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On the exponent of the ideal class groups of
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Hershy Kisilevsky (Montréal, Qué.) and
Francesco Pappalardi (Roma)

1. Introduction. Let d be a square-free positive integer. We denote by
C(d) the ideal class group of the imaginary field Q(

√−d) and by e(d) the
exponent of C(d), that is, the least positive integer e such that

xe = 1 for all x ∈ C(d).

In 1969, at the Stony Brook conference, K. Iwasawa asked whether

lim
d→∞

e(d) =∞.
In 1972, Boyd and the first author (see [1]) showed under the assumption

of the Extended Riemann Hypothesis that for all ε > 0, there exists d(ε)
such that for all d > d(ε), one has

(1.1) e(d) >
log d

(2 + ε) log log d
,

which is a conditional positive answer to Iwasawa’s original question. As we
will see, this result is ineffective due to the inexpliciteness of the error term
in the Chebotarev Density Theorem.

In 1992, the second author (see [4]) proved that the inequality (1.1) holds
(unconditionally) for almost all discriminants d.

The proof of the estimate in (1.1) consists of two steps:

(a) One notes that if α is an integer of Q(
√−d) which is not in Z, then

(1.2) N(α) > d/4.

(b) One uses the fact that the least rational prime p which splits in
Q(
√−d) is less than (log d)2+ε for all d large enough.
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Finally, if p is a prime above the split prime p then the ideal pe(d) is a
principal ideal (α) (α 6∈ Z). Taking norms one has by the first step

N(pe) ≥ N(α) > d/4;

and by the second step

N(pe) = pe ≤ (log d)e(2+ε).

These two inequalities imply (1.1).
Step (a) is possible since in Q(

√−d) the group of units is finite. Step (b)
can be deduced rather directly from the version of the Chebotarev Density
Theorem proven under the assumption of the Riemann Hypothesis. In the
case of function fields, the Riemann Hypothesis is known to be true and this
is the basic motivation of this article.

Let q be a power of a prime, let F = Fq(x) be a function field in one
variable over the finite field with q elements and let O = Fq[x] denote the
polynomial ring. An extension E/F is said to be imaginary if there is a
unique place of E above the place p∞ associated with the valuation at ∞
of O.

For any extension E over F we denote by OE the integral closure of O
in E. Then OE is a Dedekind domain and it is called the ring of integers
of E.

Note that if E is an imaginary extension of F , then the group of units
of OE is finite.

In the case where E is quadratic over F , char(F ) 6= 2, then

E = Fq(x, y), y2 = f(x), f(x) ∈ O
and f(x) is not a square in Fq((1/x)). Note that Fq((1/x)) is the completion
of O at the valuation at ∞.

In this case the analogous property to the inequality (1.2) of the first
step of the proof of (1.1) is shown in the following:

Proposition 1.1. Suppose char(F ) > 2 and let E = Fq(x, y) be an
imaginary quadratic extension of F. If y2 = f(x) with f(x) ∈ O square-free,
then for all α ∈ OE \ O we have

degNE/F (α) ≥ deg f.

P r o o f. Suppose f(x) = a0 + a1x+ . . .+ anx
n, then

f(x) = xnan

(
1 + bn−1

1
x

+ . . .+ b0
1
xn

)

with bj = aj/an. Since every Laurent polynomial congruent to 1 (mod p∞)
is a square in Fq((1/x)), we see that f(x) is a square in Fq((1/x)) if and
only if n is even and an is a square in Fq. Hence E/F is imaginary if and
only if either deg f is odd or deg f is even and an 6∈ (Fq)2.
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Now we can write

α = g + hy

and

NE/F (α) = g2 − h2y2 = g2 − h2f ∈ O
with g, h ∈ O and h 6= 0.

If deg(g2) 6= deg(h2f), then deg(g2 − h2f) ≥ deg f as h 6= 0.
If deg(g2) = deg(h2f), then deg f is even thus an 6∈ (Fq)2. This implies

that if c and d are the coefficients of the term with highest degree of g and
h, the term with highest degree of g2 − h2f is c2 − d2an, which is not zero
since otherwise an would be a square in Fq.

So in either case we have the assertion.

2. The Chebotarev Density Theorem. The norm N(p) of a prime
p of O is defined as the number of elements in the residue field of the
completion of F at p. The degree deg p is defined by the identity

N(p) = qdeg p.

If p is the principal ideal (g(x)), then the above degree coincides with the
usual degree of the polynomial g(x).

Now suppose that E is a finite Galois extension of F and set

Ck(E/F ) = #{p ∈ Spec(O) | deg p = k, p splits completely in E/F}.
Then the Riemann Hypothesis for function fields allows one to prove the
following:

Theorem 2.1. Let L be the algebraic closure of Fq in E and let

n = [L : Fq], m = [E : LF ].

Then for all k for which n | k,
∣∣∣∣Ck(E/F )− 1

m

qk

k

∣∣∣∣ < 4qk/2
(

1 +
gE
km

)
,

where gE is the genus of E. If n - k then Ck(E/F ) = 0.

P r o o f. See Proposition 5.16 in Fried and Jarden [2].

We will use the Chebotarev Density Theorem in the following form:

Corollary 2.2. With the same notation as above, let

r = 4
(
gE +mn+m

14 log(gE +mn)
log q

)
.

Then there exists a prime ideal p of O which splits completely in OE and
N(p) ≤ r2.
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P r o o f. In order to have Ck(E/F ) > 1 we must assure that the main
term in Theorem 2.1 bounds the error term.

Indeed,

Ck(E/F ) >
qk

mk
− 4qk/2

(
1 +

gE
km

)
=
qk/2

mk
(qk/2 − 4(mk + gE)).

Let k0 be the least integer such that n | k0 and qk0 > r2. Then

2 log r
log q

< k0 ≤ 2 log r
log q

+ n

and therefore

Ck0(E/F ) >
r

k0m

(
r − 4m

(
2 log r
log q

+ n

)
− 4gE

)

=
8r

k0 log q
(7 log(gE +mn)− log r) > 0.

The last inequality holds since (gE +mn)7 > r for all gE ,m, n and q. There-
fore Ck(E/F ) ≥ 1 for some k < k0. Hence there is a prime in O that splits
completely in OE with norm less than r2.

We can now state the first result:

Theorem 2.3. Suppose that char(F ) > 2, let E = Fq(x, y) be an imagi-
nary quadratic extension of F and let y2 = f(x) with f(x) ∈ O square-free.
Let e(f) be the exponent of the ideal class group of the Dedekind domain
OE. Then

e(f) ≥ deg f log q
2 log(72 deg f)

.

P r o o f. From Corollary 2.2, we see that there exists a prime ideal p0 of
O that splits completely in E with degree such that

qdeg p0 ≤
(

4
(
gE + 2 + 28

log(gE + 2)
log q

))2

≤ (4((28/ log 3 + 1)gE + 28/ log 3 + 2))2.

Now let P0 be a prime above p0. As in the case of Q(
√−d) we see that

P
e(f)
0 is a principal ideal (α), hence by Proposition 1.1,

qe(f) deg p0 = NE/F (Pe(f)
0 ) = NE/F (α) ≥ qdeg f ,

which by taking logarithms gives

e(f) ≥ deg f log q
2 log(4((28/ log 3 + 1)gE + 28/ log 3 + 2))

.
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Finally, by the Riemann–Hurwitz formula we have

gE ≤ deg f − 1
2

and since deg f ≥ 3, the statement is proved.

3. The relation with the Jacobian. In this section we want to com-
pare the estimate for the exponent obtained by this method (algebraic esti-
mate) with the geometric estimate.

Suppose that E is the function field of a curve X/Fq, and let J0(E)
denote the points in the Jacobian of X rational over Fq. Then J0(E) is
isomorphic to the group of divisor classes of degree 0 of E. The ideal class
group C(OE) can be related to J0(E):

Proposition 3.1. Suppose E is an imaginary extension of F of degree m
and let P∞ denote the unique prime of E dividing p∞ of F . If h = deg P∞
and d is the least degree of a prime divisor of E/F then

C(OE)/J0(E) ' Z/(h/d)Z.

P r o o f. Let D(E) be the divisor group and P(E) be the group of prin-
cipal divisors. By considering the exact sequence

0 → 〈P∞〉P(E) → D(E) → C(OE) → 0,
n∞P∞ +

∑
nPP 7→ [∏

PnP
]

we have the isomorphism

C(OE) ' D(E)
〈P∞〉P(E)

.

On the other hand, consider the exact sequence

0→ D0(E)→ D(E)→ dZ→ 0,

where the second map is the degree and first map is the inclusion of the
group D0(E) of divisors of degree 0 in D(E). Since P(E) ⊂ D0(E), we have
that

P(E)〈P∞〉 ⊂ D0(E)〈P∞〉 ⊂ D(E),

therefore

0→ D0(E)〈P∞〉
P(E)〈P∞〉 →

D(E)
P(E)〈P∞〉 →

D(E)
D0(E)〈P∞〉 → 0

and finally

(3.1) 0→ J0(E)→ C(OE)→ (degD(E))Z
(deg P∞)Z

→ 0.

Now, since deg P∞ = h and degD(E) = dZ, we get the assertion.
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Now let us turn our attention to the exponent of J0(E). If L(s) is the
L-function of X, then it is known that

|J0(E)| = L(1) =
2gE∏

i=1

(1− αi).

By the Riemann Hypothesis for function fields, |αi| = √q, and thus it follows
that

|J0(E)| ≥ (
√
q − 1)2gE .

It follows from the theory of Riemann surfaces that J0(E) has at most 2gE
generators, therefore the exponent e(E) of J0(E) is not smaller than

(3.2) e(E) ≥ |J0(E)|1/(2gE) ≥ √q − 1.

In the case of Theorem 2.3 we have deg P∞ ≤ 2 and therefore

|C(OE)/J0(E)| ≤ 2.

If deg f is large with respect to q, more precisely if deg f � √q, then
the estimate of Theorem 2.3 is sharper than (3.2).

4. Application to the exponent. From now on we will suppose that
E is an imaginary extension of F of degree m in which∞ is totally ramified.
That is, if p∞ is the prime at infinity of O and P∞ is the unique prime of
OE above p∞, then P∞ = pm∞. Let gE denote the genus of E.

We note that since p∞ is totally ramified, for α ∈ OE we have

degNE/F (α) = −vp∞(NE/F (α)) = −vP∞(α).

We can extend the result of Proposition 1.1 to a special class of such fields:

Theorem 4.1. Let E = Fq(x, y), ym = f(x) where char(F ) does not
divide m, and where f(x) is a polynomial such that every prime divisor of
f(x) divides it to a power coprime to m. Suppose also that (deg f,m) = 1.
If α ∈ OE \ O, we have

degNE/F (α) ≥ 2gE
m− 1

+ 1.

P r o o f. First we note that the condition (deg f,m) = 1 implies that p∞
is totally ramified in E and so E is imaginary over F . Let f =

∏t
j=1 p

aj
j

with pj ∈ Fq[x] irreducible, (aj ,m) = 1, and 1 ≤ aj ≤ m − 1, and let
f1 =

∏t
j=1 pj .

The Riemann–Hurwitz formula then gives

gE =
(m− 1)(deg f1 − 1)

2
.

Let Pi be the prime of E dividing pi = (pi(x)). Then since (ai,m) = 1,
it follows that Pi is totally ramified in E/F , and that Pm

i = pi for 1 ≤ i ≤ t.
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Hence

(y) = y · OE =
t∏

i=1

Pai
i .

For 1 ≤ k ≤ m− 1, write

aik = mqik + rik with 1 ≤ rik ≤ m− 1.

Then, for each fixed i, as k ranges over the distinct non-zero residue classes
modulo m so does rik, since (ai,m) = 1. For each k, 1 ≤ k ≤ m− 1,

(yk) =
t∏

i=1

pqiki

t∏

i=1

Prik
i = (ck)

t∏

i=1

Prik
i

for some ck ∈ O, with (ck) =
∏t
i=1 pqiki . Let yk = yk/ck. Set y0 = 1 and let

A =
∑m−1
k=0 Oyk. We claim that the ring of integers is

(4.1) OE = A,
and we will prove this later. Now if α ∈ OE\O, we have α =

∑m−1
k=0 gkyk with

gk ∈ O, and gk 6= 0 for some k ≥ 1. Then since the valuations vP∞(gkyk)
are distinct (modulo m), we have

vP∞(α) = min
0<k≤m−1

vP∞(gkyk) ≤ min
0<k≤m−1

vP∞(yk).

Taking norms and noting that rik ≥ 1, we obtain

vp∞(NE/F (α)) ≤ min
0<k≤m−1

vp∞(NE/F (yk)) ≤ vp∞(f1(x))

which is equivalent to

degNE/F (α) ≥ deg(f1(x)).

We need only prove (4.1). For this, let β ∈ OE . Then we can write β as
β =

∑m−1
k=0 bkyk, where bk ∈ F and we want to show that the bk are elements

of O. We note that the trace Tr(yk) = Tr(yk) = 0 for 1 ≤ k ≤ m − 1, and
Tr(ym) = mf . Therefore, Tr(β) = mb0 and hence b0 ∈ O since m ∈ O×.
Similarly, for all 1 ≤ k ≤ m− 1,

Tr(ym−kβ) = Tr(bkykym−k) = mfbk/(cm−kck)

and therefore fbk ∈ O. Now write

fβ = e0 + e1y + . . .+ em−1ym−1

with ek ∈ O and e0 ∈ fO. If pi is a prime factor of f and Pi is a prime
ideal of E above pi, then

(4.2) vPi(fβ) ≥ vPi(f) = mai.
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On the other hand, since the valuations vPi(ekyk) are all distinct (mod-
ulo m) and hence distinct, we have for each i, 1 ≤ i ≤ t,

vPi(e0 + e1y + . . .+ em−1ym−1) = min
k≥0

vPi(ekyk).

Since rik ≤ m− 1, it follows from (4.2) that

vPi(ek) ≥ mai − rik > m(ai − 1).

But since vPi(ek) ≡ 0 (mod m), we see that vPi(ek) ≥ mai, and conclude
that f | ek for all k. This implies that bk ∈ O for all k and proves the
statement.

As a consequence we have the following:

Corollary 4.2. With the same notations as in Theorem 4.1, let

r = 4
(
gE +mϕ(m) + 14m

log(gE +mϕ(m))
log q

)
.

Then

e(OE) >
gE log q

(m− 1) log r
.

P r o o f. We first note that a prime ideal splits completely in E if and
only if it splits completely in the Galois closure E of E.

In this case, if L is the algebraic closure of Fq in E, then

[L : Fq] ≤ ϕ(m) and m = [E : F ] = [E : F ],

since E = EL. Thus the genus of E equals gE .
If p is a prime ideal of O with least norm that splits completely in E

then by Corollary 2.2, we have N(p) ≤ r2. Hence if P is a prime of E above
p, we see as in the proof of Theorem 2.3 that Pe(OE) is a principal ideal α
and finally that

e(OE) ≥ logNE/F (α)
logN(p)

≥ (2gE/(m− 1)) log q
2 log r

.

A different method allows us to calculate a similar bound as in Theo-
rem 4.1 for another family of extensions of F which are not necessarily tame.
This case was not treated in Theorems 2.3 and 4.1.

Theorem 4.3. Let E be an imaginary extension of F of prime degree m
and genus gE , in which ∞ is totally ramified. Then for all α ∈ OE \ O, we
have

degNE/F (α) ≥ 2(gE − 1)
m− 1

.

P r o o f. If D ∈ D(E) is a divisor of E, then L(D) will denote as usual

L(D) = {f ∈ E | vP(f) ≥ −vP(D) for all prime P ∈ D(E)}
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and we let l(D) = dim
q
(L(D)). Note that for any n,

l(nP∞)− l((n− 1)P∞) ≤ deg P∞ = 1.

Consider the Weierstrass semigroup of P∞ defined by

W = {n ∈ N | ∃α ∈ E, with vP∞(α) = −n, and vP(α) ≥ 0 for P 6= P∞}.
We have 0 ∈ W as 1 ∈ E, and since by the Riemann–Roch Theorem,

(4.3) l(nP∞) = n− gE + 1 for n ≥ 2gE − 1,

it follows that 2gE , 2gE + 1, . . . ∈ W. Since vP∞(xk) = −km, we see that
0,m, 2m, . . . ∈ W. If we let H = W ∩ {0, 1, . . . , 2gE − 1}, then |H| = gE as
l((2gE − 1)P∞) = gE by (4.3).

Let a be minimal with respect to the property that L(aP∞) contains
an element α 6∈ F . Then a cannot be a multiple of m since if it were km,
then both α and xk would be elements of L(aP∞) \ L((a − 1)P∞) and
since l(aP∞) − l((a − 1)P∞) ≤ 1, this implies that {α, xk, xk−1, . . . , x, 1}
are linearly dependent over Fq and so α ∈ F .

Hence since m is prime, (a,m) = 1. If we let, for 0 ≤ j ≤ m− 1,

Wj =
{
ja+ km

∣∣∣∣ 0 ≤ k ≤
2gE − 1− ja

m

}
,

then the elements of
⋃m−1
j=0 Wj are distinct and all lie in H. But then

(4.4)
∣∣∣
m−1⋃

j=0

Wj

∣∣∣ ≥
m−1∑

j=0

2gE − 1− ja
m

= (2gE − 1)− am− 1
2

.

Since |H| = gE , (4.4) implies that

a ≥ 2(gE − 1)
m− 1

and the assertion follows.

We let m and n denote the dimension of the Galois closure E of E over
F and the dimension over Fq of the algebraic closure of Fq in E respectively.

In the case where E is a tamely ramified extension of F , then E is a
tamely ramified extension of F and the genus of E can be related to the
genus of E:

Lemma 4.4. If E is a tamely ramified extension of F , then

2gE − 2 ≤ 2m
(

2gE − 2
m

+ 1
)
.

P r o o f. By the Riemann–Hurwitz formula we have that

2gE − 2 = −2m+
∑

P̄

vP̄(D(E/F )),
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where the sum is over all primes that ramify in E/F , including ∞, and
D(E/F ) is the ramification divisor. Since E over F is tamely ramified, if p
is a prime of F such that P divides p, then

(4.5) vP̄(D(E/F )) = (e(P/p)− 1) deg(P/p) ≤ e(P/p)f(P/p).

Let P be a prime of E dividing p. Then the right hand side of (4.5) equals

e(P/P)f(P/P)e(P/p)f(P/p).

Now note that p is ramified in E if and only if it ramifies in E, and therefore

(4.6)
∑

P̄

vP̄(D(E/F ))

≤
∑

P

e(P/p)f(P/p)
(∑

P̄|P
e(P/P)f(P/P)

)

=
m

m

∑

P

e(P/p)f(P/p)

≤ 2
m

m

∑

P

(e(P/p)− 1) deg(P/p).

Finally, using the Riemann–Hurwitz formula for the extension E/F we con-
clude that the right hand side of (4.6) equals

2m
m

(2gE − 2 + 2m)

and the result follows.

Corollary 4.5. With the same notations as in Theorem 4.3, let

r = 4
(
gE +mn+m

14 log(gE +mn)
log q

)
.

Then

e(OE) ≥ (gE − 1) log q
(m− 1) log r

.

In particular , if E is tamely ramified over F , then

e(OE) ≥ (gE − 1) log q
(m− 1) log(120m2(gE/m+ n))

.

Vijaya Kumar Murty and John Scherk [3] have recently proven a new
version of the Chebotarev Density Theorem for function fields. Their re-
sult gives a slightly better bound for the least norm of a prime that splits
completely in a function field Galois extension. The same argument of The-
orem 2.3 and Corollary 4.2 applies.
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