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1. Introduction. Let F' be a number field, and let Or be the ring of
its integers. Several formulas for the 4-rank of KsOp are known (see [7], [5],
etc.). If /=1 ¢ F, then such formulas are related to S-ideal class groups of F
and F(y/—1), and the numbers of dyadic places in F and F(v/—1), where S
is the set of infinite dyadic places of F. In [11], the author proposes a method
which can be applied to determine the 4-rank of K>Op for real quadratic
fields F with 2 ¢ NF. The author also lists many real quadratic fields with
the 2-Sylow subgroups of K>Op being isomorphic to Z/2Z ® Z /27 & 7./ AZ.
In [12], the author gives a 4-rank K>Op formula for imaginary quadratic
fields F'. By the formula, it is enough to compute some Legendre symbols
when one wants to know 4-rank K>Op for a given imaginary quadratic
field F. In the present paper, we give a similar formula for real quadratic
fields F. Then we give 4-rank K>Op tables for real quadratic fields F' =
Q(v/d) whose discriminants have at most three odd prime divisors.

2. Preliminaries. Given integers a, b with b # 0, (a/b) denotes the
Jacobi symbol, in particular, if b = p, an odd prime, then (a/p) is the
Legendre symbol. Denote by N the set of all positive integers. Let F' =
Q(Vd), d € N squarefree. Put A = {c € F' | {~1,c¢} = 1}. Then by a
result of Tate [13], it is quite easy to see that for any real quadratic field F,
[A: F2] =2 and if F # Q(v/2), then A = F'2U2F 2. By [2], we know that
if c € {~1,2,-2} N NF, then there are u,w € N such that d = u* — cw?.
Also by [2], we have:

LEMMA 2.1. Let F = Q(\V/d), d € N squarefree. Then the subgroup of
K>O0F consisting of all elements of order < 2 can be generated by the fol-
lowing elements:

o {—1,m}, m|d;
o {—1,u; + Vd} with d = u? — c;w?, where ¢; € {—1,2,-2} and
u;, w; € N.

(323]
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In [11], the author shows the following theorem.

THEOREM 2.2. Let F' = Q(Vd), d € N squarefree. Then for every m|d
with m € N, there exists a € KoOp with o € {—1,m} if and only if there
exists € € {£1, £2} such that

(dm~'/p) = (¢/p)  for every odd prime p|m;

and
(m/1) = (¢/1)  for every odd prime I |dm™*.

In the next section, we shall deal with the case when 2 € NF. Then we
can obtain the 4-rank KoOp formula for a real quadratic field F.

3. The 4-rank of K;Op. Let F = Q(\/d), d € N squarefree. Suppose
that 2 € NF. Then d = u?—2w? with u, w € N. We want to know when there
exists a € KoOp such that o® = {—1,u + v/d}. By a theorem due to Bass
and Tate [8], we see that there exists 3 € KoF such that {—1,u+d} = 3
if and only if there exist =,y € F with 22 + y® = u + Vd.

LEMMA 3.1. Let F = Q(Vd),d € N squarefree. Assume that d = u® —
2w? =1 (mod 8), where u,w € N. If (u+ w/d) = —1, then in F, u+ Vd
cannot be represented by the sum of two squares.

Proof. Since d =1 (mod 8), 20r = PP, where P # P is a prime ideal
of F. We have Fp (the completion of F' at P) = Q2. We may assume that
F C Q,.

It follows from d = u? —2w? that (—d/u-+w) = 1. Hence, (u+w/d) = —1
implies that v +w =3 (mod 4). We note that if v is a unit in Qy, then the
Hilbert symbol (%)2 = (=1)(*=1/2 (see [9]). Hence, 22 4 3% = —(u + w)
is solvable in Q. Therefore, 22 + dy? = —(u+w) is solvable in Q. Suppose
70,y0 € Qy is a solution of the equation 2% + dy?> = —(u + w). Choose
g,h € Qy such that h = yo, (u+ w)g + wh = x¢ and put a = g2 + h?,
0 = (¢°> — h? + 2gh)w, A = (9> — h? — 2gh)w. A computation shows that

oau+ 0 = (au+ 0)(u+w)(u+w)™*
= (((u+w)g +wh)?® + (u® — 2w?)h?)(u + w)
= (2§ +dyg)(u+w) ™! = ~1.
Hence, there are £, € Q2 such that
2(u+ 0/a) = 2a(au+0)/a® = — (€2 +n?).
Let
r=—§+ Ay, y=af;
a= —n—XA, b= an.
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Then

2 2

If u++Vd=e?+ f2 with e, f € F C Qy, then there are s,t € Qs such that
—1 =52+ t2. But in Qo, (_1{1)2 = —1, contradiction. This concludes the
proof.

THEOREM 3.2. Let F = Q(v/d),d € N squarefree. Assume that d = u? —
2w? with u,w € N. Then there exists 3 € K20 such that 3> = {—1,u+/d}
if and only if there exists ¢ € {£1,£2} (equivalently, e € {£1}) such that
(e(u+w)/p) =1 for every odd prime p|d.

Proof. First, if d 21 (mod 8), or d =1 (mod 8) and (u+ w/d) = 1,
then analogously to the proof of Lemma 3.11 in [12], it can be shown that
there exists a prime p =1 (mod 4) with ptd, pf(u+w) and pfuw such that
the Diophantine equation X? + dY? = (u + w)pZ? has nonzero solutions
in Z.

Second, entirely similarly to the proof of Lemma 3.12 in [12], it can be
shown that there exists a € KyOp with o = {~1,u + V/d} if and only
if there exists ¢ € {£1,42} such that the Diophantine equation epN? =
52 — dT? has nonzero solutions in Z. It amounts to the same thing to say
that (¢(u + w)/p) = 1 for every odd prime p|d.

Finally, if d = 1 (mod 8) and (u + w/d) = —1, then the number of
primes p with p|d and (u+ w/p) = —1 must be odd. If there exists a prime
p = 1 (mod 8) with p|d and (u + w/p) = —1, then (¢(u + w)/p) = —1
for every e € {£1,£2}. Otherwise, we may assume that for every p|d with
(u+w/p) =—1,p=7 (mod 8). Observe that d =1 (mod 8) and 2 € NF.
Hence, we can find a prime p = 7 (mod 8), p|d and (u + w/p) = 1. For
every € € {£1,£2}, we can find a prime p|d such that (¢(u+v)/p) = —1.
Our theorem is proved.

<W>2+ <G+W>2__<u+ﬁ>.

We now put Theorems 2.2 and 3.2 together and give the following theo-
rem.

THEOREM 3.3. Let F = Q(V/d),d € N squarefree. Suppose that d = u® —
2w? with u,w € N. Then for every m |d with m € N, there exists o € K20Fp
with o = {=1,m(u+v/d)} if and only if we can find € € {£1,£2} (in fact,
e € {£1} will be enough) such that

(e(u+w)/p) = (dm~"/p)  for every odd prime p|m
and
(e(u+w)/p) = (m/p)  for every odd prime p|dm™?.

Remark. When d has two odd prime divisors, a similar result has been

obtained by B. Brauckmann (see [1]).
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We conclude this section by giving a 4-rank K>;Op formula for real
quadratic fields F.

Let F = Q(vd),d € N squarefree. Put
Ko={m|meN, m|d, m;«él,d,%d and 2{¢m},

K = {m | m € Ko, there exists ¢ € {41,42} such that (dm~!/p) =
(¢/p) for every odd prime p|m and (m/l) = (¢/l) for every odd
prime [|dm™!},

Vi ={m(u+Vd) | d=u?—-2w? with u,w € N, m € Ko U{1,d}},

Vo = {m(u+ vd) | m(u+ Vd) € Vi, there exists ¢ € {£1,+2} such
that (e(u + w)/p) = (dm~'/p) for every odd prime p|m and
(e(u+v)/p) = (m/p) for every odd prime p|dm~1},

V = {mlutw) | mlu+ Vi) € Vo).

THEOREM 3.4. Notations being as above, let r = #(K UV). Then ry =
4-rank K>Op = log, 5(r + 2).

Proof. If x € F with z < 0 or N(x) < 0, then one can easily verify that
there is no 8 € Ko F with {—1,2} = 2. Hence, if y € K2OpF is an element
of order 4, then y?> = {—1,t}, by Theorems 2.2 and 3.3, t € K or t € Vj.
Therefore, we have r = #(K U V) = 2"+1 — 2 this gives the desired 4-rank
K50p formula.

4. 4-rank K,Op tables

THEOREM 4.1. Let F = Q(v/d),d € N squarefree. Suppose that d = pq,
or 2pq or pqr or 2pqr, where p, q, v are odd primes. When 2 € NF, d =
u? — 2w?. For simplicity, we write v = u + w. Then we have the following
tables.

Table I
F p, ¢ (mod 8) The Legendre symbols 4-rank KoOp
7,7 1
Q(vpa) | 7,1 _ (v/g) =1 2
Q(vZ9) WP =1 = i
(¢/p) = -1 1
1,1 _ (v/p) = (v/q) =1 2
WP =1 M= —to g =—1] 1
_ (v/p) = (v/q) 1
(a/p) =1 otherwise 0
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Table I1
F p,q(mod8) | The Legendre symbols |4-rank KoOp

Q(vpa) | 7.5 1
Q(v2pq)| 7,3 1
5,3 1

5,1 (a/p) =1 1

otherwise 0

3,1 (a/p) =1 1

otherwise 0

Q(vpa) | 5.5 1
3,3 0

Q(v2pq) | 5,5 0
3,3 1

Remark. Most results of Tables I and II have been listed by P. E. Con-

ner and J. Hurrelbrink [4].

Table III
F P, g, (mod 8) The Legendre symbols 4-rank KoOp
Q(vpar) | 7,7.7 (r/p) = (r/q) | (v/p) = (v/q) 2
Q(W2pgr)| (¢g/p)=1 otherwise 1
77,1 (r/p)=(r/g) =1 (v/r) =1 2
(a/p) =1 (r/p)=(r/q) =-1| (v/p)=(v/q) 2
otherwise 1
7,1,1 (a/p) = (r/p) (v/q) = (v/r) =1 3
=(r/qg) =1
otherwise 2
(a/p)=(r/p)=1 (v/q) = (v/r) 2
(r/qg) =-1
(r/p)=(r/g)=1 (v/r) =1 2
(¢/p) = -1
otherwise
L1,1 (a/p) = (r/p) (v/p) = (v/q)
=(r/g)=1 =(/r)=1
otherwise 2
(r/p)=(r/q) =1 (v/p) = (v/q), 2
(a/p) = -1 (v/r)=1
otherwise 1
(a/p) = (r/p)=—1| (v/(pgr)) =1 1
otherwise 0

Note. In Table IV, C1 means that either (¢/p) = (r/p) =1, (r/q) = —1
or (¢/p) = (r/q) = L, (r/p) = =L or (r/p) = (r/q) = 1, (¢/p) = —1. C2
means that either (q¢/p) = (r/p) = —1, (r/q) = 1 or (q¢/p) = (r/q) = —1,

(r/p)=1or (r/p)=(r/q) = -1, (¢/p) = 1.
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C2

Table IV

F p,q,7 (mod8) | The Legendre symbols 4-rank K2Op
Q(vpgr) | 7,7,5 (r/p)=(r/q) = -1 2
Q(\2pgr) otherwise 1
otherwise 1
7,5,3 1
7,5,1 (r/p)=(r/q) =1 2
otherwise 1
7,3,1 (r/p)=(r/q) =1 2
otherwise 1
5,3,1 (r/p)=(r/q) =1 2
otherwise 1
5,1,1 (a/p)=(r/p)=(r/q) =1 2
C1 1
otherwise 0
3,3,3 (r/p) =1 1
(a/p) =1 (r/p)=(r/q) = -1 1
otherwise 0
3,1,1 (¢/p)=(r/p)=(r/q) =1 2
C1 1
otherwise 0
Q(y/par) | 7,5,5 (g¢/p)=(r/p)=1 2
otherwise 1
7,3,3 (¢/p) = (r/p) =1 2
otherwise 1
5,5,5 (¢/p)=(r/p)=(r/q) =1 2
C1 1
otherwise 0
5,5,3 (r/p)=(r/q) =1 2
otherwise 1
5,5,1 (r/p)=(r/q) =1 2
otherwise 1
5,3,3 (g/p) = (r/p) = -1 2
otherwise 1
3,3,1 (r/p) = (r/q) 1
otherwise 0
Q(v2pqr) | 7,5,5 (¢/p) =(r/p) = -1 2
otherwise 1
7,3,3 (a/p) =(r/p) = -1 2
otherwise 1
5,5,5 (¢/p)=(r/p)=(r/q) = -1 2
1
0

otherwise
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Table IV (cont.)

F p,q,7 (mod8) | The Legendre symbols 4-rank K2Op

Q(2pgr)| 5,5,3 (r/p)=(r/q) = -1 2
otherwise 1

5,5,1 (r/p) = (r/q) 1

otherwise 0

5,3,3 (g¢/p)=(r/p)=1 2

otherwise 1

3,3,1 (r/p)=(r/q) =1 2

otherwise 1

When p = ¢ (mod 8), or ¢ =7 (mod 8) or p=¢ =7 (mod 8), in view
of symmetry, we omit some possibilities.

Proof of Theorem 4.1. By Theorem 3.4, it is enough to give K
and V for each case.

In what follows, the symbol € (¢') always stands for an element of the
set {£1,+2}.

The verification of Tables I and II is direct. In fact, we have either K = (),
or #(K) = 2 and #(K) = 2 if and only if (¢/p) = (dp~!/p) and (¢/q) =
(dg='/q). When 2 € NF, either V =0, or #(V) = 2, or #(V) = 4. We see
that #(V) = 2 if and only if either (cv/p) = (ev/q) =1 or (¢'v/p) = (q/p)
together with (¢'v/q) = (p/q), but not both, and #(V) = 4 if and only if
(ev/p) = (ev/q) = 1, (e'v/p) = (q/p) together with (e'v/q) = (p/q).

Next, we shall deal with the case when d has three odd prime divisors.

The case 7,7,7. Clearly, we can assume that (¢/p) = 1. Suppose
(p/r) = (¢/r) = 1, then K = {q,pr}, if (v/p) = (v/q) = (v/r), then
V ={v,dv, qu,prv}, if (v/p) = (v/q) = —(v/r), then V- = {pv, qu, qrv, pru};
otherwise, V = ().

Suppose (p/r) = —1, (¢/r) = 1. By a permutation (p <> r), we see that
this situation coincides with that of (p/r) = (¢/r) = 1.

Suppose (p/r) = (¢/r) = —1. By a permutation (p — r,q — p,7 — ¢q),
we see that this situation also coincides with that of (p/r) = (¢/r) = 1.

Suppose (p/r) =1, (¢/r) = —1. Then K = 0. If (v/p) = (v/q) = (v/7),
then V' = {v,dv}; if (v/q) = (v/r) = —(v/p), then V = {qu, pro}; if (v/p) =
(v/q) = —(v/r), then V' = {pv,qro}; if (v/p) = (v/r) = —(v/q), then
V = {rv,pqu}.

The case 7,7,1. Assume (¢/p) = 1. Suppose (r/p) = (r/q) = 1.
Then K = {r,pq} and for (v/r) = 1, we have: if (v/p) = (v/q), then
V = {v,dv,rv,pqu}; if (v/p) = —(v/q), then V = {pv, qu, prv,qrv}. For
(v/r) = =1, we have V = 0.
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Suppose (r/p) = (r/q) = —1. Then K = {r,pq} and for (v/p) = (v/q),
we have: if (v/r) = 1, then V = {v,dv,rv,pqu}; if (v/r) = —1, then V =
{pv, qv, prv, qro}.

Suppose (r/p) = 1, (r/q) = —1. Then K = (. For (v/r) = 1, we have:
if (v/p) = (v/q), then V' = {v, dv}; if (v/p) = —(v/q), then V' = {pv, grv}.
For (v/r) = —1, we have: if (v/p) = (v/q), then V = {qu,prv}; if (v/p) =
—(v/q), then V = {rv, pqu}.

Similarly, suppose (r/p) = —1, (r/q) = 1. Then K = () and #(V) =

The case 7,1,1. Suppose (q¢/p)=(r/p)=(r/q)=1. Then p,q,r€ K,
hence #(K) = 6. If (v/q) = (v/r) =1, then #(V) = 8; otherwise, V = 0.

Suppose (¢/p) = (r/p) =1, (¢/r) = —1. Then K = {p,qr}. If (v/q) =
(v/r) = 1, then V = {v,dv,pv,qrv}; if (v/q) = (v/r) = —1, then V =
{qu,rv, pqu, pru}; otherwise, V = 0.

Suppose (¢/p) = =1, (r/p) = (r/q) = 1. Then K = {r,pq}. If (v/q) =
(v/r) =1, then V = {v,dv,rv,pqu}; if (v/q) = —1, (v/r) =1, then V =
{pv, qrv, prv, qro}; otherwise, V = 0.

Suppose (¢/p) = (r/p) = —1, (r/q) = 1. Then K = 0. If (v/q) =
(v/r) =1, then V = {v,dv}; if (v/q) = (v/r) = —1, then V' = {pv, grv}; if
(U/Q) = _]-a (U/T) = 1’ then V' = {qv,prv}; if (U/q) = 17 (U/T) = _1a then
V = {rv,pqu}.

Similarly, suppose (q/p) = 1, (r/p) = (r/q) = =1 or (¢/p) = (r/q) = 1,
(r/p) = —1or (¢/p) = (r/p) = (r/q) = —1. Then K =0 and #(V) =

The case 1,1,1. We only need to consider the following four possi-
bilities:

L (¢/p) = (r/p) (r/q) = 1;
2. (qg/p)=—1,(r/p) = (r/q) = 1;
3. (q/p) = (T/p) —1,(r/q) = 1;

4. (¢/p) = (r/p) = (r/q) = —1.

In case 1, we have p,q,7 € K, hence #(K) = 6. If (v/p) = (v/q) =
(v/r) = 1, then V = Vj, hence #(V) = 8, so r4 = 3. Otherwise, V = 0.
Hence, r4 = 2. In case 2, we have K = {r,pq}. If (v/p) = (v/q) = (v/r) =1,
then V' = {v,dv,rv,pqu}; if (v/p) = (v/q) = —1, (v/r) = 1, then V =
{pv, qu, prv, qrv}; otherwise, V. = (. In cases 3 and 4, we have K = (.
If (v/p) = (v/q) = (v/r) =1, then V' = {v,dv}; if (v/p) =1, (v/q) =
(v/r) = =1, then V' = {pv,qro}; if (v/q) =1, (v/p) = (v/r) = —1, then
V ={qu,prv}; if (v/r) =1, (v/p) = (v/q) = —1, then V = {rv, pqu}.

The case 7,7,5 and the case 7,7,3. For (r/p) = —1, we have:
if (r/q) = —1, then p,q,r € K, hence, #(K) = 6; if (r/q) = 1, then
K = {p,qr}. For (r/p) = 1, we have: if (r/q) = —1, then K = {q,pr}; if
(r/q) =1, then K = {r,pq}.
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The case 7,5,5. Suppose 21d. If (¢/p) = (r/p) = 1, then p,q,7 € K,
hence, #(K) = 6; if (¢/p) = (r/p) = —1, then K = {p,qr}; if (¢/p) = 1,
(r/p) = =1, then K = {q,pr}; if (¢/p) = =1, (r/p) =1, then K = {r,pq}.

Suppose 2 |d. If (¢/p) = (r/p) = —1, then p,q,r € K, hence, #(K) = 6;
if (¢/p) = (r/p) = 1, then K = {p,qr}; if (¢/p) = -1, (r/p) = 1, then
K ={q,pr};if (¢/p) =1, (r/p) = =1, then K = {r, pq}.

The case 7,5,3. If 21d, then K = {q,pr}. If 2|d, then K = {r,pq}.

The case 7,5,1. If (r/p) = (r/q) = 1, then p,q,r € K, hence, #(K)
= 6; if (r/p) =1, (r/q) = —1, then K = {p,qr}; if (r/p) = -1, (r/q) = 1,
then K = {q,pr}; if (r/p) = (r/q) = —1, then K = {r,pq}.

The case 7,3,3. Suppose 21d. If (¢/p) = (r/p) =1, then p,q,7 € K,
hence, #(K) = 6; if (¢/p) = (r/p) = —1, then K = {p,qr}; if (¢/p) = 1,
(r/p) = =1, then K = {q,pr}; if (¢/p) = -1, (r/p) = 1, then K = {r,pq}.

Suppose 2|d. If (¢/p) = (r/p) = —1, then p,q,r € K, hence, #(K) = 6;
if (¢/p) = (r/p) = 1, then K = {p,qr}; if (¢/p) = —1, (r/p) = 1, then
K ={q,pr}; if (¢/p) =1, (r/p) = —1, then K = {r,pq}.

The case 7,3,1. If (r/p) = (r/q) = 1, then p,q,r € K, hence, #(K)
= 6;if (r/p) =1, (r/q) = —1, then K = {p,qr}; if (r/p) = -1, (r/q) = 1,
then K = {q,pr}; if (r/p) = (r/q) = —1, then K = {r,pq}.

The case 5,5,5. Suppose 2td. If (¢/p) = (r/p) = (r/q) = 1, then
p,q,7 € K, hence, #(K) = 6; if (¢/p) = (r/p) = 1, (r/q) = —1, then
K ={p,qr}; if (r/p) = (r/q) = —1, then K = 0.

Suppose 2|d. If (¢/p) = (r/p) = (r/q) = —1, then p,q,r € K, hence,
#(K) = 6; if (¢/p) = (r/p) = =1, (r/q) = 1, then K = {p,qr}; if (r/p) =
(r/q) =1, then K = 0.

The case 5,5,3. Suppose 2td. If (r/p) =1, (r/q) = —1, then K =
{p.qr}; if (r/p) = =1, (r/q) = 1, then K = {q,pr}; if (r/p) = (r/q) = 1,
then K = {r,pq}.

Suppose 2 |d. If (r/p) = =1, (r/q) = 1, then K = {p,qr}; if (r/p) =1,
(r/q) = =1, then K = {q,pr}; if (r/p) = (r/q) = 1, then K = {r, pq}.

The case 5,5,1. Suppose 21d. If (r/p) = (r/q) =1, then p,q,r € K,
hence, #(K) = 6; if (r/p) =1, (r/q) = —1, then K = {p, qr}; if (r/p) = —1,
(r/q) =1, then K = {q,pr}; if (r/p) = (r/q) = —1, then K = {r,pq}.

p Slappose 21d. If (r/p) = (r/q), then K = {r,pq}; if (r/p) = —(r/q), then

The case 5,3,3. Suppose 21d. If (¢/p) = (r/p) = —1, thenp,q,r € K,
hence, #(K) = 6; if (¢/p) = (r/p) = 1, then K = {p,qr}; if (¢/p) = -1,
(r/p) =1, then K ={q,pr}; if (¢/p) =1, (r/p) = —1, then K = {r,pq}.
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Suppose 2 |d. If (¢/p) = (r/p) = 1, then p,q,r € K, hence, #(K) = 6;
if (¢/p) = (r/p) = —1, then K = {p,qr}; if (¢/p) = 1, (r/p) = —1, then
K ={q,pr}; if (¢/p) = -1, (r/p) = 1, then K = {r,pq}.

The case 5,3,1. If (r/p) = (r/q) = 1, then p,q,r € K, hence, #(K)
= 6; if (r/p) = 1, (r/q) = —1, then K = {p,qr}; if (r/p) = -1, (r/q) = 1,
then K = {q,pr}; if (r/p) = (r/q) = —1, then K = {r,pq}.

The case 5,1,1. If (¢/p) = (r/p) = (r/q) = 1, then p, ¢, r € K, hence,
#(K) = 6; if (¢/p) = (r/p) =1, (r/q) = —1, then K = {p,qr}; if (¢/p) =
(r/q) =1, (r/p) = —1, then K = {q,pr}; if (¢/p) = =1, (r/p) = (r/q) = 1,
then K = {r, pq}; otherwise, K = 0.

The case 3,3,3. Let (¢/p) = 1. Suppose 2td. If (r/q) = —1, then
K = Aqpr}; if (r/p) = (r/q) = 1, then K = {r,pq}; if (r/p) = —1,
(r/q) =1, then K = ().

Suppose 2|d. If (r/p) = 1, then K = {p,qr}; if (r/p) = (r/q) = —1,
then K = {r,pq}; if (r/p) = —1, (r/q) = 1, then K = ().

The case 3,3,1. Suppose 2td. If (r/p) = (r/q), then K = {r,pq};
otherwise, K = 0.

Suppose 2 |d. If (r/p) = (r/q) = 1, then p,q,r € K, hence, #(K) = 6;
if (r/p) =1, (r/q) = —1, then K = {p, qr}; if (r/p) = —1, (r/q) = 1, then
K ={q,pr}; if (r/p) = (r/q) = —1, then K = {r, pq}.

The case 3,1,1. If (¢/p) = (r/p) = (r/q) = 1, then p, ¢, r € K, hence,
#(K) = 6; if (¢/p) = (r/p) =1, (r/q) = —1, then K = {p,qr}; if (¢/p) =
(r/q) =1, (r/p) = =1, then K = {q,pr}; if (¢/p) = -1, (r/p) = (r/q) = 1,
then K = {r, pq}; otherwise, K = ().

The proof is complete.
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