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Class numbers of certain real abelian fields
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0. Introduction. We fix an odd prime ¢. Let p be an odd prime such
that p = 1 mod q. Let

1 1
H=1—-t)P24+-1—-t)P 3 +... + —.
o) = (L= 02+ J =P+
We will consider g(t) as an element in IF,, [t], where IF,, is the finite field with p
elements. If necessary, we will also view g(t) as a polynomial in Z,[t], where
Z,, is the ring of p-adic integers. It is not hard to see that
1—t)p —(1—¢P
tg(l—1t) = ( ) ( ) mod p.
p

This polynomial

P (1 —¢p
f(t):(l )P — (1 —tP)

p
in F,[t] was first introduced by D. Mirimanoff around 1905 and has been
exhaustively studied since then. For instance, he used the polynomial f(t) to
prove the following striking criterion of A. Wieferich: if the Fermat quotient
(2r=1 —1)/p is not congruent to 0 mod p, then the first case of the Fermat’s
Last Theorem is true (see [8]).
In this paper, we will study class numbers of certain real abelian fields

by using the polynomial g(t). Our work is based on the observation that
g(t) comes from a Coates—Wiles series. To be precise, let

h(z) = [T (1 +2)* —1),
wER

where R = {w € Z, | wP~! = 1} is the group of the (p — 1)th roots of 1
in Z,. Viewing h;(x) as an element of Z,[t][[z]], i.e., as a power series in x
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with coefficients in Z,[t], we have the following expansion (see [6]):
he(z) = (1 — )P~ + g (t)zP~! + (higher terms)
with
g1(t) = g(t) mod p.
To see why h(x) is a Coates—Wiles series, let t = s be a root of 1 in Z,.
Then hy(x) is indeed a Coates—Wiles series (see [1], [10]).

In Section 1 of this paper we will use the above expansion of h:(x) to fac-
torize certain principal ideals into a product of prime ideals. In Section 2, we
discuss class numbers of certain real abelian fields. Before we state the main
theorems, we first explain several notations that will be used throughout
this paper.

For each integer n > 1, we choose a primitive nth root {, of 1 so that

i — ¢, whenever n|m. Let ko = Q((p), kn = Q(Cpren), Ko = Q(Cpg)
and K, = Q((yn+1,). We denote the unique subﬁeld of k,, of degree p™ over
Q by Qn. Let Fo = Q(¢g), Fn = Qu(ly), F7 = Q¢ + ¢, ') and Ff =
Qn(¢+¢; ). Thus for E = k, K F and FT, E is the nth layer of the basic
Z,-extension of Ey. We denote the Galois groups Gal(F,/Q) and Gal(F; /Q)
by A and AT, respectively, and use the same letters A, AT for those Galois
groups isomorphic to Gal(Fy/Q), Gal(F, /Q). Elements of AT and A will
be arranged as AT = {71, 72,...,7; =id} and A = {7y, +7,...,+7} with
l= %gp(q). For each 7 € A, let p(7) be the integer modulo ¢ corresponding to
7 under the natural isomorphism A ~ (Z/qZ)*. Note that p(—7) = —p(7).
Finally, we let o be the topological generator of I" = lim Gal(K,,/Ko) which

maps (pn to CHP for each n > 1 and ¢, to (. Restrlctlons of o to various
subfields k,,, F,,, F;t and K, of K, Unzo K, are also denoted by o.

Now we state the main theorems of this paper:

THEOREM 2. If p divides Hx€3+ - B w1, then p divides the class

number of F,f for all n > 1, where w is the Teichmiiller character on

Gal(ko/Q) = (Z/pZ)"

THEOREM 3. If p does not divide [] —1, then the prime

XEAT x#1 Bixw
ideals of F,\ above p are of order prime to p in the ideal class group of F,f.

It is well known, by the class number formula, that the relative class
number hy —of the field Ky is given by the formula hp; = Quw Hg (— %BLQ),
where the product is taken over all odd characters of Gal(Ky/Q). Hence

Hx€3+ - By yo-1 contributes to hy. . Thus from Theorems 2 and 3 we

obtain some information on the p-divisibility of h+ = h}n, the plus part of
the class number of F,, from that of the minus part Az
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In Section 3, we prove a lemma to finish the proof of Theorem 2. This
lemma treats certain relations among cyclotomic units. For a deeper analysis
of the relations of cyclotomic units, we refer to [2]. We will apply the results
of [2] to our special situation. A similar, but slightly different computation
was performed in [7].

1. Factorization of a certain principal ideal. In this section, we start
out with an explicit element &, in F,7 whose norm to FOJr equals 1. So, by
the Hilbert Theorem 90, &, is of the form &, = afb_l for some «v,, € F;. The
aim of this section is to factorize the principal ideal («,) into a product of
prime ideals of F. This factorization is crucial in the proofs of Theorems 2
and 3 of the following section.

Let
&= [ (¢ — C) (G = 7).
weR
Then &, is an element of Ff since &, = K, /it (Gpr+1 = (g). Since each

;)”nﬂ — C;tl is a cyclotomic unit in K,,, so is &,. Thus &, can be thought

of as a cyclotomic unit in F, in the sense of W. Sinnott (see [9]). One can
easily check that NF+/F0+ (&,) = 1. Indeed,

]\711«“;r/1~“0+ (€n) = NKn/FJ_ (Cp"+1 - Cq) = ]\/v}(o/FO+ (NKH/Ko(Cp"‘*'I - Cq))
= KU/FJ(CP - Cq) = NFO/FO*( H C;i - Cq)

1<i<p—1
1-¢p
:NFO/FJ<1—<q> o

The last equality holds since p = 1 mod ¢q. Hence &, = af%~ ! for some
a, € F;f by the Hilbert Theorem 90.

LEMMA 1. &, = a9~ ! for some p-unit o, € F,.

Proof. Let Koo = ,;50Q((yn+14) be the basic Z,-extension of K.
Let E/_(Cs) be the group of p-units (cyclotomic units) of K. In [4], Iwa-
sawa proves that the cohomology group H!(I', E/ ) is a finite group, where
I' = Gal(K/Ko). But HY(I',Cx) =~ (Q,/Zy)", where | = 3¢(q) (see [5]).
Thus the induced map H(I',C,) — H (I, E._) from the natural inclusion
Co — E’_ must be a zero map. Since the inflation maps on H' are injec-
tive, H(Gp,Cy) — H' (G, E!) is a zero map, where G,, = Gal(K,,/K)
and C,(E)) is the group of cyclotomic units (p-units) in K,. Then by
the cyclicity of the group G,, H '(G,,C,) — H Y(G,, E,) is also a
zero map, which means that a cyclotomic unit in K,, whose norm to Kj
equals 1 is of the form 3°~! for some p-unit 3 € K,. In particular, since
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Nk, /Ko (HweR(C ’v1 — () = 1, we have

H( 1 — () = B°~1  for some p-unit 3 € K,,.

weER

Thus

(»"=1)/(p—1)
TG =" = Ny (TT (G — )™

weR weR

= Nk, /F, (@(p"fl)/(pfl))ofl'

Note that HweR( i1 — Cg)P
since p"H~ (Gn,CFn) = 0. Here CF, is the group of cyclotomic units of
F,,. Therefore

H( i1 — Cq) = (uNk, /r, (B~ (" =1)/(p— 1)))
weR

Put o, = N/t (ulNk, /F, (B~ " =1/(r=1)) Then &, = a7~ ! and o, is a
p-unit in FS. This proves the lemma.

n

= u?~! for some cyclotomic unit v € F),

Fix a prime ideal gq of FO+ above p and let p,, be the prime ideal of F
; € At} and {p7 | 7; € AT} are the sets of all prime
ideals of F0+ and F,S above p. For each i, there are two prime ideals in F,
above p7¢. By abuse of notation, we write them as g7 and ;™. This will
not cause any confusion. Since primes of F,, above p totally ramify in K,,
above each prime ideal p7™ there is a unique prime ideal =" in K,,. For
each 7 € A= {%7,...,+7}, let [}, o be the completion of F, at @], and
let ¢, : F,, — F, or be the natural embedding. Put s, = ¢,({,), which is a

gth root of 1 in Z,. For brevity, we write s for sig = ¢ia((;). Then s =
©0r (C)PT) = . ( p(T)) = ©-(¢7). Since the completion of F]] at @7, is the
same as the completion of F,, at @,, we have P = @T(CT) = pid((y) = s

Therefore s, = sP(™ ) and sp( ) = (e = () o any 7,7 € A.

THEOREM 1. Let &, be as before and write &, = a5~ 1 for some p-unit
an € FF as in Lemma 1. If (an) = pn " <'<'"™ is the factorization in FF,
then a; = Qg(sp(Tz‘_l)) mod p, where g(t) is the polynomial defined in the

troduction.

Remark. If &, = a9~ ! = (a/,)°"! for another p-unit o/,, then o, =
al,a for some p-unit ap in Fy . Since the primes of F, above p totally
ramify in F, their ramification indices are p™. Hence a;’s are uniquely
determined mod p™, so mod p.

One can show that g(s) = g(s™!) for any (p— 1)th root s in Z, (see [6]).
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Thus
g(s" ) = g(s 7P = (7)),
and g(sP(7i ) is well defined for each 7; € A*.

Proof of Theorem 1. To compute a;, we read the prime factoriza-
tion () = %7 in the field K, omi (orin Kn,@;n)- Since 7, = (pnt1 — 1
generates the prime ideal of Kn,@fi’ we have (a,) = p>%7 = (7,)%. Hence
o, = wiin for some unit 7 in K, g- . Note that n7 ! = 1 mod (75). We claim
that 77~! = 1 4+ 727! mod (7?). First, notice that for each 1 <k <p —1,

C;:rflp —1=(pnr1¢l —1=(pnrr —1mod (¢ — 1). Thus
II &F-v= I G-1
1<k<p-1 1<k<p—1
= (Cpr+1 — 1)P" P mod ({pn — 1).
Therefore
14p

a—1:Cp”+1_1 Con + Gom — 1
n Cpn+1 - 1 P

=G+ [ (G-

1<k<p—1

=1 + (Cpn+l — 1)p_1 mod (Cpn — 1)

s

as claimed. Hence
(7%n)° = (1 4+ 727H)% =1 + a;72~ " mod (7).
On the other hand, by putting = (yn+1—1land t = s, in [[,c (1 +2)*
—t) = (1 —t)P~! 4+ g1 (t)2P~! + (higher terms), we obtain
TT (s = 52) = 1+ g(s,)n " mod (x2).
weR
Hence if we view &, = HweR(C;‘;H — Cq)(gj;“ — (;') as an element of

Ky gr, we have

§n = H (CI%H - ST)(Cg:H'l - 37_1)

weR
= (1+g(s)mh (1 +g(s7 ™)
El+( (57) + g(s71))m ™1 mod (7).
Thus 1+a;m2 t=al t=¢ =1+ (g (sTl)—i-g( 1)) 7P=1 mod (7). There-

2g(sﬂ.) = 2¢(s?("i 1)) mod (7)), hence mod p.

fore a; = g(s-,) + 9(s;')

2. Main theorems. Recall that [ = [F; : Q] and that we arranged
elements of AT as AT = {7, 7,...,7_1,77 = id}. Let A" = (a;;) be the



340 J. M. Kim

[ x | matrix with entries in F, such that a;; = g(sP™ 7)) mod p. Note
that each row and column of A’ has a fixed sum g = >, ., <, g(s?("). Let
A = (b;j) be the I x [ matrix with entries in F,, such that

b — Q5 lf]ﬁl—l,
U1 =L

Below, we write (as,...,a,)! for the column vector with entries ay, ..., a,.

LEMMA 2. Suppose det A = 0 mod p. Then there exists b = (by,...,b)"
i F é such that

(i) A/b=0=(0,...,0)" mod p,
(ii) b is not a constant multiple of 1 = (1,...,1)".

Proof. We examine the following two cases separately.

Case 1: g # 0 mod p. By adding each column of A’ to the last one, we
have
g
det A" =det [ a4 | =gdet A= 0mod p.
J<i-1 g

Hence A’b = 0 has a nontrivial solution. This solution cannot be a multiple
of 1, for otherwise, the row sum ¢ would be 0.

Case 2: g =0 mod p. Since each row sum is 0, 1 is obviously a solution
of A’b = 0. To prove the existence of a solution which is not a multiple of
1, it is enough to check that the Fp-rank of A’ is less than or equal to [ — 2.
Let B be the (I — 1) x (I — 1) matrix consisting of the first (I —1) x (I — 1)
entries in A’. By performing elementary row and column operations, we see
that

0
B :
rank A’ = rank o | =rankB.
0...0 0
By adding each row of A to the last one, we have
1
B :
det A = det 1 =ldet B.

0...0 l

Since [ # 0 mod p, det B = 0 mod p. Therefore rank A’ = rank B < [ — 2.

Let w be the Teichmiiller character on Gal(ko/Q) ~ (Z/pZ)* and x be a
character on A*. For the proofs of the main theorems, we need the following
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theorem which interprets det A in terms of the generalized Bernoulli numbers
By 1.

THEOREM. det A = Omod p if and only if HX€2+7X¢1 Bl yw-1 =
0 mod p.

Proof. See Theorem 3 of [7].
Now we restate and prove the main theorems.

THEOREM 2. If p| HXEEJHX?H By -1, then p|hp+ for alln > 1.

Proof. Since hp+ |th¢r for all n < m by the class field theory, it is

enough to show that p|hp+. By the above theorem, we can assume that
1

det A = 0 mod p. Then by Lemma 2, there exists a vector b = (by,...,b)"
in F}, satisfying those two conditions (i), (i) in the lemma. Suppose pth -
Then, by the class field theory, we have

(ili) pth Fy
Moreover, the Sylow p-subgroup of E/C must be trivial (see [9]), where
E(C) is the group of units (cyclotomic units) in F;". Thus, the cohomology
groups H*(G1, E/C) are trivial for all i € Z. Hence by considering the long

exact sequence of cohomology groups coming from the short exact sequence
0—-C—E— E/C— 0, we have

(iv) The homomorphism H~'(G1,C) — H~!(G1,E) induced by the

inclusion C' — E' is an isomorphism.

Let § = £Zim1bimi = o(Ebim)(0=1) with b = (b1,...,b)t as before and £ =
€1, a = a; as in Theorem 1. Then the principal ideal (a*% ) factorizes as

=7H
o oyt g™ Y (S by
(azblq—l) — pg J71g( ) J)( i=1 )

In this expression,

(ig(sp(%l))%‘) (ibiﬂ) = g(Sp(Tjil))biTjTi
Jj=1 i=1

1<i,j <l
! 1
T,
= ( E g(Sp(] ))bi)Tk
k=1 i
TjTi=Tk

l l
S (e
k=1 =1

Since A’'b = 0, Zlizl g(sp(Tk_l”))bi =0 mod p for each k =1,...,l. Hence

(aEbﬂi) — plxs;:ldi'ri
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for some d; satisfying d; = 0 mod p. Since p] = o, we get
(aEbi‘ri) — IO
for some ideal Iy of F; . But the subgroup of the ideal class group of Fy"

consisting of ideal classes that become principal in F," is a p-group. Thus
nonprincipal ideals of FJ cannot capitulate in Fl+ by (iii). Therefore

(a™7) = Iy = (o)

for some ag € F;", and thus a®%7 = agn’ for some unit 7" in F;". Then we
have

§ = gain — a(Ebin)(a—l) — (n/)a—l.
Since the induced homomorphism H~(Gy,C) — H~ (G4, E) is an isomor-
phism by (iv), (7')°~! = n°~! for some cyclotomic unit in F;". However,
this cannot happen by (ii) and the following lemma which will be proved in
the next section.

LEMMA 3. Let§ = HwER(C;% - Cq)((;% — C(;l) as b@fore, If gzézlciTi —
n°~1 for some cyclotomic unit n € F1+, then ¢c; = ... = ¢; mod p.

THEOREM 3. If pt Hx€3+,x;é1
above p are of order prime to p in the ideal class group of F,t for all n > 0.

Bi yw-1, then the prime ideals of F;F

Proof. It is enough to show that the ideal class [p,] is of order prime
to p. As in Lemma 2, we examine two cases separately.

Case 1: g # 0 mod p. Since det A’ = gdet A, det A’ £ 0 mod p. Thus
there exists x = (x1,...,2;)" such that A’x = (0,...,0,1)". Let &, and a,

Lo L s e
be as in Theorem 1. Then (agizlm’ Y= @?;:Idb " for some d; satisfying
di=1modpand dy =...=d;—1 =0 mod p. Since pP = @,,_1, we get

(*) (O‘Emiﬂ) = pnln-1

for some ideal I,,_71 of F,;tl whose prime factors lie above p. Let mp* be
the order of the ideal class [p,] with (m,p) = 1. If k # 0, then Ig?f_l is a
principal ideal in F. Therefore by raising both sides of (x) to the power of
dp*~1 we get a contradiction. Hence k = 0.

Case 2: g = Omod p. Since det A # 0 mod p, Fp-rank A" = [ — 1.
Thus columns of A’ except the last one are linearly independent over I,
and are contained in the subspace of Fé consisting of {y = (y1,...,y)" €
Fé) | y1 + ...+ y = 0}, which is of dimension [ — 1. Therefore if we view
A’ as a linear map from Fé to IF;, the image of A’ is precisely the subspace
described above. For each ¢, 1 < ¢ < [ — 1, choose b; in ]Fé such that
A'b; = (0,...,1,...,0,—1)!, with 1 at the ith place, —1 at the last place
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and 0 elsewhere. Then as in the first case, we get
(+) o 1 = (6n)

for some 3, € F, . Note that p%izln is the prime ideal of Qn, hence is
principal. Thus by multiplying (**) for 1 < i <[ we see that ! I’ | is a
principal ideal for some ideal I;,_; whose prime factors lies above p. Since
p1l, we can check that [p,] is of order prime to p as in Case 1.

Let A, be the Sylow p-subgroup of the ideal class group of F, and let
Ay = lim A,,, where the limit is taken under the norm maps. It is well known
that A ~ Z;}@M for some finite group M which measures the capitulation.
It is conjectured that the Iwasawa M-invariant for FY/F," equals 0 and
R. Greenberg gave several equivalent statements to this (see [3]). By using
one of the equivalent statements (Theorem 2 of [3]), we have the following
corollary.

COROLLARY. Suppose A = 0. Then pt ||
A = {0}.

Proof. Theorem 2 takes care of the if part. For the converse, we need
the assumption A = 0. Since A = 0, #A,, is bounded by #M as n — oo.
Equivalently, every ideal class in A" contains an ideal whose prime factors
lie above p by Theorem 2 of [3]. Thus if pt ergﬂxvﬂ By yu-1, then AG" =
{0} by Theorem 3. Since A, and G, are p-groups, 4, = {0} for all n.
Therefore Ao, = {0}.

CEAT ] B yw-1 if and only if

3. Proof of Lemma 3. In this section we prove Lemma 3 stated in
the previous section. The proof is based on the work of V. Ennola ([2]) and
is similar to that of Theorem 1 in [7]. In particular we need the following
theorem:

THEOREM (V. Ennola). Let § =[], ..., (1 = (1), x4 € Z, be a cyclo-
tomic unit in Q(¢,). For an even character x # 1 of conductor f belonging

to Q(¢n), define Y (x,d) by
Yoo = S ——T(xd,8) [[(1 - %),

o(d)
d d
fldin 7
where
d—1
Xa d 5 X Tna/d-

a=1

(a,d)

If § is a root of 1, then Y (x,d) = 0 for all even characters x # 1 belonging
to Q(¢n)-

1
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We also need the following properties of Y which are easy to check. Let
X # 1 be an even character belonging to Q((,,). Then

(i) Y(x,0102) = Y (x,01) + Y(x, d2).

(ii) If (root of 1)xd; = (root of 1)xds, then Y (x,d1) = Y (¥, d2).
(iii) For any o € Gal(Q(¢»)/Q), Y (x,d7) = x(0)Y (x, ).

(iv) Y(x,077") = (x(0) = )Y (x, 9).

Now we sketch the proof of Lemma 3 briefly.

Sketch of proof. Suppose fz'li:lcm = n°~! with &1 as in the
lemma. By (ii),

Y(0,6547) =Y (")
for any even character p # 1 in Gal(K;/Q)". By (i), (iv), we obtain

(x) cio(i)Y (e, €) = (e(o) = 1)Y (e,n)-
i=1
Fix a nontrivial character ¢ of Gal(Q/Q). For a nontrivial character x €

A\+, put 0 = x¥ in (%). After a similar computation to that of Theorem 1
of [7], we have

!
(r—1) ZCiX(Ti) = (¢(o) — Da(x)

for some algebraic integer a(x). By letting x run through all the nontriv-

ial even characters of AA+, we have the following system of linear equa-
tions:

(0= )T(er,... o)’ = (6(0) = V(e a0, ),
where T' is the (I — 1) x [ matrix with rows of the form (x(71),...,x(m)).

Let L = Q(¢p, (x)’s, x(7:)’s), Or be the ring of integers of L, and P be a
prime ideal of O, above p. Then we have

T(c1,...,c)" =(0,...,0)" mod B,

since (o) —1 = (, — 1 = 0 mod ‘P.

Let T be the matrix obtained by reducing the entries of 7' mod 3. By
using Lemma 1.2 of [7], one can check that the Oy, /%B-rank of T is [—1. Hence
x=@,....,0)" € O,/B | Tx = (0,...,0)!} is one-dimensional. But
(1,...,1)" obviously satisfies T'(1,...,1)" = (0,...,0)". Thus (cy,...,¢)" =
a(l,...,1)" mod P for some o € Of. Therefore ¢; = ... = ¢; mod B, hence
mod p.
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