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A sieve approach to the Waring–Goldbach problem, II
On the seven cubes theorem

by

Jörg Brüdern (Stuttgart)

1. Introduction. It is conjectured that all sufficiently large natural
numbers satisfying some necessary congruence condition, are the sum of
four cubes of primes. The best result in this direction is due to Hua and
dates back to 1938: all large numbers in some congruence class are the sum
of nine cubes of primes (see [8]). In the present paper we show that if instead
of primes one asks for almost primes of some fixed order r (that is, numbers
with at most r prime factors, counted with multiplicity, or Pr-numbers for
short), then seven variables suffice.

Theorem. Let v(n) be the number of representations of n in the form

(1.1) n = x3 + y3
1 + y3

2 + y3
3 + y3

4 + y3
5 + p3,

where p denotes a prime, the yi are P5-numbers, and x is a P69. Then
v(n) � n4/3(log n)−27.

It may be worth pointing out that seven variables are also required for
solving the ordinary Waring problem at present (Watson [14], Vaughan
[11,12]), and that the lower bound for v(n) is essentially of the expected
order of magnitude.

Our theorem supplements a similar result on sums of four cubes obtained
in part I of this series [4], to which the reader is referred for a more detailed
introduction to the subject. The principal idea in part I was a combined
application of the circle method and a sieve, and this will be basic here as
well. Very roughly speaking, we shall count the solutions of (1.1) with the
yi taken from a certain set of numbers with exactly five prime factors. The
Hardy–Littlewood method is used to obtain asymptotic formulae for the
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ing a stay at Mathematisches Forschungsinstitut Oberwolfach, supported by “Förderpreis
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number of such solutions subject to an additional constraint x ≡ 0 (mod d).
This allows the linear sieve to be applied to the variable x. To press the
method home we require, in addition to the tools developed in part I, a
mean value estimate for cubic exponential sums from our recent paper [3],
and a special device for improving the usual minor arc technology due to
Vaughan [11, 12].

We have organized the material in such a way that some fairly technical
estimates are provided in the next section, before embarking on the main
argument. We shall also have opportunity to fix various notations. In
Section 3 we apply the circle method to supply the relevant sieve input.
The circle method work is completed in Section 4 by examining the minor
arcs. The success of the sieve is then dependent on an upper bound for
the solutions of (1.1) where x has large square factors, and in Section 5 a
suitable estimate is established to finish the proof.

The methods of this paper extend to Waring’s problem with exponents
exceeding 3. However, we shall find it more appropriate to comment on this
matter and other applications of our technique at the end of the paper.

2. Preliminaries. In this paper p always denotes a prime number, and
π is reserved for primes ≡ 2 (mod 3). The same convention applies when
subscripts are present. Formulae involving ε are valid for all ε > 0. Our
notations are otherwise standard and must be understood from the context,
or are explained at the appropriate stage of the argument.

Let

Θ4 =
233
1815

, ζ1 =
15
113

(1−Θ4), ζ2 =
14
113

(1−Θ4), ζ3 =
84
113

(1−Θ4);

Θ5 =
3679
29089

, θi = (1−Θ5)ζi (1 ≤ i ≤ 3), θ4 = (1−Θ5)Θ4.

Of importance later are the sizes of Θ4, Θ5 and the relations

Θ4 + ζ1 + ζ2 + ζ3 = Θ5 + θ1 + θ2 + θ3 + θ4 = 1.

Let A4(P ) denote the set of all n which can be written in the form n =
p0p1p2p3 with PΘ4 < p0 ≤ 2PΘ4 and P ζi < pi ≤ 2P ζi (i = 1, 2, 3). Such a
representation is necessarily unique. Similarly, let A5(P ) be the set of all n
of the form n = πp1p2p3p4 with PΘ5 < π ≤ 2PΘ5 and P θi < pi ≤ 2P θi (i =
1, 2, 3, 4). Again, such representations of n are unique.

Lemma 1. Let k = 4 or 5. Let Sk denote the number of solutions of

x3
1 + y3

1 + y3
2 = x3

2 + y3
3 + y3

4

subject to xi ≤ P and yi ∈ Ak(P ). Then

Sk � P 3+2Θk+ε.
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P r o o f. These are the special cases l = 4 and 5 of the Proposition in
Brüdern [3].

Lemma 2. Let

(2.1) M = PΘ5 , Q = PM−1.

Let T denote the number of solutions of

π3
1(y3

1 − z3
1) + π3

2(y3
2 − z3

2) + π3
3(y3

3 − z3
3) = 0

subject to M < πi ≤ 2M and yi, zi ∈ A4(Q). Then T � P 3.

P r o o f. This follows from Lemma 1 by a word for word adoption of the
proof of Lemma 3 of Vaughan [12]. We may leave the details to the reader.

Our next lemma concerns the exponential sum

(2.2) S(q, a) =
q∑

x=1

e

(
ax3

q

)
.

It also features the multiplicative function κ(q) defined on prime powers by

κ(p3l) = p−l, κ(p3l+1) = p−l−1/2, κ(p3l+2) = p−l−1 (l ≥ 0).

Lemma 3. Let (a, q) = 1. Then∑
d≤D

µ(d)2
|S(q, ad3)|

qd
� 8ν(q)κ(q) logD,

where ν(q) is the number of different prime factors of q.

P r o o f. By standard estimates for the sum (2.2) such as Lemmata 4.3,
4.4 and 4.5 of Vaughan [9] we have

r−1|S(r, b)| � 2ν(r)κ(r)

whenever (b, r) = 1. Hence the left hand side of the proposed inequality
does not exceed

� 2ν(q)
∑
d≤D

µ(d)2d−1κ(q/(q, d3)).

We decompose q into q = t3u with cube-free u, this factorisation is unique.
Now any square-free d can be written as d = dtdu where dt = (t, d). Note
that (dt, du) = 1 and

(q, d3) = (t3u, d3
td

3
u) = d3

t (u, d
3
u) = d3

t (u, d
2
u)

since u is cube-free and d is square-free. Hence

κ

(
q

(q, d3)

)
= κ

(
t3u

d3
t (d2

u, u)

)
= t−1dt

(
u

(d2
u, u)

)−1/2

= κ(q)dt(u, d2
u)1/2
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since κ(q) = t−1u−1/2. It follows that∑
d≤D

µ(d)2d−1κ

(
q

(q, d3)

)
≤ κ(q)

∑
dt|t

∑
du≤D/dt

µ(dtdu)2d−1
u (u, du)

≤ κ(q)
∑
dt|t

∑
δ|u

∑
l≤D

l−1µ(dtδ)2 � κ(q)22ν(q) logD

as required.

Lemma 4. Let N(q, a) denote the interval |qα− a| ≤ P−2, and write N
for the union of all N(q, a) with 1 ≤ a ≤ q ≤ P and (a, q) = 1. Define a
function G on N by

G(α) = 8ν(q)κ(q)
(

1 + P 3

∣∣∣∣α− a

q

∣∣∣∣)−1

when α ∈ N(q, a). Then∫
N

G(α)2
∣∣∣ ∑

P<p≤2P

e(αp3)
∣∣∣2 dα� P−1(logP )192.

P r o o f. By the orthogonality of additive characters,∫
N

G(α)2
∣∣∣ ∑

P<p≤2P

e(αp3)
∣∣∣2 dα

�
∑
q≤P

64ν(q)κ(q)2
q∑

a=1

∞∫
−∞

∣∣∣∣ ∑
P<p≤2P

e

((
a

q
+ β

)
p3

)∣∣∣∣2(1 + P 3|β|)−2dβ

� P−3
∑
q≤P

64ν(q)κ(q)2qψ(q),

where ψ(q) is the number of solutions of the congruence p3
1 ≡ p3

2 (mod q)
with P < p1, p2 ≤ 2P . For q ≤ P we must have (p1p2, q) = 1. For (a, q) = 1
the number of solutions of the congruence x3 ≡ a (mod q) with 1 ≤ x ≤ q,
(x, q) = 1 does not exceed O(3ν(q)). Hence, once p2 is fixed, the number of
choices for p1 is� 3ν(q)Pq−1. Hence, for q ≤ P we have ψ(q) � 3ν(q)q−1P 2.
We deduce that the integral in question is bounded by

� P−1
∑
q≤P

192ν(q)κ(q)2 � P−1
∏
p≤P

(
1 +

192
p

+O(p−2)
)
,

and the lemma follows.

3. The circle method and the linear sieve. We now prepare the
ground for the application of a sieve which will ultimately yield the Theorem.
Our application of the Hardy–Littlewood method involves the exponential
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sums

fd(α) =
∑

P/d<y≤2P/d

e(αd3y3), g(α) =
∑

P<p≤2P

e(αp3), h(α) =
∑

y∈A5(P )

e(αy3),

where P = 1
10n

1/3. For a measurable set B we define

(3.1) vd(n,B) =
∫

B

fd(α)g(α)h(α)5e(−αn) dα.

The significance for our problem emerges from the fact that vd(n, [0, 1]) =
vd(n), say, counts the solutions (1.1) with x ≡ 0 (mod d), P < x, p ≤ 2P
and yi ∈ A5(P ).

The goal is to find asymptotic formulae of the shape vd(n) = ω(d)
d X +

R(d, n), where X is some function of n, where ω(d) is multiplicative, and
where R(n, d) is small on average over d. With this end in view we define
major arcs by writing

L = (log n)5000, M(q, a) =
{
α :

∣∣∣∣α− a

q

∣∣∣∣ ≤ LP−3

}
and then introduce M as the union of all M(q, a) with 1 ≤ a ≤ q ≤ L,
(a, q) = 1. As usual, the main term arises from the set M. This can be seen
by straightforward arguments so we shall be brief. Let α ∈ M(q, a) with
q ≤ L. By Theorem 4.1 of Vaughan [9] we have

fd(α) =
S(q, ad3)

q
J

(
d3

(
α− a

q

)
,
P

d

)
+O(L)

uniformly for d ≤ P 1/2, say. Here we have written

J(β, ξ) =
2ξ∫

ξ

e(βt3) dt.

By Euler’s summation formula, we have J(β, P ) = u(β)+O(1+P |β|), where

u(β) =
1
3

∑
P 3<x≤8P 3

x−2/3e(βx),

and a change of variable now shows that

(3.2) fd(α) =
S(q, ad3)

qd
u(β) +O(L),

where β = α− a/q. The approximation to g(α) is similar, but involves the
data

S∗(q, a) =
q∑

x=1
(x,q)=1

e

(
ax3

q

)
, w(β, ξ) =

1
3

∑
ξ3<x≤8ξ3

e(βx)x−2/3(log x)−1.
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For q ≤ L, |β| ≤ LP−3, Lemma 6 of Hua [7] shows that

(3.3) g

(
a

q
+ β

)
= ϕ(q)−1S∗(q, a)w(β, P ) +O(P (logP )−A)

for any A > 0. An analogous result for h(α) requires a little more care. We
write B to denote the set of all numbers b = πp1p2p3 where PΘ5 < π ≤ 2PΘ5

and P θi < pi ≤ 2P θi (i = 1, 2, 3). Still assuming α = a/q + β ∈ M(q, a) we
can now write

h(α) =
∑
b∈B

∑
P θ4<p≤2P θ4

e(αb3p3)

=
∑
b∈B

(
S∗(q, ab3)
ϕ(q)

w(βb3, P θ4) +OA

(
P θ4

(logP )A

))
after applying Hua’s result again to the inner sum. When q ≤ L and n is
sufficiently large, we have (b, q) = 1 for any b ∈ B, which implies S∗(q, ab3) =
S∗(q, a). It now follows that

(3.4) h(α) =
S∗(q, a)
ϕ(q)

W (β) +OA(P (logP )−A),

where

(3.5) W (β) =
∑
b∈B

w(βb3, P θ4).

By integrating over M we deduce from (3.2), (3.3) and (3.4) that

vd(n,M) =
∑
q≤L

q∑
a=1

(a,q)=1

S(q, ad3)S∗(q, a)6

dqϕ(q)6
e

(
− an

q

)
I(n)(3.6)

+O(P 4d−1(logP )−A),

where

(3.7) I(n) =
LP−3∫

−LP−3

u(β)w(β, P )W (β)5e(−βn) dβ,

which still holds uniformly for d ≤ P 1/2. The singular integral (3.7) can be
evaluated by a routine argument. One has u(β) � |β|−1 for P−3 < |β| ≤ 1/2
and a similar bound for w(β, P ), by partial summation. Hence the range
of integration in (3.7) can be extended to

[
− 1

2 ,
1
2

]
, at the cost of an error

O(P 4L−1/2); and the integration over
[
− 1

2 ,
1
2

]
equals a weighted counting

of the solution of a linear equation. This yields the inequalities

(3.8) n4/3(log n)−26 � I(n) � n4/3(log n)−26.
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Now we complete the singular series in (3.6). By Lemma 5 of Hua [7], one
has |S∗(q, a)| � q1/2+ε for (a, q) = 1. Hence, the series

Sd(n) =
∞∑

q=1

q∑
a=1

(a,q)=1

S(q, ad3)S∗(q, a)6

qϕ(q)6
e

(
− an

q

)

converges absolutely, and is bounded by O(1), uniformly in n and d; and
from (3.6) and (3.8) we see that

(3.9) vd(n,M) = Sd(n)I(n)d−1 +O(P 4d−1(logP )−A).

By routine arguments it is readily seen that S1(n) � 1 for all n. For
square-free d we can now define

ω(d) = Sd(n)S1(n)−1.

By a trivial modification of the arguments in Section 4 of part I [4] (where
the analogous function for four cubes is considered) it is readily shown that
ω(d) is multiplicative, and that

ω(p)
p

=
M(p, n)
M∗(p, n)

(p 6= 3),
ω(3)

3
=

M(9, n)
M∗(9, n)

,

where M(q, n) equals the number of incongruent solutions of

y3
1 + . . .+ y3

6 ≡ n (mod q), (q, y1 . . . y6) = 1,

and M∗(q, n) equals the number of incongruent solutions of

x3 + y3
1 + . . .+ y3

6 ≡ n (mod q), (q, y1 . . . y6) = 1.

Still following the line of investigation of part I, Section 4, we now find that

(3.10) ω(p) = 1 +O(p−1/2),

where the implicit constant is independent of n. It is clear that ω(p) ≥
0, but for the sieve we also require ω(p) < p, and this entails a slight
complication. In fact, for p 6= 3, the condition ω(p) < p is equivalent
to M(p, n) < M∗(p, n), and this is the case if and only if the defining
congruence for M∗(p, n) has a solution with p -x. By the methods of [4]
(or Chapter 2 of Vaughan [9]) this is readily confirmed for p ≥ 5. The
primes p = 2 and 3 are exceptional here in the sense that the truth of the
inequalities ω(2) < 2, ω(3) < 3 depends on congruence conditions on n
(mod 18). Indeed, by a direct counting, it is seen that ω(2) = 2 for n ≡ 0
(mod 2), and ω(3) = 3 for n ≡ 0 (mod 9), but that in all other cases one
has ω(2) < 2, ω(3) < 3. If n is neither divisible by 2 nor 9, we are ready to
apply the linear sieve theorem of Greaves [6]. If v∗(n) denotes the number
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of solutions of (1.1) with yi ∈ A5(P ) and P67-numbers x, then

v∗(n) � X
∏
p≤D

(
1− ω(p)

p

)−1

−
∣∣∣∣ ∑

d≤D

ηd

(
vd(n)− ω(d)

d
X

)∣∣∣∣− ∑
p>P δ

vp2(n),

where X = S1(n)I(n), where ηd are certain complex numbers satisfying
|ηd| ≤ 1 and ηd = 0 for non-square-free d, where δ is some positive real
number (which we may suppose to be as small as we like), and where

(3.11) D = P 1/66.

From (3.9) we have

vd(n)− ω(d)
d

X = vd(n,m) +O(d−1P 4(logP )−A),

where m = [LP−3, 1 + LP−3]\M are the minor arcs. Therefore it now
suffices to establish the estimates

(3.12)
∑
d≤D

ηdvd(n,m) � P 4(logP )−50,

(3.13)
∑

p>P δ

vp2(n) � P 4−δ/5,

to deduce from (3.10) and (3.8) that v∗(n) � n4/3(log n)−27. This gives
the Theorem for odd n 6≡ 0 (mod 9) with the slightly superior outcome of
finding a P67 for x.

Only simple modifications in the above argument are required to cover
even n and n ≡ 0 (mod 9). Instead of (1.1) we consider the equation

2γ(2)3γ(3)z3 + p3 + y3
1 + . . .+ y3

5 = n,

where γ(2) = 3 if n is even, and γ(2) = 0 if n is odd, and where γ(3) = 3
or 0 according to n ≡ 0 (mod 9) or not. By the same method, we find
solutions with yi ∈ A5(P ) and P67-numbers z, and the Theorem follows in
the exceptional cases also.

It remains to verify (3.12) and (3.13). This is the theme of the next two
sections.

4. The minor arcs. In this section we prove (3.12). We write

(4.1) F (α) =
∑
d≤D

ηdfd(α)

and then deduce from (3.1) that

(4.2)
∣∣∣ ∑

d≤D

ηdvd(n,m)
∣∣∣ ≤ ∫

m

|F (α)g(α)h(α)5| dα.
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The minor arcs are split into two subsets which are treated by different
methods. We recall the abbreviation M = PΘ5 from (2.1) and then put
R = PM3D−1. Let K denote the union of all intervals

K(q, a) = {α : |qα− a| ≤ RP−3}
with 1 ≤ a ≤ q ≤ R and (a, q) = 1. Let k denote the complement of K in
[0, 1] modulo 1. Our first task is to estimate the contribution to (4.2) arising
from k. We shall mainly be concerned with proving the estimate

(4.3)
∫
k

|F (α)h(α)3|2 dα� P 5−δM−2

for some δ > 0. If this is taken for granted, we only need to add to this the
bound

(4.4)
1∫

0

|g(α)h(α)2|2 dα� P 3+εM2,

which follows from Lemma 1 on considering the underlying diophantine
equation; Schwarz’s inequality then yields

(4.5)
∫
k

|F (α)g(α)h(α)5| dα� P 4−δ/2+ε

as required.
Our proof of (4.3) follows Vaughan [12] quite closely so we may be brief.

We write
f(α, k, Y ) =

∑
Y <y≤2Y
(y,k)=1

e(αy3)

and then have

fd(α) = f(αd3, 1, P/d) = f(αd3, p, P/d) + f(α(pd)3, 1, P/(pd))

for any prime p. Accordingly we decompose (4.1) as

F (α) = F1(α, p) + F2(α, p),

where

F1(α, p) =
∑
d≤D

ηdf(αd3, p, P/d), F2(α, p) =
∑
d≤D

ηdf(α(pd)3, 1, P/(pd)).

The definition of A5(P ) enables us to write

h(α) =
∑

M<π≤2M

H(απ3),

where
H(α) =

∑
y∈A4(P/M)

e(αy3).
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We can now conclude that

(4.6) |F (α)h(α)3| ≤
( ∑

M<π≤2M

|F (α)|1/3|H(απ3)|
)3

� U1(α) + U2(α),

where

Uj(α) =
( ∑

M<π≤2M

|Fj(α, π)|1/3|H(απ3)|
)3

.

We first concentrate on U2. If α ∈ k and d ≤ D,M < p ≤ 2M then
f(αd3p3, 1, P/(dp)) � (PD−1M−1)3/4+ε by a routine application of Weyl’s
inequality (see Vaughan [12], p. 213 for more details). Hence

U2(α) � P 3/4+εD1/4M−3/4
( ∑

M<π≤2M

|H(απ3)|
)3

for α ∈ k. By considering the underlying diophantine equation, we deduce
from Lemma 2 that

1∫
0

( ∑
M<π≤2M

|H(απ3)|2
)3

dα� P 3+ε

and then infer from Cauchy’s inequality∫
k

U2(α)2dα� P 3/2+εD1/2M3/2
1∫

0

( ∑
M<π≤2M

|H(απ3)|2
)3

dα(4.7)

� P 9/2+2εD1/2M3/2 � P 5−δM−2

for some δ > 0, as is readily seen from (3.11).
The treatment of U1(α) is less straightforward but we can heavily borrow

from Vaughan [12]. We begin by applying Hölder’s inequality to the defining
equation for U1. This gives

(4.8)
∫
k

U1(α)2 dα

≤ DM5
∑
d≤D

∑
M<π≤2M

∫
k

|f(αd3, π, P/d)|2|H(απ3)|6 dα.

Let w denote the set of all α ∈ [0, 1] such that |qα − a| ≤ RP−3, (a, q) =
1 implies that q > RM−3 = PD−1. By an obvious adjustment of the
argument on p. 214 of Vaughan [12] we find that∫

k

|f(αd3, π, P/d)|2|H(απ3)|6 dα ≤
∫
w

(Pd−1 + 2 ReΦπ,d(α))|H(α)|6 dα,
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where

Φπ,d(α) =
∑

l≤8Pd−1π−3

∑
2Pd−1+lπ3<z≤4Pd−1−lπ3

z≡l ( mod 2)

e

(
αld3

(
3
4
z2 +

1
4
l2π6

))
.

As we shall see in a moment, one has

(4.9) sup
α∈w

M<π≤2M

∑
d≤D

|Φπ,d(α)| � P 3/2+εM−3D1/2.

The case k = 4 of Lemma 1 shows
1∫

0

|H(α)|6 dα� (P/M)3+2Θ4+ε

so that from (4.8) we can now deduce that∫
k

U1(α)2 dα� DM6(P 1+ε + P 3/2+εM−3D1/2)(P/M)3+2Θ4+ε(4.10)

� P 5−δM−2

providing we can show that

D3/2 < P 1/2−2(Θ4+Θ5−Θ4Θ5+δ).

A simple numerical check confirms this if δ > 0 is sufficiently small (use
(3.11)). By (4.6), (4.7) and (4.10) we see that (4.3) holds, but it remains
to verify (4.9). This is a standard exercise but we give an outline for com-
pleteness. By Weyl’s differencing technique one has∣∣∣ ∑

d≤D

Φπ,d(α)
∣∣∣2 � P 1+επ−3

∑
d≤D

∑
l≤8Pd−1π−3

∣∣∣∣ ∑
z

e

(
3
4
αd3lz2

)∣∣∣∣2
� P 3+επ−6

+ P 1+επ−3
∑
d≤D

∑
l≤8Pd−1π−3

∑
j�P/d

min(P/d, ‖αd3lj‖−1).

We split the range for d into O(logD) parts of the shape ∆ < d ≤ 2∆. By a
standard divisor argument we deduce that the previous expression does not
exceed

� P 3+επ−6 + P 1+2επ−3
∑

u�P 2∆π−3

min(P∆−1, ‖αu‖−1)

for some ∆ with 1 ≤ ∆ ≤ D. For |qα− a| ≤ q−1 and (q, a) = 1 Lemma 2.2
of Vaughan [9] shows that∣∣∣ ∑

d≤D

Φπ,d(α)
∣∣∣2 � P ε

(
P 3∆

π6
+
P 4

qπ6
+
qP

π3

)
.
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If M < π ≤ 2M this gives (4.9) when PD−1 � q � P 2M−3D. By
Dirichlet’s theorem on diophantine approximation it is readily seen that q
can be chosen in this range for all α ∈ w, and (4.9) follows. The proof of
(4.3) is now complete.

It now remains to consider the set K∩m which is treated more like major
arcs. We begin by refining the argument used to verify (3.2). In the notation
used there, we deduce from Theorem 2 of Vaughan [10] that

fd

(
a

q
+ β

)
=
S(q, ad3)

qd
J(β) +O(qε(q + P 3|qα− a|)1/2).

Now let α ∈ K(q, a). Let G be the function defined in Lemma 4 (extended
in the natural way to K). By summing the previous equation over d, we
infer from (4.1), Lemma 3 and a standard bound for J(β) that

F (α) � PG(α) +DR1/2+ε (α ∈ K).

By Lemma 1, and considering the underlying diophantine equation,

(4.11)
1∫

0

|h(α)|6 dα� P 3+εM2,

and by Schwarz’s inequality, (4.4) and (4.11),

(4.12)
1∫

0

|g(α)h(α)5| dα� P 3+εM2.

It now follows that∫
K∩m

|F (α)g(α)h(α)5| dα� P
∫

K∩m

G(α)|g(α)h(α)5| dα+DR1/2P 3+2εM2.

The second term on the right is O(P 4−δ) for some δ > 0, as is readily
checked. Moreover, if N is the set introduced in Lemma 4, we deduce from
the trivial bound κ(q) ≤ q−1/3 that

sup
α∈K\N

G(α) � P ε−1/3.

Using (4.12) once again, we see that∫
k∩m

|F (α)g(α)h(α)5| dα� P
∫

N∩m

G(α)|g(α)h(α)5| dα+ P 4−δ;

and the proof of (3.12) is now completed by verifying the bound

(4.13)
∫

N∩m

G(α)|g(α)h(α)5| dα� P 3(logP )−50.
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To see this we observe that by Theorem 2 of Vaughan [11] and considering
the underlying diophantine equations one has

(4.14)
1∫

0

|g(α)|8 dα� P 5,
1∫

0

|h(α)|8 dα� P 5.

Moreover, the definitions of m and G readily show that

sup
α∈N∩m

G(α) � Lε−1/3.

Now Hölder’s inequality yields∫
N∩m

G|gh5| dα� L−1/10
( ∫

N

G2|g|2 dα
)1/3( 1∫

0

|g|8 dα
)1/24( 1∫

0

|h|8 dα
)5/8

.

The first integral is estimated in Lemma 4, the other two in (4.14). This
establishes (4.13) and (3.12).

5. Large square factors. Finally, we establish (3.13). The point of
departure is the obvious inequality

(5.1)
∑

p>P δ

vp2(n) ≤ V (n),

where V (n) denotes the number of solutions of

p6z3 + x3 + y3
1 + y3

2 + y3
3 + y3

4 + y3
5 = n

with
p > P δ, P < p2z ≤ 2P, P < x ≤ 2P, yi ∈ A5(P ).

Using the notation from the previous sections we can write V (n) as an
integral,

(5.2) V (n) =
∑

p>P δ

1∫
0

fp2(α)f1(α)h(α)5e(−αn) dα

and then estimate this integral by the Hardy–Littlewood method, in much
the same way as in Sections 3–4. Since we are only interested in an upper
bound, the details are simpler. We write

(5.3) Ξ(α) =
∑

p>P δ

fp2(α)

in the interest of brevity. Further progress is now dependent on the estimates

(5.4)
1∫

0

|Ξ(α)h(α)2|2 dα� P 3+εM2,
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(5.5)
1∫

0

|Ξ(α)h(α)|4 dα� P 5−δ.

To verify (5.5) we observe that the integral equals the number of solutions
of

p6
1z

3
1 + p6

2z
3
2 − p6

3z
3
3 − p6

4z
3
4 = y3

1 + y3
2 − y3

3 − y3
4

subject to
p > P δ, P < p2

i zi < 2P, yi ∈ A5(P ).
Let W be the set of all numbers w which can be written as w = p2z with
p > P δ, P < w ≤ 2P . Then #W � P 1−δ, and the number of possible
representations of w in the form p2z with p > P δ is O(1). Hence the
integral in (5.5) is O(K), where K is the number of solutions to

w3
1 + w3

2 − w3
3 − w3

4 = y3
1 + y3

2 − y3
3 − y3

4

with wi ∈ W and yi ≤ 32P . By Lemma 3 of Vaughan [11],

K � (#W)2P 3+ε � P 5−δ.

This gives (5.5). In exactly the same way, (5.4) follows from Lemma 1.
Now let k,K be the pair of major and minor arcs introduced in Section 4.

We observe that on choosing η1 = 1, ηd = 0 (d > 1) the sum F (α) in (4.1)
reduces to f1(α). Hence we may quote from (4.3) the bound∫

k

|f1(α)|2|h(α)|6 dα� P 5−δM−2

providing δ is sufficiently small, as we may suppose. By Schwarz’s inequality
and (5.4) it follows that

(5.6)
∫
k

|Ξ(α)f1(α)h(α)5| dα� P 4−δ/3,

which is acceptable.
The treatment of K is straightforward. For α ∈ K(q, a) we deduce from

Theorem 2 of Vaughan [10] and standard estimates that

(5.7) |f1(α)| � |f∗(α)|+R1/2+ε,

where

f∗(α) = q−1|S(q, a)|P
(

1 + P 3

∣∣∣∣α− a

q

∣∣∣∣)−1

.

By (5.4), (4.11) and Schwarz’s inequality,

(5.8)
1∫

0

|Ξ(α)h(α)5| dα� P 3+εM2,
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and in the previous section we have already seen that P 3+2εM2R1/2 � P 4−δ

for some δ > 0. From (5.7) and (5.8) we now infer that

(5.9)
∫
K

|Ξf1h5| dα�
∫
K

|Ξf∗h5| dα+ P 4−δ.

The bound ∫
K

|f∗(α)|4 dα� P 1+ε

is readily established by appeal to Lemma 4.9 of Vaughan [9], and by
Hölder’s inequality, (5.5) and (4.14) it follows that∫

K

|Ξf∗h5| dα ≤
( ∫

K

|f∗|4 dα
)1/4( 1∫

0

|Ξh|4 dα
)1/4( 1∫

0

|h|8 dα
)1/2

(5.10)

≤ P 4−1/5−δ.

By (5.1), (5.2), (5.3), (5.6), (5.9) and (5.10), this gives (3.13).

6. Further applications of the method. The methods of this paper
are by no means limited to Waring’s problem for cubes. There is actually
an underlying principle for solving diophantine equations in almost primes
which may be described as follows. Suppose we are interested in represen-
tations of n in the form

(6.1) n = F (x1, . . . , xs, y1, . . . , yt),

where F is a polynomial with integer coefficients. If the circle method
succeeds to establish an asymptotic formula for the number of solutions of
(6.1) in a large box |xi| ≤ P, |yi| ≤ P with yi certain Pr-numbers, then
it is usually possible to establish such an asymptotic formula also for the
solutions subject to the additional constraints xi ≡ 0 (mod di) (1 ≤ i ≤ s),
uniformly at least in a short range di ≤ D (1 ≤ i ≤ s), say. If D happens
to be a positive power of P then a sieve will find solutions of (6.1) with all
the variables almost primes of some fixed order.

This principle can be turned into rigorous results at least when F is an
additive polynomial, and in particular for Waring’s problem. As usual, let
G(k) be the minimal s such that for all sufficiently large n the equation

(6.2) n = xk
1 + . . .+ xk

s

has solutions in positive integers. If the object of the exercise is to solve (6.2)
in primes, then n is required to satisfy the congruence condition, that is, the
congruence xk

1 +. . .+xk
s ≡ n (mod q) must be soluble with (q, x1 . . . xs) = 1,

for all natural numbers q > 1. Let Wk,s be the set of all integers satisfying
the congruence conditions. It is not difficult to see that for s ≥ k (say), Wk,s

contains an arithmetic progression s mod K where K depends only on k,



226 J. Brüdern

and hence has positive density. Now letHr(k) be the smallest number s such
that for sufficiently large n ∈ Wk,s there are solutions to (6.2) in Pr-numbers.

The most modern versions of the circle method such as in Vaughan [13]
and Wooley [15] provide asymptotic formulae for the number of solutions of
(6.2) with xi ∈ A(n1/k, nη) (i = 2, . . . , s), where

A(P,R) = {x ≤ P : p |x⇒ p ≤ R},
and η is some small constant. This set contains many Pr-numbers where
r = 1/(ηk) (which we may suppose to be an integer). However, replacing
A(n1/k, nη) with the set

A = {p1 . . . pr : 4−rnη < pi < nη (1 ≤ i ≤ r)}
puts no serious obstacles in the way of the Hardy–Littlewood work. Using
the linear sieve as in this paper, we can solve (6.2) with xj ∈ A (2 ≤ j ≤ s)
and some Pr′ -number x1. We may therefore enunciate the following general
principle.

Suppose a bound G(k) ≤ B(k) for Waring’s problem has been established
by the circle method , using the exponential sums∑

x≤P

e(αxk),
∑

x∈A(P,P η)

e(αxk).

Then the methods of this paper are likely to provide the bound Hr(k) ≤ B(k)
for some r = r(k).

In particular, we recall the bounds

G+(4) ≤ 12, G(5) ≤ 18, G(6) ≤ 28, G(k) ≤ k(log k +O(log log k));

see [1, 13, 15] (Vaughan and Wooley have announced further improvements
for G(k) when k ≥ 5); here G+(4) is the smallest s such that all large
n ≡ s ( mod 16) are the sum of s biquadrates. In all these cases the principle
is readily seen to be valid so that Hr(4) ≤ 12,Hr(5) ≤ 18 etc., for some r.
The value of r, however, is another matter. The best known bounds for
H1(k) (that is, the Waring–Goldbach problem of solving (6.2) in primes)
are rather larger; cf. Hua [8].

It may be of interest to note that for large k the exponential sum es-
timates in Vaughan [13] and Wooley [15] can be modified so as to allow
for good control on the sums

∑
x∈A e(αx

k) at individual α. This can
be used to give a direct circle method proof of the inequality Hr(k) ≤
k(log k + O(log log k)) for some r = r(k), without using sieves. For small
values of k, however, the sieve is crucial.

We have not yet commented on the quadratic case. In fact, the principle
is valid as well for four squares but a substantiation requires refinements of
the method; the interested reader is referred to Brüdern and Fouvry [5].
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