An application of the projections of C^{∞} automorphic forms

by
Takumi Noda (Tokyo)

1. Introduction. Let k be a positive even integer and S_{k} be the space of cusp forms of weight k on $\mathrm{SL}_{2}(\mathbb{Z})$. Let $f(z) \in S_{k}$ be a normalized Hecke eigenform with the Fourier expansion $f(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}$. The symmetric square L-function attached to $f(z)$ is defined by

$$
L_{2}(s, f)=\prod_{p}\left(1-\alpha_{p}^{2} p^{-s}\right)^{-1}\left(1-\alpha_{p} \beta_{p} p^{-s}\right)^{-1}\left(1-\beta_{p}^{2} p^{-s}\right)^{-1}
$$

with $\alpha_{p}+\beta_{p}=a(p)$ and $\alpha_{p} \beta_{p}=p^{k-1}$. Here the product is taken over all rational primes.

The purpose of this paper is to prove the following theorem:
ThEOREM. Let $\Delta_{k}(z)=\sum_{n=1}^{\infty} \tau_{k}(n) e^{2 \pi i n z} \in S_{k}$ be the unique normalized Hecke eigenform for $k=12,16,18,20,22$, and 26 . Let ϱ be a zero of $\zeta(s)$ or of $L_{2}\left(s+k-1, \Delta_{k}\right)$ in the critical strip $0<\operatorname{Re}(s)<1$, with $\zeta(2 \varrho) \neq 0$. Then for each positive integer n,

$$
\begin{aligned}
& -\tau_{k}(n)\left\{\zeta(2 \varrho) \cdot 2^{-2 \varrho} \pi^{-2 \varrho} n^{1-2 \varrho} \cdot \frac{\Gamma(\varrho) \Gamma(k)}{\Gamma(k-\varrho)}\right. \\
& \left.\quad+\zeta(2 \varrho-1) \cdot 2^{2 \varrho-2} \pi^{-1 / 2} \cdot \frac{\Gamma(\varrho-1 / 2) \Gamma(k)}{\Gamma(k-1+\varrho)}\right\} \\
& =\sum_{0<m<n} \tau_{k}(m) \sigma_{1-2 \varrho}(n-m) F(1-\varrho, k-\varrho ; k ; m / n) \\
& \\
& \quad+\sum_{n<m}(-n / m)^{k-\varrho} \tau_{k}(m) \sigma_{1-2 \varrho}(n-m) F(1-\varrho, k-\varrho ; k ; n / m)
\end{aligned}
$$

where $F(a, b ; c ; z)$ is the hypergeometric function and $\sigma_{s}(m)$ is the sum of the s-th powers of positive divisors of m.

Remark. Let $T(n, k ; \varrho)$ be the right-hand side of the equality in the theorem. For $0<\operatorname{Re}(\varrho) \leq 1 / 2$, the following conditions are equivalent:
(A.1) $\operatorname{Re}(\varrho)=1 / 2$,
(A.2) $T(n, k ; \varrho)=O\left(\tau_{k}(n)\right)$.
2. C^{∞} automorphic forms. Let $H=\{z=x+\sqrt{-1} y \mid y>0\}$ be the upper half-plane. For $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $z \in H$, we put $\gamma\langle z\rangle=(a z+b)(c z+d)^{-1}$. We denote by \mathfrak{M}_{k} the set of functions F which satisfy the following conditions:
(2.1) F is a C^{∞} function from H to \mathbb{C},
(2.2) $F(\gamma\langle z\rangle)=(c z+d)^{k} F(z)$ for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.

The function F is called a C^{∞} automorphic form on $\mathrm{SL}_{2}(\mathbb{Z})$ of weight k, and called of bounded growth if for every $\varepsilon>0$,

$$
\int_{0}^{1} \int_{0}^{\infty}|F(z)| y^{k-2} e^{-\varepsilon y} d y d x<\infty .
$$

For $F \in \mathfrak{M}_{k}$ and $f \in S_{k}$, we define the Petersson inner product

$$
\langle f, F\rangle=\int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash H} f(z) \overline{F(z)} y^{k-2} d x d y .
$$

We quote the following theorem:
Theorem A (Sturm [2]). Let $F \in \mathfrak{M}_{k}$ be of bounded growth with the Fourier expansion $F(z)=\sum_{n=1}^{\infty} a(n, y) e^{2 \pi i n x}$. Assume $k>2$. Let

$$
c(n)=2 \cdot(2 \pi n)^{k-1} \Gamma(k-1)^{-1} \int_{0}^{\infty} a(n, y) e^{-2 \pi n y} y^{k-2} d y .
$$

Then

$$
h(z)=\sum_{n=1}^{\infty} c(n) e^{2 \pi i n z} \in S_{k} \quad \text { and } \quad\langle g, F\rangle=\langle g, h\rangle \quad \text { for all } g \in S_{k} .
$$

We shall also use the following properties of the function $L_{2}(s, f)$. Let $f(z) \in S_{k}$ be a normalized Hecke eigenform. Then the function $L_{2}(s, f)$ has an integral representation
(1) $\quad L_{2}(s, f)$

$$
=\frac{\zeta(2 s-2 k+2)}{\zeta(s-k+1)} \cdot \frac{(4 \pi)^{s}}{\Gamma(s)} \int_{\mathrm{SL}_{2}(\mathbb{Z}) \backslash H}|f(z)|^{2} E(z, s-k+1) y^{k-2} d x d y .
$$

Here $E(z, s)$ is the Eisenstein series

$$
\begin{equation*}
E(z, s)=\frac{1}{2} \sum_{c, d \in \mathbb{Z},(c, d)=1} y^{s}|c z+d|^{-2 s} . \tag{2}
\end{equation*}
$$

Further, $L_{2}(s, f)$ has a holomorphic continuation to the whole s-plane (Shimura [1], Zagier [4]).
3. Proof of Theorem. Let $e(x)=e^{2 \pi i x}$. The Eisenstein series (2) has the Fourier expansion $E(z, s)=\sum_{m=-\infty}^{\infty} a_{m}(y, s) e(m x)$ with

$$
\begin{equation*}
a_{0}(y, s)=y^{s}+\pi^{1 / 2} \Gamma(s-1 / 2) \Gamma(s)^{-1} \zeta(2 s-1) \zeta(s)^{-1} y^{1-s} \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
a_{m}(y, s) & =\zeta(2 s)^{-1} \sigma_{1-2 s}(m) \cdot 2 \pi^{s}|m|^{s-1 / 2} \Gamma(s)^{-1} y^{1 / 2} K_{s-1 / 2}(2 \pi|m| y) \tag{4}\\
& =\zeta(2 s)^{-1} \sigma_{1-2 s}(m) \cdot y^{1-s} \int_{-\infty}^{\infty} e(-m y \xi)\left(1+\xi^{2}\right)^{-s} d \xi
\end{align*}
$$

for $m \neq 0$. Here we have used the integral representation in [3, p. 172] for the modified Bessel function $K_{\nu}(t)$. Then there exist positive constants c_{1} and c_{2} depending only on s such that

$$
\begin{equation*}
\left|a_{0}(y, s)\right| \leq c_{1}\left(y^{\operatorname{Re}(s)}+y^{1-\operatorname{Re}(s)}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{m}(y, s)\right| \leq c_{2} y^{\operatorname{Re}(s)}\left|\sigma_{1-2 s}(m)\right| e^{-\pi|m| y / 2} \tag{6}
\end{equation*}
$$

for $m \neq 0$.
Lemma 1. For $f(z) \in S_{k}$ and $s \in \mathbb{C}$ in $0<\operatorname{Re}(s)<1, f(z) E(z, s)$ is a C^{∞} automorphic form of bounded growth.

Proof. It is easy to see that $f(z) E(z, s)$ is a C^{∞} automorphic form. We show $f(z) E(z, s)$ is of bounded growth. Let $f(z)=\sum_{n=1}^{\infty} a(n) e(n z)$. Then

$$
f(z) E(z, s)=\sum_{n=-\infty}^{\infty} b_{s}(n, y) e(n x)
$$

with

$$
b_{s}(n, y)=\sum_{m=1}^{\infty} a(m) a_{n-m}(y, s) e^{-2 \pi m y}
$$

By (5), (6) and $a(m)=O\left(m^{k / 2}\right)$, there exists a positive constant c_{3} depending only on s such that

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \sum_{m=1}^{\infty} \int_{0}^{\infty}\left|a(m) a_{n-m}(y, s)\right| y^{k-2} e^{-(2 \pi m+\varepsilon) y} d y \\
& \quad \leq c_{3} \sum_{n=-\infty}^{\infty}\left\{\sum_{m=1}^{\infty} m^{k / 2}(n+m)^{-k+2-3 \operatorname{Re}(s)}+n^{-k / 2+1-\max (\operatorname{Re}(s), 1-\operatorname{Re}(s))}\right\}
\end{aligned}
$$

The last series is convergent for $k \geq 12$ and $\operatorname{Re}(s)>0$, hence $f(z) E(z, s)$ is of bounded growth.

Lemma 2. Let $f(z) \in S_{k}$ be a normalized Hecke eigenform. Let ϱ be a zero of $\zeta(s)$ or of $L_{2}(s+k-1, f)$ in the critical strip $0<\operatorname{Re}(s)<1$ with $\zeta(2 \varrho) \neq 0$. Then

$$
\langle f(z) E(z, \varrho), f(z)\rangle=0 .
$$

Proof. By (1),

$$
L_{2}(s, f)=\frac{\zeta(2 s-2 k+2)}{\zeta(s-k+1)} \cdot \frac{(4 \pi)^{s}}{\Gamma(s)}\langle f(z) E(z, s-k+1), f(z)\rangle .
$$

Since $L_{2}(s, f)$ is entire, $\langle f(z) E(z, \varrho), f(z)\rangle=0$ for $\varrho \in\{s \in \mathbb{C} \mid 0<\operatorname{Re}(s)$ $<1\}$ such that $\zeta(\varrho)=0$ with $\zeta(2 \varrho) \neq 0$. We also see that $\langle f(z) E(z, \varrho)$, $f(z)\rangle=0$ for $\varrho \in\{s \in \mathbb{C} \mid 0<\operatorname{Re}(s)<1\}$ such that $L_{2}(\varrho+k-1, f)=0$ with $\zeta(2 \varrho) \neq 0$.

Proof of Theorem. By Theorem A and Lemma 1, there exists

$$
h(z, s)=\sum_{n=1}^{\infty} c(n, s) e(n z) \in S_{k}
$$

such that $\left\langle g, \Delta_{k} \cdot E(z, s)\right\rangle=\langle g, h\rangle$ for all $g \in S_{k}$. Here

$$
c(n, s)=\gamma_{k}(n) \int_{0}^{\infty} b_{s}(n, y) e^{-2 \pi n y} y^{k-2} d y
$$

with

$$
\gamma_{k}(n)=2 \cdot(2 \pi n)^{k-1} \Gamma(k-1)^{-1}
$$

and

$$
b_{s}(n, y)=\sum_{m=1}^{\infty} \tau_{k}(m) a_{n-m}(y, s) e^{-2 \pi m y} .
$$

Using (3) and (4), for $\operatorname{Re}(s)>1 / 2$ we have
(7) $c(n, s)$

$$
\begin{aligned}
= & \frac{\gamma_{k}(n)}{\zeta(2 s)} \sum_{\substack{m=1 \\
m \neq n}}^{\infty} \tau_{k}(m) \sigma_{1-2 s}(n-m) \\
& \times \int_{0}^{\infty} y^{k-1-s} e^{-2 \pi(m+n) y} \int_{-\infty}^{\infty} e(-(n-m) y \xi)\left(1+\xi^{2}\right)^{-s} d \xi d y \\
& +\gamma_{k}(n) \tau_{k}(n)\left\{\frac{\Gamma(k-1+s)}{(4 \pi n)^{k-1+s}}+\frac{\pi^{1 / 2} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \cdot \frac{\zeta(2 s-1)}{\zeta(2 s)} \cdot \frac{\Gamma(k-s)}{(4 \pi n)^{k-s}}\right\} \\
= & \frac{\gamma_{k}(n) \Gamma(k-s)}{\zeta(2 s)} \sum_{\substack{m=1 \\
m \neq n}}^{\infty} \tau_{k}(m) \sigma_{1-2 s}(n-m)
\end{aligned}
$$

$$
\begin{aligned}
& \times \int_{-\infty}^{\infty}\{2 \pi(m+n)+2 \pi i(n-m) \xi\}^{-k+s}\left(1+\xi^{2}\right)^{-s} d \xi \\
& +\gamma_{k}(n) \tau_{k}(n)\left\{\frac{\Gamma(k-1+s)}{(4 \pi n)^{k-1+s}}+\frac{\pi^{1 / 2} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \cdot \frac{\zeta(2 s-1)}{\zeta(2 s)} \cdot \frac{\Gamma(k-s)}{(4 \pi n)^{k-s}}\right\}
\end{aligned}
$$

Here the interchange of summation and integration is justified by using (5) and (6), and by Fubini's theorem, the last equality also holds in the region $\operatorname{Re}(s)>-k+1$.

For $p, q \in \mathbb{C}$ and $0<c<1$,

$$
\begin{aligned}
f_{c}(p, q):= & \int_{-\infty}^{\infty}(1-i t)^{-p}(1+i t)^{-p}(1+i c t)^{-q} d t \\
= & 2^{2-2 p} \pi \cdot(1+c)^{-q} \Gamma(p)^{-1} \Gamma(1-p)^{-1} \\
& \times \int_{0}^{1} t^{-p}(1-t)^{q+2 p-2}\left(1-\left(\frac{1-c}{1+c}\right) t\right)^{-q} d t \\
= & 2^{2-2 p} \pi \cdot(1+c)^{-q} \Gamma(2 p+q-1) \Gamma(p)^{-1} \Gamma(p+q)^{-1} \\
& \times F\left(1-p, q ; p+q ; \frac{1-c}{1+c}\right)
\end{aligned}
$$

Therefore, for $m<n$,

$$
\begin{align*}
& \int_{-\infty}^{\infty}\{2 \pi(m+n)+2 \pi i(n-m) \xi\}^{-k+s}\left(1+\xi^{2}\right)^{-s} d \xi \tag{8}\\
= & (2 n)^{-k+s} 2^{2-2 s} \pi \cdot \Gamma(k-1+s) \Gamma(s)^{-1} \Gamma(k)^{-1} F(1-s, k-s ; k ; m / n)
\end{align*}
$$

and for $m>n$,

$$
\begin{align*}
& \int_{-\infty}^{\infty}\{2 \pi(m+n)+2 \pi i(n-m) \xi\}^{-k+s}\left(1+\xi^{2}\right)^{-s} d \xi \tag{9}\\
= & (-2 m)^{-k+s} 2^{2-2 s} \pi \cdot \Gamma(k-1+s) \Gamma(s)^{-1} \Gamma(k)^{-1} F(1-s, k-s ; k ; n / m)
\end{align*}
$$

From Lemma 2 and $\operatorname{dim} S_{k}=1$, we have $h(z, \varrho)=0$, hence $c(n, \varrho)=0$ for every positive integer n. Combining (7), (8) and (9), we conclude the proof of Theorem.

Acknowledgments. The author would like to thank Professor S. Mizumoto for his advice.

References

[1] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98.
[2] J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J. 48 (1981), 327-350.
[3] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, 1944.
[4] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, in: Lecture Notes in Math. 627, Springer, 1977, 106-169.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
TOKYO INSTITUTE OF TECHNOLOGY
OH-OKAYAMA, MEGURO-KU
TOKYO, 152, JAPAN

