An application of the projections of C^{∞} automorphic forms

by

TAKUMI NODA (Tokyo)

1. Introduction. Let k be a positive even integer and S_k be the space of cusp forms of weight k on $SL_2(\mathbb{Z})$. Let $f(z) \in S_k$ be a normalized Hecke eigenform with the Fourier expansion $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi i n z}$. The symmetric square L-function attached to f(z) is defined by

$$L_2(s,f) = \prod_p (1 - \alpha_p^2 p^{-s})^{-1} (1 - \alpha_p \beta_p p^{-s})^{-1} (1 - \beta_p^2 p^{-s})^{-1},$$

with $\alpha_p + \beta_p = a(p)$ and $\alpha_p \beta_p = p^{k-1}$. Here the product is taken over all rational primes.

The purpose of this paper is to prove the following theorem:

THEOREM. Let $\Delta_k(z) = \sum_{n=1}^{\infty} \tau_k(n) e^{2\pi i n z} \in S_k$ be the unique normalized Hecke eigenform for k = 12, 16, 18, 20, 22, and 26. Let ϱ be a zero of $\zeta(s)$ or of $L_2(s + k - 1, \Delta_k)$ in the critical strip $0 < \operatorname{Re}(s) < 1$, with $\zeta(2\varrho) \neq 0$. Then for each positive integer n,

$$-\tau_{k}(n) \left\{ \zeta(2\varrho) \cdot 2^{-2\varrho} \pi^{-2\varrho} n^{1-2\varrho} \cdot \frac{\Gamma(\varrho)\Gamma(k)}{\Gamma(k-\varrho)} + \zeta(2\varrho-1) \cdot 2^{2\varrho-2} \pi^{-1/2} \cdot \frac{\Gamma(\varrho-1/2)\Gamma(k)}{\Gamma(k-1+\varrho)} \right\}$$
$$= \sum_{0 < m < n} \tau_{k}(m) \sigma_{1-2\varrho}(n-m) F(1-\varrho,k-\varrho;k;m/n) + \sum_{n < m} (-n/m)^{k-\varrho} \tau_{k}(m) \sigma_{1-2\varrho}(n-m) F(1-\varrho,k-\varrho;k;n/m),$$

where F(a, b; c; z) is the hypergeometric function and $\sigma_s(m)$ is the sum of the s-th powers of positive divisors of m.

Remark. Let $T(n, k; \varrho)$ be the right-hand side of the equality in the theorem. For $0 < \text{Re}(\varrho) \le 1/2$, the following conditions are equivalent:

[229]

(A.1) $\operatorname{Re}(\varrho) = 1/2,$ (A.2) $T(n,k;\varrho) = O(\tau_k(n)).$

2. C^{∞} automorphic forms. Let $H = \{z = x + \sqrt{-1}y \mid y > 0\}$ be the upper half-plane. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ and $z \in H$, we put $\gamma \langle z \rangle = (az + b)(cz + d)^{-1}$. We denote by \mathfrak{M}_k the set of functions F which satisfy the following conditions:

- (2.1) F is a C^{∞} function from H to \mathbb{C} ,
- (2.2) $F(\gamma \langle z \rangle) = (cz+d)^k F(z)$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$

The function F is called a C^{∞} automorphic form on $\operatorname{SL}_2(\mathbb{Z})$ of weight k, and called of bounded growth if for every $\varepsilon > 0$,

$$\int_{0}^{1} \int_{0}^{\infty} |F(z)| y^{k-2} e^{-\varepsilon y} \, dy \, dx < \infty.$$

For $F \in \mathfrak{M}_k$ and $f \in S_k$, we define the Petersson inner product

$$\langle f, F \rangle = \int_{\operatorname{SL}_2(\mathbb{Z}) \setminus H} f(z) \overline{F(z)} y^{k-2} \, dx \, dy.$$

We quote the following theorem:

THEOREM A (Sturm [2]). Let $F \in \mathfrak{M}_k$ be of bounded growth with the Fourier expansion $F(z) = \sum_{n=1}^{\infty} a(n, y) e^{2\pi i n x}$. Assume k > 2. Let

$$c(n) = 2 \cdot (2\pi n)^{k-1} \Gamma(k-1)^{-1} \int_{0}^{\infty} a(n,y) e^{-2\pi ny} y^{k-2} \, dy$$

Then

$$h(z) = \sum_{n=1}^{\infty} c(n) e^{2\pi i n z} \in S_k \quad and \quad \langle g, F \rangle = \langle g, h \rangle \quad for \ all \ g \in S_k.$$

We shall also use the following properties of the function $L_2(s, f)$. Let $f(z) \in S_k$ be a normalized Hecke eigenform. Then the function $L_2(s, f)$ has an integral representation

(1)
$$L_2(s,f)$$

= $\frac{\zeta(2s-2k+2)}{\zeta(s-k+1)} \cdot \frac{(4\pi)^s}{\Gamma(s)} \int_{\mathrm{SL}_2(\mathbb{Z})\setminus H} |f(z)|^2 E(z,s-k+1)y^{k-2} \, dx \, dy$

Here E(z, s) is the Eisenstein series

(2)
$$E(z,s) = \frac{1}{2} \sum_{c,d \in \mathbb{Z}, (c,d)=1} y^s |cz+d|^{-2s}.$$

230

Further, $L_2(s, f)$ has a holomorphic continuation to the whole s-plane (Shimura [1], Zagier [4]).

3. Proof of Theorem. Let $e(x) = e^{2\pi i x}$. The Eisenstein series (2) has the Fourier expansion $E(z, s) = \sum_{m=-\infty}^{\infty} a_m(y, s)e(mx)$ with

(3)
$$a_0(y,s) = y^s + \pi^{1/2} \Gamma(s-1/2) \Gamma(s)^{-1} \zeta(2s-1) \zeta(s)^{-1} y^{1-s}$$

and

(4)
$$a_m(y,s) = \zeta(2s)^{-1}\sigma_{1-2s}(m) \cdot 2\pi^s |m|^{s-1/2} \Gamma(s)^{-1} y^{1/2} K_{s-1/2}(2\pi |m|y)$$
$$= \zeta(2s)^{-1}\sigma_{1-2s}(m) \cdot y^{1-s} \int_{-\infty}^{\infty} e(-my\xi)(1+\xi^2)^{-s} d\xi$$

for $m \neq 0$. Here we have used the integral representation in [3, p. 172] for the modified Bessel function $K_{\nu}(t)$. Then there exist positive constants c_1 and c_2 depending only on s such that

(5)
$$|a_0(y,s)| \le c_1(y^{\operatorname{Re}(s)} + y^{1-\operatorname{Re}(s)})$$

and

(6)
$$|a_m(y,s)| \le c_2 y^{\operatorname{Re}(s)} |\sigma_{1-2s}(m)| e^{-\pi |m|y/2}$$

for $m \neq 0$.

LEMMA 1. For $f(z) \in S_k$ and $s \in \mathbb{C}$ in $0 < \operatorname{Re}(s) < 1$, f(z)E(z,s) is a C^{∞} automorphic form of bounded growth.

Proof. It is easy to see that f(z)E(z,s) is a C^{∞} automorphic form. We show f(z)E(z,s) is of bounded growth. Let $f(z) = \sum_{n=1}^{\infty} a(n)e(nz)$. Then

$$f(z)E(z,s) = \sum_{n=-\infty}^{\infty} b_s(n,y)e(nx)$$

with

$$b_s(n,y) = \sum_{m=1}^{\infty} a(m)a_{n-m}(y,s)e^{-2\pi m y}.$$

By (5), (6) and $a(m) = O(m^{k/2})$, there exists a positive constant c_3 depending only on s such that

$$\sum_{n=-\infty}^{\infty} \sum_{m=1}^{\infty} \int_{0}^{\infty} |a(m)a_{n-m}(y,s)| y^{k-2} e^{-(2\pi m+\varepsilon)y} \, dy$$
$$\leq c_3 \sum_{n=-\infty}^{\infty} \Big\{ \sum_{m=1}^{\infty} m^{k/2} (n+m)^{-k+2-3\operatorname{Re}(s)} + n^{-k/2+1-\max(\operatorname{Re}(s),1-\operatorname{Re}(s))} \Big\}.$$

The last series is convergent for $k \ge 12$ and $\operatorname{Re}(s) > 0$, hence f(z)E(z,s) is of bounded growth.

LEMMA 2. Let $f(z) \in S_k$ be a normalized Hecke eigenform. Let ϱ be a zero of $\zeta(s)$ or of $L_2(s+k-1,f)$ in the critical strip $0 < \operatorname{Re}(s) < 1$ with $\zeta(2\varrho) \neq 0$. Then

$$\langle f(z)E(z,\varrho), f(z)\rangle = 0.$$

Proof. By (1),

$$L_2(s,f) = \frac{\zeta(2s - 2k + 2)}{\zeta(s - k + 1)} \cdot \frac{(4\pi)^s}{\Gamma(s)} \langle f(z)E(z, s - k + 1), f(z) \rangle.$$

Since $L_2(s, f)$ is entire, $\langle f(z)E(z, \varrho), f(z) \rangle = 0$ for $\varrho \in \{s \in \mathbb{C} \mid 0 < \operatorname{Re}(s) < 1\}$ such that $\zeta(\varrho) = 0$ with $\zeta(2\varrho) \neq 0$. We also see that $\langle f(z)E(z, \varrho), f(z) \rangle = 0$ for $\varrho \in \{s \in \mathbb{C} \mid 0 < \operatorname{Re}(s) < 1\}$ such that $L_2(\varrho + k - 1, f) = 0$ with $\zeta(2\varrho) \neq 0$.

Proof of Theorem. By Theorem A and Lemma 1, there exists

$$h(z,s) = \sum_{n=1}^{\infty} c(n,s)e(nz) \in S_k$$

such that $\langle g, \Delta_k \cdot E(z,s) \rangle = \langle g,h \rangle$ for all $g \in S_k$. Here

$$c(n,s) = \gamma_k(n) \int_0^\infty b_s(n,y) e^{-2\pi ny} y^{k-2} dy$$

with

$$\gamma_k(n) = 2 \cdot (2\pi n)^{k-1} \Gamma(k-1)^{-1}$$

and

$$b_s(n,y) = \sum_{m=1}^{\infty} \tau_k(m) a_{n-m}(y,s) e^{-2\pi m y}.$$

Using (3) and (4), for $\operatorname{Re}(s) > 1/2$ we have

$$\begin{aligned} (7) \quad c(n,s) \\ &= \frac{\gamma_k(n)}{\zeta(2s)} \sum_{\substack{m=1\\m\neq n}}^{\infty} \tau_k(m) \sigma_{1-2s}(n-m) \\ &\times \int_0^{\infty} y^{k-1-s} e^{-2\pi(m+n)y} \int_{-\infty}^{\infty} e(-(n-m)y\xi)(1+\xi^2)^{-s} \, d\xi \, dy \\ &+ \gamma_k(n)\tau_k(n) \bigg\{ \frac{\Gamma(k-1+s)}{(4\pi n)^{k-1+s}} + \frac{\pi^{1/2}\Gamma(s-\frac{1}{2})}{\Gamma(s)} \cdot \frac{\zeta(2s-1)}{\zeta(2s)} \cdot \frac{\Gamma(k-s)}{(4\pi n)^{k-s}} \\ &= \frac{\gamma_k(n)\Gamma(k-s)}{\zeta(2s)} \sum_{\substack{m=1\\m\neq n}}^{\infty} \tau_k(m)\sigma_{1-2s}(n-m) \end{aligned}$$

$$\times \int_{-\infty}^{\infty} \{2\pi(m+n) + 2\pi i(n-m)\xi\}^{-k+s}(1+\xi^2)^{-s} d\xi + \gamma_k(n)\tau_k(n) \left\{ \frac{\Gamma(k-1+s)}{(4\pi n)^{k-1+s}} + \frac{\pi^{1/2}\Gamma(s-\frac{1}{2})}{\Gamma(s)} \cdot \frac{\zeta(2s-1)}{\zeta(2s)} \cdot \frac{\Gamma(k-s)}{(4\pi n)^{k-s}} \right\}.$$

Here the interchange of summation and integration is justified by using (5) and (6), and by Fubini's theorem, the last equality also holds in the region $\operatorname{Re}(s) > -k + 1$.

For
$$p, q \in \mathbb{C}$$
 and $0 < c < 1$,

$$f_c(p,q) := \int_{-\infty}^{\infty} (1-it)^{-p} (1+it)^{-p} (1+ict)^{-q} dt$$

$$= 2^{2-2p} \pi \cdot (1+c)^{-q} \Gamma(p)^{-1} \Gamma(1-p)^{-1}$$

$$\times \int_{0}^{1} t^{-p} (1-t)^{q+2p-2} \left(1 - \left(\frac{1-c}{1+c}\right)t\right)^{-q} dt$$

$$= 2^{2-2p} \pi \cdot (1+c)^{-q} \Gamma(2p+q-1) \Gamma(p)^{-1} \Gamma(p+q)^{-1}$$

$$\times F\left(1-p,q; p+q; \frac{1-c}{1+c}\right).$$

Therefore, for m < n,

(8)
$$\int_{-\infty}^{\infty} \{2\pi(m+n) + 2\pi i(n-m)\xi\}^{-k+s}(1+\xi^2)^{-s} d\xi$$
$$= (2n)^{-k+s}2^{2-2s}\pi \cdot \Gamma(k-1+s)\Gamma(s)^{-1}\Gamma(k)^{-1}F(1-s,k-s;k;m/n)$$

and for m > n,

(9)
$$\int_{-\infty}^{\infty} \{2\pi(m+n) + 2\pi i(n-m)\xi\}^{-k+s} (1+\xi^2)^{-s} d\xi$$
$$= (-2m)^{-k+s} 2^{2-2s} \pi \cdot \Gamma(k-1+s) \Gamma(s)^{-1} \Gamma(k)^{-1} F(1-s,k-s;k;n/m)$$

From Lemma 2 and dim $S_k = 1$, we have $h(z, \varrho) = 0$, hence $c(n, \varrho) = 0$ for every positive integer n. Combining (7), (8) and (9), we conclude the proof of Theorem.

Acknowledgments. The author would like to thank Professor S. Mizumoto for his advice.

References

 G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79–98.

T. Noda

- J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J. 48 (1981), 327–350.
- [3] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, 1944.
- [4] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, in: Lecture Notes in Math. 627, Springer, 1977, 106-169.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU TOKYO, 152, JAPAN

Received on 4.11.1994

(2689)

234