P r o o f. By two applications of the Buchstab identity (1.6),

(5.1) R1 = R11 −R12 +R13,

where

R11 =
∑∑

Xφ≤q<p
p2q3≤X1+θ−5∆

S(Apq, Xφ), R12 =
∑∑∑

Xφ≤p′<q<p
p2q3≤X1+θ−5∆

S(Apqp′ , Xφ).

For j = 1, 2, we have

(5.2) R+
1j =

∑

Q

R1j(Q, 1) ≤ R1j ≤
∑

Q

R1j(Q, 2) = R−1j ,

where Q runs over the positive integer powers of 2,

R11(Q,C) =
∑

Q/2<q≤Q

∑

Q/C<p≤f(Q/C)

S(Apq, Xφ),

R12(Q,C) =
∑

p′≤CQ/2

∑

Q/2<q≤Q

∑

Q/C<p≤f(Q/C)

S(Apqp′ , Xφ),

and

f(u) = X(1+θ−5∆)/2u−3/2.

Taking account of the implicit conditions, p, q, p′ ≥ Xφ, at most O(logX)
of the sums R1j(Q,C) in (5.2) are non-empty, and which ones those are does
not depend on Y . To such sums we apply Proposition 3.1 with A = E + 4.
Since Y is in the right range, and since the equation pp′ = m has at most
two solutions (for any given m), we just have to check that

Q4 ≤ X1−θ+∆ and (f(Q/C)CQ/2)2Q ≤ X1+θ−4∆.

In fact for non-empty sums, Q/C < f(Q/C) = X(1+θ−5∆)/2(Q/C)−3/2 and

Q < CX(1+θ−5∆)/5 ≤ X(1+θ)/5.

As (1 − θ)/4 − (1 + θ)/5 = (1 − 9θ)/20 > 1/80 this easily gives the first of
the above conditions. For the second, (f(Q/C)CQ/2)2Q = X1+θ−5∆C5/4
and C5/4 ≤ 8 ≤ X∆.

By (3.2) with z = Q, w = Q/2 or z = X, w = Xφ, one writes down the
result of Proposition 3.1 as

R1j(Q,C) = yλj(Q,C;x) +Oθ(δY (logX)−2) +Oδ,E(Y (logX)−E−1),
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with λj(Q,C;x) independent of Y . Hence (see (1.4)) the uppermost and
lower bounds in (5.2) satisfy

(5.3) R±1j = yλ±j (x) +Oθ

(
δY

logX

)
+Oδ,E(Y (logX)−E),

with λ±j (x) independent of Y . From this we conclude that, for j = 1, 2 and
Y in the assumed range,

(5.4) R−1j −R+
1j = y(λ−j (x)− λ+

j (x)) +Oθ

(
δY

logX

)
+Oδ,E(Y (logX)−E).

It is now of interest to bound |λ−j (x)−λ+
j (x)| on average over x, so that

we may control the O-terms in the equations

(5.5) R1j = R+
1j +O(R−1j −R+

1j),

from (5.2). Firstly observe that R1j(Q, 2) − R1j(Q, 1) is a sum of terms,
S(Apq, Xφ) or S(Apqp′ , Xφ), with q � Q and either p � Q, p � f(Q), or p′ �
Q. For an upper bound we can replace Xφ in each term by z1 = (x/(pq))φ

or z2 = (x/(pqp′))φ, as appropriate. Then, at Y = X(logX)−3E−11, Lemma
4.1 applies to give

S(Apq, z1) =
1
φ
ω

(
1
φ

)
y/(pq)

log(x/(pq))
+Oδ,E

(
x/(pq)

(log(x/(pq)))6E+24

)

�δ,E
Y/(pq)
logX

;

S(Apqp′ , z2)�δ,E
Y/(pqp′)

logX

(note that we may assume pqp′ � pq2 � X1+θ−2φ, so that X/(pqp′)� Xφ).
Hence, for this Y , and j = 1, 2,

R1j(Q, 2)−R1j(Q, 1)�δ,E Y (logX)−3

(see (3.2)), and

R−1j −R+
1j = Oδ,E(Y (logX)−2)� (δ +Oδ,E((logX)−E))

Y

logX
.

Returning to (5.4), one obtains the desired bound:

λ−j (x)− λ+
j (x) = Oθ

(
δ

logX

)
+Oδ,E((logX)−E).

By (5.4) again,

R−1j −R+
1j = Oθ

(
δY

logX

)
+Oδ,E(Y (logX)−E),

for j = 1, 2 and all Y satisfying the hypotheses of the lemma. The lemma
now follows from (5.1), (5.5), (5.3) and the last equation.
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Lemma 5.2. Let θ = 1/14. Then, for X1/14(logX)3E+13 ≤ Y ≤
X(logX)−3E−11, the sum R1 in Lemma 5.1 satisfies

R1 ≥ (aI − bI +O(δ))
y

logX
+Oδ,E(Y (logX)−E),

where

aI =
(1+θ)/5−∆∫
β=φ

(1+θ−5∆−3β)/2∫
α=β

ω

(
1− α− β

β

)
dα dβ

αβ2

and

bI =
∫ ∫ ∫ ∫

φ<σ<%<β<α
2α+3β<1+θ−5∆

ω

(
1− α− β − %− σ

σ

)
dα dβ d% dσ

αβ%σ2

(with φ = 12/77− δ).

P r o o f. We consider the sums

R1(P,Q) =
∑

P/2<p≤P

∑

Q/2<q≤Q
S(Apq, q)

with P and Q positive integer powers of 2 satisfying Q ≥ 2Xφ, P ≥ 2Q and
P 2Q3 ≤ X1+θ−5∆. For Y = X(logX)−3E−11, Lemmas 4.1 and 4.2 give

R1(P,Q)

=
∑

P/2<p≤P

∑

Q/2<q≤Q

(
ω

(
log(x/(pq))

log q

)
y/(pq)
log q

+OE

(
x/(pq)

(log(x/(pq)))6E+24

))

=
∑

P/2<p≤P

∑

Q/2<q≤Q
ω

(
log(X/(PQ))

logQ

)
y/(pq)
logQ

(
1 +OE

(
1

logX

))

=
P∫

u=P/2

Q∫
v=Q/2

ω

(
log(X/(PQ))

logQ

)
(y/(uv)) du dv

(log u)(log v) logQ

(
1 +OE

(
1

logX

))

=
(

1 +OE

(
1

logX

))
y

P∫
u=P/2

Q∫
v=Q/2

ω

(
log(X/(uv))

log v

)
du dv

uv(log u)(log v)2 .

Summing over P and Q, we obtain the lower bound,
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R1 ≥
(

1 +OE

(
1

logX

))

× y

logX

∫ ∫
Xφ≤v≤u

u2v3≤X1+θ−5∆

ω

(
log(X/(uv))

log v

)
(logX) du dv

uv(log u)(log v)2

(that part of the integral, where either v � Xφ, u � v or u2v3 � X1+θ−5∆,
is accounted for by the O-term). By the change of variables, u = Xα and
v = Xβ , the integral is seen to equal aI .

In the sum R13 in Lemma 5.1, one has

pqp′q′ < x(4/5)(1+θ) = x6/7 < x− y,
so that A contains no integer of the form 1pqp′q′, and we may actually
assume

(5.6) x/(pqp′q′) ≥ q′ ≥ Xφ.

Hence, for Y = X(logX)−3E−11, Lemma 4.1 gives

S(Apqp′q′ , q′)
≤ S(Apqp′q′ , q′/2)

= ω

(
log(x/(pqp′q′))

log(q′/2)

)
y/(pqp′q′)
log(q′/2)

+OE

(
x/(pqp′q′)

(log(x/(pqp′q′)))6E+24

)
.

By an argument similar to the one used above (for the lower bound on R1)
we deduce that

R13 ≤
(
bI +OE

(
1

logX

))
y

logX
,

when Y = X(logX)−3E−11. Note that the condition α + β + % + 2σ ≤ 1,
implicit in the definition of bI , comes from (5.6).

We can now conclude that

R1 −R13 ≥
(
aI − bI +OE

(
1

logX

))
y

logX
,

for X/2 < x < X and Y = X(logX)−3E−11. Together with the result of
Lemma 5.1, this gives

aI − bI ≤ (logX)λ(x) +O(δ) +Oδ,E((logX)1−E).

By Lemma 5.1 again, it follows that

y

logX
(aI − bI) ≤ R1 −R13 +O

(
δY

logX

)
+Oδ,E(Y (logX)−E),

for X1/14(logX)3E+13 ≤ Y ≤ X(logX)−3E−11. As R13 ≥ 0, this completes
the proof of the lemma.
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Our calculations (with θ = 1/14, φ = 12/77 and ∆ = 0) yield

(5.7) cI = aI − bI = 0.3606 . . .− 0.0039 . . . = 0.3567 . . .

Lemma 5.3. Let

R∗2 =
∑
p

∑

Xφ≤q≤X(1−θ)/4

∑
r

1
16X

1−θ+5∆≤qr2≤X1+θ−5∆

S({r}, q)ξ(pqr),

R∗23 =
∑

Xφ≤p′<q≤X(1−θ)/4

∑

r′≥p′
1
16X

1−θ+5∆≤q(p′r′)2≤X1+θ−5∆

S({r′}, p′)

×
∑

q′≥Xφ
r′qp′(q′)2<X

∑

l′
S({l′}, q′)ξ(qp′r′q′l′),

where S({r}, z) is as in Lemma 3.1 and ξ(u) is the characteristic function of
the interval (x − y, x]. Then, for Xθ(logX)3E+13 ≤ Y ≤ X(logX)−3E−11,
we have

R∗2 −R∗23 − %1 − %2 = yλ(x) +Oθ

(
δY

logX

)
+Oδ,E(Y (logX)−E),

where

%1 =
∑

Xφ≤q≤X(1−θ)/4

∑

p<X(1−θ+5∆)/2q−1/2

∑

r≤X(1+θ−5∆)/2q−1/2

S({r}, Xφ)ξ(pqr),

%2 =
∑

Xφ≤q≤X(1−θ)/4

∑

p>X(1+θ−5∆)/2q−1/2

∑

r≥ 1
4X

(1−θ+5∆)/2q−1/2

S({r}, Xφ)ξ(pqr),

and λ(x) is independent of Y .

P r o o f. By Buchstab’s identity in the shape of (3.4),

R∗2 =
∑

Xφ≤q≤X(1−θ)/4

∑
p

∑
r

1
16X

1−θ+5∆≤qr2≤X1+θ−5∆

S({r}, Xφ)ξ(pqr)

−
∑

Xφ≤p′<q<X(1−θ)/4

∑
p

∑

r′
1
16X

1−θ+5∆≤q(p′r′)2≤X1+θ−5∆

S({r′}, p′)ξ(pqp′r′).

The first sum on the right effectively contains as a subsum

R∗21 =
∑

Xφ≤q<X(1−θ)/4

∑
p

X1−θ+5∆≤p2q≤X1+θ−5∆

S(Apq, Xφ);

this follows from the definition of ξ(pqr), which certainly vanishes unless
(X/4)2 < (p2q)(qr2) < X2 (note too that p > Xφ in R∗21, for otherwise
p ≤ q and X1−θ ≤ q3, contradicting q < X(1−θ)/4). Similar considerations
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show that the remainder of the first sum (where either p2q < X1−θ+5∆ or
p2q > X1+θ−5∆) is %1 + %2.

In the other sum on the right q(p′)2 < X3(1−θ)/4 < X1−θ+5∆/16, so that
r′ 6= 1 and, in fact, r′ ≥ p′. Using the primality of p, we rewrite this sum as

∑∑

Xφ≤p′<q<X(1−θ)/4

∑

r′≥p′
1
16X

1−θ+5∆≤q(p′r′)2≤X1+θ−5∆

S({r′}, p′)

×
∑

l

S({l}, (X/(qp′r′))1/2)ξ(qp′r′l)

(note that qp′r′ ≤ X(1+θ−5∆+(1−θ)/4)/2 < X2/3). By applying Buchstab’s
identity (3.4) to each term of the inner sum here and collecting our results,
we obtain

R∗2 = R∗21 + %1 + %2 −R∗22 +R∗23,

where

R∗22 =
∑∑

Xφ≤p′<q<X(1−θ)/4

∑

r′≥p′
1
16X

1−θ+5∆≤q(p′r′)2≤X1+θ−5∆

S({r′}, p′)S(Aqp′r′ , Xφ)

and the other terms have already been defined. Baker and Harman [1],
Section 6, had the same idea.

To complete the proof it suffices to obtain formulae for R∗21 and R∗22
similar to those given for R11 and R12 in the proof of Lemma 5.1. As this
can be done in much the same way, we omit the details. In the applications
of Proposition 3.1 the variable q above will correspond to the variable n of
that proposition (for both R∗21 and R∗22). For R∗21, p will correspond to the
variable m. For R∗22 we put p′r′ = m, so that the am in Proposition 3.1
satisfy 0 ≤ am ≤ 1.

Lemma 5.4. Let θ = 1/14 (φ = 12/77−δ). Then, for X1/14(logX)3E+13

≤ Y ≤ X(logX)−3E−11,

R2 =
∑

Xφ≤q≤X(1−θ)/4

∑
p

1
16X

1−θ+5∆≤p2q≤16X1+θ−5∆

S(Apq, q)

≥ (aII − bII +O(δ))
y

logX
+Oδ,E(Y (logX)−E),

where

aII =
(1−θ)/4∫
β=φ

(1+θ−5∆−β)/2∫
α=(1−θ+5∆−β)/2

ω

(
1− α− β

β

)
dα dβ

αβ2
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and

bII =
∫ ∫ ∫ ∫

φ<%<β<(1−θ)/4 α>% σ>φ
α+β+%+2σ<1

1−θ+5∆<β+2%+2α<1+θ−5∆

dα dβ d% dσ

(1− α− β − %− σ)αβ%σ
.

P r o o f. Let R∗2, R
∗
23, %1 and %2 be as in Lemma 5.3. Since R2 ≥ R∗2, it

will be enough to prove that the lower bound claimed for R2 by the lemma is
actually a lower bound for R∗2. Therefore the lemma will follow from Lemma
5.3, provided we can show that when Y = X(logX)−3E−11 one has

%1, %2 = OE(Y (logX)−2),

(5.8) R∗2 ≥
(
aII +OE

(
1

logX

))
y

logX
,

and

(5.9) R∗23 ≤
(
bII +OE

(
1

logX

))
y

logX
,

for X/2 < x < X; see the concluding part of the proof for Lemma 5.2.
To bound %1, we use

%1 ≤
∑

Xφ≤q≤X(1−θ)/4

∑
1
4X

(1−θ+5∆)/2q−1/2≤p≤X(1−θ+5∆)/2q−1/2

S(Apq, Xφ).

Here pq < X3(1−θ)/4 < X3/4, so that

1 <
1

4φ
≤ s =

log(X/(pq))
log(Xφ)

≤ 1
φ
.

Hence Lemma 4.1 and (3.2) give us

%1 �E

∑

Xφ≤q≤X(1−θ)/4

∑
1
4X

(1−θ+5∆)/2q−1/2≤p≤X(1−θ+5∆)/2q−1/2

y/(pq)
logX

�E
y

logX
log
(

1− θ
4φ

)
1

log(X3(1−θ)/8)
�E

y

(logX)2 ,

as required. We omit the very similar treatment of %2.
For (5.8) we first use the inequality

R∗2 ≥
∑

Xφ≤q≤X(1−θ)/4

∑
p

X1−θ+5∆≤p2q≤X1+θ−5∆

S(Apq, q) = R∗∗2 (say).

It then suffices to prove (5.8) with R∗∗2 instead of R∗2. This is accomplished
by appeals to Lemmas 4.1 and 4.2 (see the treatment of R1 in the proof for
Lemma 5.2).

Turning lastly to (5.9) with Y = X(logX)−3E−11, we begin by observing
that in the sum R∗23 both r′ and l′ are forced to be primes. Indeed, supposing
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r′ to be composite, we find

r′ ≥ (p′)2, q(p′)6 ≤ X1+θ−5∆ and 7φ < 1 + θ;

and the last inequality contradicts our hypotheses. With l′ we argue simi-
larly, using the implicit inequality, q(q′l′)2 ≤ 16X1+θ−5∆. By estimating the
sum over l′ with the prime number theorem (1.9), we find that

R∗23 ≤
∑∑

Xφ≤p′<q≤X(1−θ)/4

∑

p≥p′

∑

q′≥Xφ
pqp′(q′)2<X

1
16X

1−θ+5∆≤q(p′p)2≤X1+θ−5∆

y/(p′qpq′)
log(X/(p′qpq′))

×
(

1 +OE

(
1

logX

))
.

To the right hand side here we apply Lemma 4.2 (or the prime number
theorem), as it was applied to R1 in the proof of Lemma 5.2. This yields
(5.9), so completing the proof of the lemma.

With θ = 1/14, φ = 12/77 and ∆ = 0, calculation yields

(5.10) cII = aII − bII = 0.2046 . . .− 0.0219 . . . = 0.1827 . . .

Lemma 5.5. Let h and l be integers with h, l ≥ 2 and h 6= l. Take r
to be the greatest integer strictly less than % = 1/(1 − 1/h − 1/l) and put
τ = (%+ r)/2. Suppose that P ≥ 2Q, PQ2 ≤ X/4,

P ≥ X∆+(1−θ)/min(h,τ), Q ≥ X∆+(1−θ)/max(h,τ)

and

PQ ≤ X1−∆−(1−θ)/l.

Then, for Xθ ≤ Y ≤ X(logX)−4−2hl(E+3),

R3(P,Q) =
∑

P/2<p≤P

∑

Q/2<q≤Q
S(Apq, q)

= Λ3(P,Q)y +Ohl,E,δ(Y (logX)−4) +Ohl,E(Y (logX)−E−2),

where

Λ3(P,Q) =
P∫

u=P/2

Q∫
v=Q/2

ω

(
log(X/(uv))

log v

)
du dv

uv(log u)(log v)2 .

P r o o f. We shall suppose that X ≥ 212(h+6), the lemma being otherwise
trivial. The sum R3(P,Q) is of the same shape as the sum R1(P,Q) in the
proof of Lemma 5.2. Hence we expect that

R3(P,Q) =
(

1 +Ohl,E

(
1

logX

))
yΛ3(P,Q),
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for Y = X(logX)−4−2hl(E+3) and X/2 < x < X. To verify that Lemmas
4.1 and 4.2 do give this, we need only observe

x− y
pq

>
X

4PQ
=

XQ

4PQ2 ≥ Q ≥ q,

s =
log(x/(pq))

log q
≤ logX

log(Q/2)

and

Q > X1/(2(h+%)) ≥ X1/(2(h+6)) ≥ 64.

As Λ3(P,Q) = Oh((logX)−3), we can complete the proof of the lemma by
showing that, for all Y in the assumed range,

(5.11)
1
y
R3(P,Q) = λ(x) +Ohl,δ,E((logX)−4) +Ohl,E((logX)−E−2),

with λ(x) independent of Y .
As in the proof of Lemma 3.4,

R3(P,Q) = Σ± ± σ±,
where σ+ ≥ 0, σ− ≥ 0,

(5.12) σ+ + σ− =
∑

P/2<p≤P

∑

Q/2<q≤Q

∑

Q/2≤p′<Q

∑

m′
S({m′}, p′)ξ(pqp′m′),

and

Σ± =
∑

P/2<p≤P

∑

Q/2<q≤Q

∑
m

S({m′}, Q±)ξ(pqm),

with Q+ = Q, Q− = Q/2. To handle Σ+ and Σ−, we take A = hl(E + 3),
T0 = logAX, T = X1−θ(logX)5 and

H±(t) =
∑

P/2<p≤P

∑

Q/2<q≤Q

∑

R/16<m≤R
S({m′}, Q±)(pqm)it

= P (t)Q(t)R±(t) (say),

with R = 4X/(PQ). Note that the condition PQ2 ≤ X/4 ensures that
R/16 ≥ Q. As p and q here must be primes greater than X1/(4(h+6)), the
case r = 1, ε = ∆ of Lemma 2.2 shows that

(5.13)
1
y
Σ± = λ±(x) + f±(x, y) +Oh,δ((logX)−4),

where λ+(x) and λ−(x) are independent of Y . Assuming (as may be done)
that X is sufficiently large in terms of hl, E and 1/∆, one easily checks that
the case ε = 1/(4(h+ 6)) of Lemma 2.7 applies; the required uniform bound
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(2.10) for P (t) or Q(t) being supplied by (1.7) with B = h+ 6. Since

1− 2
(
%− r
%

)
A ≤ 1− 2A

hl
= −2E − 5,

we conclude, via Lemma 2.4, that

(5.14) f±(x, y) = Ohl,E((logX)−E−2).

If PQ3 ≥ 16X, then one deduces from (5.12) that σ+ = σ− = 0. Hence
(5.11), and the lemma, follow immediately from (5.13) and (5.14) in this
case. For PQ3 < 16X, the proof can be completed, in much the same manner
as the proof of Lemma 3.4, by means of (5.13), (5.14) and the upper bounds

σ+ + σ− ≤
∑

P/2<p≤P

∑

Q/2<q≤Q

∑

Q/2≤p′<Q
S(Apqp′ , (x/(pqp′))1/(4(h+6)))

�hl,E

∑

P/2<p≤P

∑

Q/2<q≤Q

∑

Q/2≤p′<Q

y/(pqp′)
log(Q/32)

�hl,E Y (logX)−4,

which hold at Y = X(logX)−4−2hl(E+3). These are obtained by the appli-
cation of Lemma 4.1 and the prime number theorem.

Lemma 5.5 could be improved by observing that the Dirichlet poly-
nomials R±(t), from the proof, do satisfy a bound of the form (2.10) for
T0 ≤ t ≤ T . We now give consideration to its applications, with the follow-
ing choices of h and l:

(h1, l1) = (4, 2), (h2, l2) = (4, 3),

(h3, l3) = (5, 2), (h4, l4) = (5, 3),

(h5, l5) = (3, 2), (h6, l6) = (2, 3).

To each pair (h, l) corresponds a triple (α, β, γ), where α = (1−θ)/min(h, τ),
β = (1 − θ)/max(h, τ), γ = 1 − (1 − θ)/l and τ is the arithmetic mean of
% = 1/(1− 1/h− 1/l) and the greatest integer strictly less than %:

(5.15)

α1 = 13/49, β1 = 13/56 = β2, α2 = 65/154,

α3 = 39/133, β3 = 13/70 = β4, α4 = 13/29,

α5 = 13/42, β5 = 13/77 = β6, α6 = 13/28,

γ1 = γ3 = γ5 = 15/28 and γ2 = γ4 = γ6 = 29/42.

For small ∆ > 0 and j = 1, . . . , 6, we define a sum

(5.16) R3j =
∑ ∑

Xαj+∆≤p≤Xαj+2 Xβj+∆≤q<p
pq≤Xγj−∆

S(Apq, q),
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where α7 = α8 = 1/2. Let P and Q be integer powers of 2 for which the
sum R3(P,Q), in Lemma 5.5, is a non-trivial subsum of R3j . Then P ≥ 2Q
and

(5.17) PQ2 = (PQ)2/P ≤ 16X2γ−α ≤ 16X443/462

(2γj − αj being maximal at j = 2). Hence, provided that X is sufficiently
large, and that

(5.18) X1/14 ≤ Y ≤ X(logX)−90−30E ,

Lemma 5.5 will yield the stated formula:

R3(P,Q) = Λ3(P,Q)y +OE,δ(Y (logX)−4) +OE(Y (logX)−E−2).

Since Λ3(P,Q) = O((logX)−3), it is not hard to show that
∑

P,Q

Λ3(P,Q) = c3j(logX)−1 +O((logX)(logX)−3),

where the summation is taken over all the values that can be taken (above)
by P and Q, and

(5.19) c3j =
αj+2∫

α=αj+∆

α∫
β=βj+∆

α+β≤γj−∆

ω

(
1− α− β

β

)
dα dβ

αβ2 .

As there are only O((logX)2) choices for P and Q, we conclude (via (1.4))
that

R3j ≥ c3j y

logX
+OE,δ(Y (logX)−2) +OE(Y (logX)−E)(5.20)

= (c3j +O(δ))
y

logX
+OE,δ(Y (logX)−E),

for X and Y as in (5.18).
With (5.17) we showed in effect that α + 2β ≤ 1 in the integral (5.19).

As β > 0, this implies: s = (1 − α − β)/β ≥ β/β = 1. One easily verifies
that 2αj ≥ γj for j = 2, . . . , 6, so the condition β ≤ α (or α + β ≤ 2α) is
redundant in (5.19) unless j = 1. When j = 5 the condition α ≤ α7 = 1/2
is redundant. We calculate that when ∆ = 0,

(5.21)

ci = c31 + c33 + c35

= 0.0211 . . .+ 0.0330 . . .+ 0.0806 . . . = 0.1348 . . . ,

cii = c32 + c34 + c36

= 0.0177 . . .+ 0.0243 . . .+ 0.0473 . . . = 0.0894 . . .

6. Summary of results and deduction of Theorem 1. Throughout
this last section θ = 1/14 and φ = 12/77 − δ, where δ = ∆2 and 0 < ∆ <
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10−3. It will be enough to prove Theorem 1 for Y satisfying

X1/14(logX)3E+13 ≤ Y ≤ X(logX)−90−30E ;

for larger Y the asymptotic formula (1.1) holds, by virtue of the prime
number theorem (1.9).

Before we can use the results of Sections 4 and 5, we need to verify
that the sums R1, R2, R31, . . . , R36 (from Lemmas 5.1 and 5.4, (5.15) and
(5.16)) are subsums of R (from (1.8)) and that they do satisfy a condition
of pairwise disjointness.

For the first half of this, it suffices to show that each of the conditions,
q ≥ Xφ, q < p and p ≤ X1/2, is present (explicitly or implicitly) in all of the
sums. This is easily accomplished for R1, where Xφ ≤ q < p is given and one
can deduce that p2 ≤ X1+θ−5∆−3φ ≤ X. For R2 we have: Xφ ≤ q (explicit),
p2 ≤ 16X1+θ−5∆−φ < 16X1−1/14 < X and p2/q2 ≥ 1

16X
(1−θ)/4 > 1. The

sums R31, . . . , R36 all have q < p, so it is enough to note that β1, . . . , β6 ≥
13/77 > φ and α3, . . . , α8 ≤ 1/2 (see (5.15) and (5.16)).

For the second half (pairwise disjointness) we consider the values of 2α+β
at points (α, β) = (log p/ logX, log q/ logX) corresponding to terms of the
sums in question. For R1, 2α + β ≤ 1 + θ − 5∆ − 2φ < 15/14 − 24/77 =
117/154. For R31, R33, or R35, 2α + β ≥ 2α1 + β1 = 26/49 + 13/56 =
299/392 > 117/154 and 2α + β ≤ 2γ5 − β5 = 15/14 − 13/77 = 139/154.
For R2, 15/14 ≥ 2α + β ≥ 13/14 > 139/154. Finally, for R32, R34, or R36,
2α + β ≥ 2α2 + β2 = 65/77 + 13/56 = 663/616 > 15/14. We conclude
that if two of the sums R1, R2, R31, . . . , R36 have a term in common, then
they are R3i and R3j , for some i, j with i ≡ j (mod 2). The condition
Xαj < p ≤ Xαj+2 in (5.16) shows that there are no such pairs.

Since R1, R2, R31, . . . , R36 are pairwise disjoint subsums of R, their sum
is a subsum of R. As all terms are positive, or zero, it follows that

R ≥ R1 +R2 +R31 + . . .+R36 = R′ (say).

Hence, Lemmas 5.2 and 5.4 and (5.20) together imply that

R ≥ R′ ≥ (c′ +O(δ))
y

logX
+Oδ,E(Y (logX)−E),

where
c′ = cI + cII + ci + cii

= 0.3567 . . .+ 0.1827 . . .+ 0.1348 . . .+ 0.0894 . . .+O(∆)

= 0.7636 . . .+O(∆)

(see (5.7), (5.10), (5.21) and the definitions of aI , bI , aII , bII , c31, . . . , c36

given in Lemma 5.2, Lemma 5.4 and (5.19)). By the above, (4.5)–(4.7),

S ≥ cy

logX
+O∆,E(Y (logX)−E),
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where S = π(x)− π(x− y), from (1.8), and

c = c1 − c2 + c′ +O(δ) = 1− c3 + c′ +O(δ)

≥ 1− 1.5966 + 0.7636 +O(∆).

Since 0.7636− 0.5966 = 0.167, there is a numerical constant ∆0 > 0 which
is sufficiently small that Theorem 1 follows on taking ∆ = ∆0.

References

[1] R. C. Baker and G. Harman, The difference between consecutive primes, preprint.
[2] A. Buchstab, Asymptotic estimates of a general number-theoretic function, Mat.

Sb. (N.S.) (2) 44 (1937), 1239–1246 (in Russian with a German summary).
[3] H. Davenport, Multiplicative Number Theory, Springer, 1980.
[4] J.-M. Deshoui l l e r s and H. Iwaniec, Kloosterman sums and Fourier coefficients

of cusp forms, Invent. Math. 70 (1982), 219–288.
[5] —, —-, Power mean values of the Riemann zeta-function, Mathematika 29 (1982),

202–212.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,

Clarendon Press, Oxford, 1954.
[7] G. Harman, Almost-primes in short intervals, Math. Ann. 258 (1981), 107–112.
[8] —, Primes in short intervals, Math. Z. 180 (1982), 335–348.
[9] —, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9–18.

[10] —, On the distribution of αp modulo one II , preprint.
[11] D. R. Heath-Brown, Gaps between primes and the pair correlation of zeros of the

zeta-function, Acta Arith. 41 (1982), 85–99.
[12] —, Finding primes by sieve methods, Proc. 1982 ICM, Warsaw, 1983, PWN, Vol. 1,

Warszawa, 1984, 487–492.
[13] D. R. Heath-Brown and H. Iwaniec, On the difference between consecutive

primes, Invent. Math. 55 (1979), 49–69.
[14] M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15

(1972), 164–170.
[15] H. Iwaniec, Rosser’s sieve, Acta Arith. 36 (1980), 171–202.
[16] —, A new form of the error term in the linear sieve, ibid. 37 (1980), 307–320.
[17] H. Iwaniec and M. Jut i la, Primes in short intervals, Ark. Mat. 17 (1979), 167–

176.
[18] H. Iwaniec and J. Pintz, Primes in short intervals, Monatsh. Math. 98 (1984),

115–143.
[19] C. J ia, On the Goldbach numbers in the short interval , Science in China, to appear.
[20] —, On the difference between consecutive primes, ibid., to appear.
[21] H. Li, Primes in short intervals, unpublished manuscript.
[22] —, Primes in short intervals, preprint.
[23] S. Lou and Q. Yao, A Chebychev’s type of prime number theorem in a short interval

– II , Hardy-Ramanujan J. 15 (1992), 1–33.
[24] H. Mikawa, Almost-primes in arithmetic progressions and short intervals, Tsukuba

J. Math. (2) 13 (1989), 387–401.
[25] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in

Math. 227, Springer, 1971.



Short intervals almost all containing primes 167

[26] H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London Math.
Soc. (2) 8 (1974), 73–82.

[27] —, —, The exceptional set in Goldbach’s problem, Acta Arith. 27 (1975), 353–370.
[28] Y. Motohash i, A note on almost-primes in short intervals, Proc. Japan Acad.

Ser. A Math. Sci. 55 (1979), 225–226.
[29] C. J. Mozzoch i, On the difference between consecutive primes, J. Number Theory

24 (1986), 181–187.
[30] A. Pere l l i and J. Pintz, On the exceptional set for Goldbach’s Problem in short

intervals, J. London Math. Soc. (2) 47 (1993), 41–49.
[31] A. Se lberg, On the normal density of primes in short intervals, and the difference

between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87–105.
[32] P. Shiu, A Brun–Titchmarsh theorem for multiplicative functions, J. Reine Angew.

Math. 313 (1980), 161–170.
[33] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press,

Oxford, 1986.
[34] N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number

Theory, to appear.
[35] D. Wolke, Fast-Primzahlen in kurzen Intervallen, Math. Ann. 224 (1979), 233–242.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NOTTINGHAM

UNIVERSITY PARK

NOTTINGHAM NG7 2RD, UNITED KINGDOM

E-mail: NIGEL.WATT@MATHS.NOTTINGHAM.AC.UK

Received on 17.6.1994
and in revised form on 12.12.1994 (2628)


