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1. Introduction. Let F be a number field, and let OF be the ring of
its integers. Several formulas for the 4-rank of K2OF are known (see [7], [5],
etc.). If

√−1 6∈ F , then such formulas are related to S-ideal class groups of F
and F (

√−1), and the numbers of dyadic places in F and F (
√−1), where S

is the set of infinite dyadic places of F . In [11], the author proposes a method
which can be applied to determine the 4-rank of K2OF for real quadratic
fields F with 2 6∈ NF . The author also lists many real quadratic fields with
the 2-Sylow subgroups of K2OF being isomorphic to Z/2Z⊕Z/2Z⊕Z/4Z.
In [12], the author gives a 4-rank K2OF formula for imaginary quadratic
fields F . By the formula, it is enough to compute some Legendre symbols
when one wants to know 4-rank K2OF for a given imaginary quadratic
field F . In the present paper, we give a similar formula for real quadratic
fields F . Then we give 4-rank K2OF tables for real quadratic fields F =
Q(
√
d) whose discriminants have at most three odd prime divisors.

2. Preliminaries. Given integers a, b with b 6= 0, (a/b) denotes the
Jacobi symbol, in particular, if b = p, an odd prime, then (a/p) is the
Legendre symbol. Denote by N the set of all positive integers. Let F =
Q(
√
d), d ∈ N squarefree. Put ∆ = {c ∈ F · | {−1, c} = 1}. Then by a

result of Tate [13], it is quite easy to see that for any real quadratic field F ,
[∆ : F ·2] = 2, and if F 6= Q(

√
2), then ∆ = F ·2∪2F ·2. By [2], we know that

if c ∈ {−1, 2,−2} ∩ NF , then there are u,w ∈ N such that d = u2 − cw2.
Also by [2], we have:

Lemma 2.1. Let F = Q(
√
d), d ∈ N squarefree. Then the subgroup of

K2OF consisting of all elements of order ≤ 2 can be generated by the fol-
lowing elements:

• {−1,m}, m | d;
• {−1, ui +

√
d} with d = u2

i − ciw
2
i , where ci ∈ {−1, 2,−2} and

ui, wi ∈ N.

[323]
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In [11], the author shows the following theorem.

Theorem 2.2. Let F = Q(
√
d), d ∈ N squarefree. Then for every m | d

with m ∈ N, there exists α ∈ K2OF with α2 ∈ {−1,m} if and only if there
exists ε ∈ {±1,±2} such that

(dm−1/p) = (ε/p) for every odd prime p |m;

and

(m/l) = (ε/l) for every odd prime l | dm−1.

In the next section, we shall deal with the case when 2 ∈ NF . Then we
can obtain the 4-rank K2OF formula for a real quadratic field F .

3. The 4-rank of K2OF . Let F = Q(
√
d), d ∈ N squarefree. Suppose

that 2 ∈ NF . Then d = u2−2w2 with u,w ∈ N. We want to know when there
exists α ∈ K2OF such that α2 = {−1, u +

√
d}. By a theorem due to Bass

and Tate [8], we see that there exists β ∈ K2F such that {−1, u+
√
d} = β2

if and only if there exist x, y ∈ F with x2 + y2 = u+
√
d.

Lemma 3.1. Let F = Q(
√
d), d ∈ N squarefree. Assume that d = u2 −

2w2 ≡ 1 (mod 8), where u,w ∈ N. If (u + w/d) = −1, then in F , u +
√
d

cannot be represented by the sum of two squares.

P r o o f. Since d ≡ 1 (mod 8), 2OF = PP , where P 6= P is a prime ideal
of F . We have FP (the completion of F at P ) ∼= Q2. We may assume that
F ⊆ Q2.

It follows from d = u2−2w2 that (−d/u+w) = 1. Hence, (u+w/d) = −1
implies that u+w ≡ 3 (mod 4). We note that if v is a unit in Q2, then the
Hilbert symbol

(−1,v
2

)
2 = (−1)(v−1)/2 (see [9]). Hence, x2 + y2 = −(u+ w)

is solvable in Q2. Therefore, x2 +dy2 = −(u+w) is solvable in Q2. Suppose
x0, y0 ∈ Q2 is a solution of the equation x2 + dy2 = −(u + w). Choose
g, h ∈ Q2 such that h = y0, (u + w)g + wh = x0 and put α = g2 + h2,
θ = (g2 − h2 + 2gh)w, λ = (g2 − h2 − 2gh)w. A computation shows that

αu+ θ = (αu+ θ)(u+ w)(u+ w)−1

= (((u+ w)g + wh)2 + (u2 − 2w2)h2)(u+ w)−1

= (x2
0 + dy2

0)(u+ w)−1 = −1.

Hence, there are ξ, η ∈ Q2 such that

2(u+ θ/α) = 2α(αu+ θ)/α2 = −(ξ2 + η2).

Let
x = − ξ + λη, y = αξ;

a = − η − λξ, b = αη.
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Then (
x+ y

√
d

2

)2

+
(
a+ b

√
d

2

)2

= −(u+
√
d).

If u+
√
d = e2 + f2 with e, f ∈ F ⊆ Q2, then there are s, t ∈ Q2 such that

−1 = s2 + t2. But in Q2,
(−1,−1

2

)
2 = −1, contradiction. This concludes the

proof.

Theorem 3.2. Let F = Q(
√
d), d ∈ N squarefree. Assume that d = u2 −

2w2 with u,w ∈ N. Then there exists β ∈ K2OF such that β2 = {−1, u+
√
d}

if and only if there exists ε ∈ {±1,±2} (equivalently , ε ∈ {±1}) such that
(ε(u+ w)/p) = 1 for every odd prime p | d.

P r o o f. First, if d 6≡ 1 (mod 8), or d ≡ 1 (mod 8) and (u + w/d) = 1,
then analogously to the proof of Lemma 3.11 in [12], it can be shown that
there exists a prime p ≡ 1 (mod 4) with p - d, p - (u+w) and p -uw such that
the Diophantine equation X2 + dY 2 = (u + w)pZ2 has nonzero solutions
in Z.

Second, entirely similarly to the proof of Lemma 3.12 in [12], it can be
shown that there exists α ∈ K2OF with α2 = {−1, u +

√
d} if and only

if there exists ε ∈ {±1,±2} such that the Diophantine equation εpN2 =
S2 − dT 2 has nonzero solutions in Z. It amounts to the same thing to say
that (ε(u+ w)/p) = 1 for every odd prime p | d.

Finally, if d ≡ 1 (mod 8) and (u + w/d) = −1, then the number of
primes p with p | d and (u+w/p) = −1 must be odd. If there exists a prime
p ≡ 1 (mod 8) with p | d and (u + w/p) = −1, then (ε(u + w)/p) = −1
for every ε ∈ {±1,±2}. Otherwise, we may assume that for every p | d with
(u+w/p) = −1, p ≡ 7 (mod 8). Observe that d ≡ 1 (mod 8) and 2 ∈ NF .
Hence, we can find a prime p ≡ 7 (mod 8), p | d and (u + w/p) = 1. For
every ε ∈ {±1,±2}, we can find a prime p | d such that (ε(u + v)/p) = −1.
Our theorem is proved.

We now put Theorems 2.2 and 3.2 together and give the following theo-
rem.

Theorem 3.3. Let F = Q(
√
d), d ∈ N squarefree. Suppose that d = u2 −

2w2 with u,w ∈ N. Then for every m | d with m ∈ N, there exists α ∈ K2OF
with α2 = {−1,m(u+

√
d)} if and only if we can find ε ∈ {±1,±2} (in fact ,

ε ∈ {±1} will be enough) such that

(ε(u+ w)/p) = (dm−1/p) for every odd prime p |m
and

(ε(u+ w)/p) = (m/p) for every odd prime p | dm−1.

R e m a r k. When d has two odd prime divisors, a similar result has been
obtained by B. Brauckmann (see [1]).
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We conclude this section by giving a 4-rank K2OF formula for real
quadratic fields F .

Let F = Q(
√
d), d ∈ N squarefree. Put

K0 = {m | m ∈ N, m | d, m 6= 1, d, 1
2d and 2 -m},

K = {m | m ∈ K0, there exists ε ∈ {±1,±2} such that (dm−1/p) =

(ε/p) for every odd prime p |m and (m/l) = (ε/l) for every odd

prime l | dm−1},
V1 = {m(u+

√
d) | d = u2 − 2w2 with u,w ∈ N, m ∈ K0 ∪ {1, d}},

V0 = {m(u +
√
d) | m(u +

√
d) ∈ V1, there exists ε ∈ {±1,±2} such

that (ε(u + w)/p) = (dm−1/p) for every odd prime p |m and

(ε(u+ v)/p) = (m/p) for every odd prime p | dm−1},
V = {m(u+ w) | m(u+

√
d) ∈ V0}.

Theorem 3.4. Notations being as above, let r = #(K ∪ V ). Then r4 =
4-rank K2OF = log2

1
2 (r + 2).

P r o o f. If x ∈ F with x < 0 or N(x) < 0, then one can easily verify that
there is no β ∈ K2F with {−1, x} = β2. Hence, if y ∈ K2OF is an element
of order 4, then y2 = {−1, t}, by Theorems 2.2 and 3.3, t ∈ K or t ∈ V0.
Therefore, we have r = #(K ∪ V ) = 2r4+1− 2, this gives the desired 4-rank
K2OF formula.

4. 4-rank K2OF tables

Theorem 4.1. Let F = Q(
√
d), d ∈ N squarefree. Suppose that d = pq,

or 2pq or pqr or 2pqr, where p, q, r are odd primes. When 2 ∈ NF , d =
u2 − 2w2. For simplicity , we write v = u + w. Then we have the following
tables.

Table I

F p, q (mod 8) The Legendre symbols 4-rankK2OF
7, 7 1

Q(
√
pq) 7, 1 (v/q) = 1 2

(q/p) = 1
Q(
√

2pq) (v/q) = −1 1
(q/p) = −1 1

1, 1 (v/p) = (v/q) = 1 2
(q/p) = 1

(v/p) = −1 or (v/q) = −1 1
(v/p) = (v/q) 1

(q/p) = −1
otherwise 0



4-rank of K2OF 327

Table II

F p, q (mod 8) The Legendre symbols 4-rankK2OF
Q(
√
pq) 7, 5 1

Q(
√

2pq) 7, 3 1
5, 3 1
5, 1 (q/p) = 1 1

otherwise 0
3, 1 (q/p) = 1 1

otherwise 0
Q(
√
pq) 5, 5 1

3, 3 0
Q(
√

2pq) 5, 5 0
3, 3 1

R e m a r k. Most results of Tables I and II have been listed by P. E. Con-
ner and J. Hurrelbrink [4].

Table III

F p, q, r (mod 8) The Legendre symbols 4-rankK2OF
Q(
√
pqr) 7, 7, 7 (r/p) = (r/q) (v/p) = (v/q) 2

Q(
√

2pqr) (q/p) = 1 otherwise 1
7, 7, 1 (r/p) = (r/q) = 1 (v/r) = 1 2
(q/p) = 1 (r/p) = (r/q) = −1 (v/p) = (v/q) 2

otherwise 1
7, 1, 1 (q/p) = (r/p) (v/q) = (v/r) = 1 3

= (r/q) = 1
otherwise 2

(q/p) = (r/p) = 1 (v/q) = (v/r) 2
(r/q) = −1
(r/p) = (r/q) = 1 (v/r) = 1 2
(q/p) = −1
otherwise 1

1, 1, 1 (q/p) = (r/p) (v/p) = (v/q) 3
= (r/q) = 1 = (v/r) = 1

otherwise 2
(r/p) = (r/q) = 1 (v/p) = (v/q), 2
(q/p) = −1 (v/r) = 1

otherwise 1
(q/p) = (r/p) = −1 (v/(pqr)) = 1 1

otherwise 0

N o t e. In Table IV, C1 means that either (q/p) = (r/p) = 1, (r/q) = −1
or (q/p) = (r/q) = 1, (r/p) = −1 or (r/p) = (r/q) = 1, (q/p) = −1. C2
means that either (q/p) = (r/p) = −1, (r/q) = 1 or (q/p) = (r/q) = −1,
(r/p) = 1 or (r/p) = (r/q) = −1, (q/p) = 1.
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Table IV

F p, q, r (mod 8) The Legendre symbols 4-rankK2OF
Q(
√
pqr) 7, 7, 5 (r/p) = (r/q) = −1 2

Q(
√

2pqr) otherwise 1
7, 7, 3 (r/p) = (r/q) = −1 2

otherwise 1
7, 5, 3 1
7, 5, 1 (r/p) = (r/q) = 1 2

otherwise 1
7, 3, 1 (r/p) = (r/q) = 1 2

otherwise 1
5, 3, 1 (r/p) = (r/q) = 1 2

otherwise 1
5, 1, 1 (q/p) = (r/p) = (r/q) = 1 2

C1 1
otherwise 0

3, 3, 3 (r/p) = 1 1
(q/p) = 1 (r/p) = (r/q) = −1 1

otherwise 0
3, 1, 1 (q/p) = (r/p) = (r/q) = 1 2

C1 1
otherwise 0

Q(
√
pqr) 7, 5, 5 (q/p) = (r/p) = 1 2

otherwise 1
7, 3, 3 (q/p) = (r/p) = 1 2

otherwise 1
5, 5, 5 (q/p) = (r/p) = (r/q) = 1 2

C1 1
otherwise 0

5, 5, 3 (r/p) = (r/q) = 1 2
otherwise 1

5, 5, 1 (r/p) = (r/q) = 1 2
otherwise 1

5, 3, 3 (q/p) = (r/p) = −1 2
otherwise 1

3, 3, 1 (r/p) = (r/q) 1
otherwise 0

Q(
√

2pqr) 7, 5, 5 (q/p) = (r/p) = −1 2
otherwise 1

7, 3, 3 (q/p) = (r/p) = −1 2
otherwise 1

5, 5, 5 (q/p) = (r/p) = (r/q) = −1 2
C2 1
otherwise 0
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Table IV (cont.)

F p, q, r (mod 8) The Legendre symbols 4-rankK2OF
Q(
√

2pqr) 5, 5, 3 (r/p) = (r/q) = −1 2
otherwise 1

5, 5, 1 (r/p) = (r/q) 1
otherwise 0

5, 3, 3 (q/p) = (r/p) = 1 2
otherwise 1

3, 3, 1 (r/p) = (r/q) = 1 2
otherwise 1

When p ≡ q (mod 8), or q ≡ r (mod 8) or p ≡ q ≡ r (mod 8), in view
of symmetry, we omit some possibilities.

P r o o f o f T h e o r e m 4.1. By Theorem 3.4, it is enough to give K
and V for each case.

In what follows, the symbol ε (ε′) always stands for an element of the
set {±1,±2}.

The verification of Tables I and II is direct. In fact, we have either K = ∅,
or #(K) = 2 and #(K) = 2 if and only if (ε/p) = (dp−1/p) and (ε/q) =
(dq−1/q). When 2 ∈ NF , either V = ∅, or #(V ) = 2, or #(V ) = 4. We see
that #(V ) = 2 if and only if either (εv/p) = (εv/q) = 1 or (ε′v/p) = (q/p)
together with (ε′v/q) = (p/q), but not both, and #(V ) = 4 if and only if
(εv/p) = (εv/q) = 1, (ε′v/p) = (q/p) together with (ε′v/q) = (p/q).

Next, we shall deal with the case when d has three odd prime divisors.

T h e c a s e 7, 7, 7. Clearly, we can assume that (q/p) = 1. Suppose
(p/r) = (q/r) = 1, then K = {q, pr}, if (v/p) = (v/q) = (v/r), then
V = {v, dv, qv, prv}, if (v/p) = (v/q) = −(v/r), then V = {pv, qv, qrv, prv};
otherwise, V = ∅.

Suppose (p/r) = −1, (q/r) = 1. By a permutation (p ↔ r), we see that
this situation coincides with that of (p/r) = (q/r) = 1.

Suppose (p/r) = (q/r) = −1. By a permutation (p → r, q → p, r → q),
we see that this situation also coincides with that of (p/r) = (q/r) = 1.

Suppose (p/r) = 1, (q/r) = −1. Then K = ∅. If (v/p) = (v/q) = (v/r),
then V = {v, dv}; if (v/q) = (v/r) = −(v/p), then V = {qv, prv}; if (v/p) =
(v/q) = −(v/r), then V = {pv, qrv}; if (v/p) = (v/r) = −(v/q), then
V = {rv, pqv}.

T h e c a s e 7, 7, 1. Assume (q/p) = 1. Suppose (r/p) = (r/q) = 1.
Then K = {r, pq} and for (v/r) = 1, we have: if (v/p) = (v/q), then
V = {v, dv, rv, pqv}; if (v/p) = −(v/q), then V = {pv, qv, prv, qrv}. For
(v/r) = −1, we have V = ∅.
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Suppose (r/p) = (r/q) = −1. Then K = {r, pq} and for (v/p) = (v/q),
we have: if (v/r) = 1, then V = {v, dv, rv, pqv}; if (v/r) = −1, then V =
{pv, qv, prv, qrv}.

Suppose (r/p) = 1, (r/q) = −1. Then K = ∅. For (v/r) = 1, we have:
if (v/p) = (v/q), then V = {v, dv}; if (v/p) = −(v/q), then V = {pv, qrv}.
For (v/r) = −1, we have: if (v/p) = (v/q), then V = {qv, prv}; if (v/p) =
−(v/q), then V = {rv, pqv}.

Similarly, suppose (r/p) = −1, (r/q) = 1. Then K = ∅ and #(V ) = 2.

T h e c a s e 7, 1, 1. Suppose (q/p) = (r/p) = (r/q) = 1. Then p, q, r∈K,
hence #(K) = 6. If (v/q) = (v/r) = 1, then #(V ) = 8; otherwise, V = ∅.

Suppose (q/p) = (r/p) = 1, (q/r) = −1. Then K = {p, qr}. If (v/q) =
(v/r) = 1, then V = {v, dv, pv, qrv}; if (v/q) = (v/r) = −1, then V =
{qv, rv, pqv, prv}; otherwise, V = ∅.

Suppose (q/p) = −1, (r/p) = (r/q) = 1. Then K = {r, pq}. If (v/q) =
(v/r) = 1, then V = {v, dv, rv, pqv}; if (v/q) = −1, (v/r) = 1, then V =
{pv, qrv, prv, qrv}; otherwise, V = ∅.

Suppose (q/p) = (r/p) = −1, (r/q) = 1. Then K = ∅. If (v/q) =
(v/r) = 1, then V = {v, dv}; if (v/q) = (v/r) = −1, then V = {pv, qrv}; if
(v/q) = −1, (v/r) = 1, then V = {qv, prv}; if (v/q) = 1, (v/r) = −1, then
V = {rv, pqv}.

Similarly, suppose (q/p) = 1, (r/p) = (r/q) = −1 or (q/p) = (r/q) = 1,
(r/p) = −1 or (q/p) = (r/p) = (r/q) = −1. Then K = ∅ and #(V ) = 2.

T h e c a s e 1, 1, 1. We only need to consider the following four possi-
bilities:

1. (q/p) = (r/p) = (r/q) = 1;
2. (q/p) = −1, (r/p) = (r/q) = 1;
3. (q/p) = (r/p) = −1, (r/q) = 1;
4. (q/p) = (r/p) = (r/q) = −1.
In case 1, we have p, q, r ∈ K, hence #(K) = 6. If (v/p) = (v/q) =

(v/r) = 1, then V = V0, hence #(V ) = 8, so r4 = 3. Otherwise, V = ∅.
Hence, r4 = 2. In case 2, we have K = {r, pq}. If (v/p) = (v/q) = (v/r) = 1,
then V = {v, dv, rv, pqv}; if (v/p) = (v/q) = −1, (v/r) = 1, then V =
{pv, qv, prv, qrv}; otherwise, V = ∅. In cases 3 and 4, we have K = ∅.
If (v/p) = (v/q) = (v/r) = 1, then V = {v, dv}; if (v/p) = 1, (v/q) =
(v/r) = −1, then V = {pv, qrv}; if (v/q) = 1, (v/p) = (v/r) = −1, then
V = {qv, prv}; if (v/r) = 1, (v/p) = (v/q) = −1, then V = {rv, pqv}.

T h e c a s e 7, 7, 5 a n d t h e c a s e 7, 7, 3. For (r/p) = −1, we have:
if (r/q) = −1, then p, q, r ∈ K, hence, #(K) = 6; if (r/q) = 1, then
K = {p, qr}. For (r/p) = 1, we have: if (r/q) = −1, then K = {q, pr}; if
(r/q) = 1, then K = {r, pq}.
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T h e c a s e 7, 5, 5. Suppose 2 - d. If (q/p) = (r/p) = 1, then p, q, r ∈ K,
hence, #(K) = 6; if (q/p) = (r/p) = −1, then K = {p, qr}; if (q/p) = 1,
(r/p) = −1, then K = {q, pr}; if (q/p) = −1, (r/p) = 1, then K = {r, pq}.

Suppose 2 | d. If (q/p) = (r/p) = −1, then p, q, r ∈ K, hence, #(K) = 6;
if (q/p) = (r/p) = 1, then K = {p, qr}; if (q/p) = −1, (r/p) = 1, then
K = {q, pr}; if (q/p) = 1, (r/p) = −1, then K = {r, pq}.

T h e c a s e 7, 5, 3. If 2 - d, then K = {q, pr}. If 2 | d, then K = {r, pq}.
T h e c a s e 7, 5, 1. If (r/p) = (r/q) = 1, then p, q, r ∈ K, hence, #(K)

= 6; if (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (r/p) = −1, (r/q) = 1,
then K = {q, pr}; if (r/p) = (r/q) = −1, then K = {r, pq}.

T h e c a s e 7, 3, 3. Suppose 2 - d. If (q/p) = (r/p) = 1, then p, q, r ∈ K,
hence, #(K) = 6; if (q/p) = (r/p) = −1, then K = {p, qr}; if (q/p) = 1,
(r/p) = −1, then K = {q, pr}; if (q/p) = −1, (r/p) = 1, then K = {r, pq}.

Suppose 2 | d. If (q/p) = (r/p) = −1, then p, q, r ∈ K, hence, #(K) = 6;
if (q/p) = (r/p) = 1, then K = {p, qr}; if (q/p) = −1, (r/p) = 1, then
K = {q, pr}; if (q/p) = 1, (r/p) = −1, then K = {r, pq}.

T h e c a s e 7, 3, 1. If (r/p) = (r/q) = 1, then p, q, r ∈ K, hence, #(K)
= 6; if (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (r/p) = −1, (r/q) = 1,
then K = {q, pr}; if (r/p) = (r/q) = −1, then K = {r, pq}.

T h e c a s e 5, 5, 5. Suppose 2 - d. If (q/p) = (r/p) = (r/q) = 1, then
p, q, r ∈ K, hence, #(K) = 6; if (q/p) = (r/p) = 1, (r/q) = −1, then
K = {p, qr}; if (r/p) = (r/q) = −1, then K = ∅.

Suppose 2 | d. If (q/p) = (r/p) = (r/q) = −1, then p, q, r ∈ K, hence,
#(K) = 6; if (q/p) = (r/p) = −1, (r/q) = 1, then K = {p, qr}; if (r/p) =
(r/q) = 1, then K = ∅.

T h e c a s e 5, 5, 3. Suppose 2 - d. If (r/p) = 1, (r/q) = −1, then K =
{p, qr}; if (r/p) = −1, (r/q) = 1, then K = {q, pr}; if (r/p) = (r/q) = 1,
then K = {r, pq}.

Suppose 2 | d. If (r/p) = −1, (r/q) = 1, then K = {p, qr}; if (r/p) = 1,
(r/q) = −1, then K = {q, pr}; if (r/p) = (r/q) = 1, then K = {r, pq}.

T h e c a s e 5, 5, 1. Suppose 2 - d. If (r/p) = (r/q) = 1, then p, q, r ∈ K,
hence, #(K) = 6; if (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (r/p) = −1,
(r/q) = 1, then K = {q, pr}; if (r/p) = (r/q) = −1, then K = {r, pq}.

Suppose 2 | d. If (r/p) = (r/q), then K = {r, pq}; if (r/p) = −(r/q), then
K = ∅.

T h e c a s e 5, 3, 3. Suppose 2 - d. If (q/p) = (r/p) = −1, then p, q, r ∈ K,
hence, #(K) = 6; if (q/p) = (r/p) = 1, then K = {p, qr}; if (q/p) = −1,
(r/p) = 1, then K = {q, pr}; if (q/p) = 1, (r/p) = −1, then K = {r, pq}.



332 H. Qin

Suppose 2 | d. If (q/p) = (r/p) = 1, then p, q, r ∈ K, hence, #(K) = 6;
if (q/p) = (r/p) = −1, then K = {p, qr}; if (q/p) = 1, (r/p) = −1, then
K = {q, pr}; if (q/p) = −1, (r/p) = 1, then K = {r, pq}.

T h e c a s e 5, 3, 1. If (r/p) = (r/q) = 1, then p, q, r ∈ K, hence, #(K)
= 6; if (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (r/p) = −1, (r/q) = 1,
then K = {q, pr}; if (r/p) = (r/q) = −1, then K = {r, pq}.

T h e c a s e 5, 1, 1. If (q/p) = (r/p) = (r/q) = 1, then p, q, r ∈ K, hence,
#(K) = 6; if (q/p) = (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (q/p) =
(r/q) = 1, (r/p) = −1, then K = {q, pr}; if (q/p) = −1, (r/p) = (r/q) = 1,
then K = {r, pq}; otherwise, K = ∅.

T h e c a s e 3, 3, 3. Let (q/p) = 1. Suppose 2 - d. If (r/q) = −1, then
K = {q, pr}; if (r/p) = (r/q) = 1, then K = {r, pq}; if (r/p) = −1,
(r/q) = 1, then K = ∅.

Suppose 2 | d. If (r/p) = 1, then K = {p, qr}; if (r/p) = (r/q) = −1,
then K = {r, pq}; if (r/p) = −1, (r/q) = 1, then K = ∅.

T h e c a s e 3, 3, 1. Suppose 2 - d. If (r/p) = (r/q), then K = {r, pq};
otherwise, K = ∅.

Suppose 2 | d. If (r/p) = (r/q) = 1, then p, q, r ∈ K, hence, #(K) = 6;
if (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (r/p) = −1, (r/q) = 1, then
K = {q, pr}; if (r/p) = (r/q) = −1, then K = {r, pq}.

T h e c a s e 3, 1, 1. If (q/p) = (r/p) = (r/q) = 1, then p, q, r ∈ K, hence,
#(K) = 6; if (q/p) = (r/p) = 1, (r/q) = −1, then K = {p, qr}; if (q/p) =
(r/q) = 1, (r/p) = −1, then K = {q, pr}; if (q/p) = −1, (r/p) = (r/q) = 1,
then K = {r, pq}; otherwise, K = ∅.

The proof is complete.
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