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1. Notation. Let K ⊂ L be number fields; we will use the following
notation:

• OK is the ring of integers of K;
• EK is its group of units;
• WK is the group of roots of unity contained in K;
• wK is the order of WK ;
• Cl(K) is the ideal class group of K;
• [a] is the ideal class generated by the ideal a;
• K1 denotes the Hilbert class field of K, that is the maximal abelian

extension of K which is unramified at all places;
• jK→L denotes the transfer of ideal classes for number fields K ⊂ L,

i.e. the homomorphism Cl(K) → Cl(L) induced by mapping an ideal
a to aOL;
• κL/K denotes the capitulation kernel ker jK→L;

Now let K be a CM-field, i.e. a totally complex quadratic extension
of a totally real number field; the following definitions are standard:

• σ is complex conjugation;
• K+ denotes the maximal real subfield of K; this is the subfield fixed

by σ;
• Cl−(K) is the kernel of the map NK/K+ : Cl(K) → Cl(K+) and is

called the minus class group;
• h−(K) is the order of Cl−(K), the minus class number;
• Q(K) = (EK : WKEK+) ∈ {1, 2} is Hasse’s unit index.

We will need a well known result from class field theory. Assume
that K ⊂ L are CM-fields; then ker(NL/K : Cl(L) → Cl(K)) has order
(L ∩ K1 : K). Since K/K+ is ramified at the infinite places, the norm
NK/K+ : Cl(K)→ Cl(K+) is onto.
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2. Hasse’s unit index. Hasse’s book [H] contains numerous theorems
(Sätze 14–29) concerning the unit index Q(L) = (EL : WLEK), where
K = L+ is the maximal real subfield of a cyclotomic number field L. Hasse
considered only abelian number fields L/Q, hence he was able to describe
these fields in terms of their character groups X(L); as we are interested in
results on general CM-fields, we have to proceed in a different manner. But
first we will collect some of the most elementary properties of Q(L) (see also
[H] and [W]; a reference “Satz ∗” always refers to Hasse’s book [H]) in

Proposition 1. Let K ⊂ L be CM-fields; then

(a) (Satz 14) Q(L) = (EL : WLEL+) = (Eσ−1
L : W 2

L) = (Eσ+1
L : E2

L+);
in particular , Q(L) ∈ {1, 2};

(b) (Satz 16, 17) If Q(L) = 2 then κL/L+ = 1;
(c) (Satz 25) If L+ contains units with any given signature, then

Q(L) = 1;
(d) (Satz 29) Q(K) |Q(L) · (WL : WK);
(e) (compare Satz 26) Suppose that NL/K : WL/W

2
L → WK/W

2
K is

onto. Then Q(L) | Q(K);
(f) ([HY, Lemma 2]) If (L : K) is odd , then Q(L) = Q(K);
(g) (Satz 27) If L = Q(ζm), where m 6≡ 2 mod 4 is composite, then

Q(L) = 2;
(h) (see Example 4 below) Let K1 ⊆ Q(ζm) and K2 ⊆ Q(ζn) be abelian

CM-fields, where m = pµ and n = qν are prime powers such that p 6= q, and
let K = K1K2; then Q(K) = 2.

The proofs are straightforward:

(a) The map ε → εσ−1 induces an epimorphism EL → Eσ−1
L /W 2

L. If
εσ−1 = ζ2 for some ζ ∈ WL, then (ζε)σ−1 = 1, and ζε ∈ EL+ . This shows
that σ − 1 gives rise to an isomorphism EL/WLEL+ → Eσ−1

L /W 2
L, hence

we have (EL : WLEL+) = (Eσ−1
L : W 2

L). The other claim is proved simi-
larly.

(b) Since WL/W
2
L is cyclic of order 2, the first claim follows immediately

from (a). Now let a be an ideal in OK such that aOL = αOL. Then ασ−1 = ζ
for some root of unity ζ ∈ L, and Q(L) = 2 shows that ζ = εσ−1 for some
ε ∈ EL. Now αε−1 generates a and is fixed by σ, hence lies in K. This shows
that a is principal in K, i.e. that κL/L+ = 1.

(c) Units in L+ which are norms from L are totally positive; our assump-
tion implies that totally positive units are squares, hence we get Eσ+1

L =
E2
L+ , and our claim follows from (a).

(d) First note that (WL : WK) = (W 2
L : W 2

K); then
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Q(L) · (WL : WK) = (Eσ−1
L : W 2

L)(W 2
L : W 2

K) = (Eσ−1
L : Eσ−1

K )(Eσ−1
K : W 2

K)

= (Eσ−1
L : Eσ−1

K ) ·Q(K)

proves the claim.
(e) Since Q(L) = 2, there is a unit ε ∈ EL such that εσ−1 = ζ gener-

ates WL/W
2
L. Taking the norm to K shows that (NL/Kε)σ−1 = NL/K(ζ)

generates WK/W
2
K , i.e. we have Q(K) = 2.

(f) If (L : K) is odd, then (WL : WK) is odd, too, and we get Q(K) |Q(L)
from (d) and Q(L) |Q(K) from (e).

(g) In this case, 1− ζm is a unit, and we find (1− ζm)1−σ = −ζm. Since
−ζm ∈WL \W 2

L, we must have Q(L) = 2.
(h) First assume that m and n are odd. A subfield F ⊆ L = Q(ζm),

where m = pµ is an odd prime power, is a CM-field if and only if it contains
the maximal 2-extension contained in L, i.e. if and only if (L : F ) is odd.
Since (Q(ζm) : K1) and (Q(ζn) : K2) are both odd, so is (Q(ζmn) : K1K2);
moreover, Q(ζmn) has unit index Q = 2, hence the assertion follows from
(f) and (g).

Now assume that p = 2. If
√−1 ∈ K1, then we must have K1 = Q(ζm)

for m = 2α and some α ≥ 2 (complex subfields of the field of 2µth roots
of unity containing

√−1 necessarily have this form). Now n is odd and
K2 ⊆ Q(ζn) is complex, hence (Q(ζn) : K2) is odd. By (f) it suffices to show
that K1(ζn) = Q(ζmn) has unit index 2, and this follows from (g).

If
√−1 6∈ K1, let K̃1 = K1(i); then K̃1 = Q(ζm) for m = 2α and some

α ≥ 2, and in the last paragraph we have seen that Q(K̃1K2) = 2. Hence
we only need to show that the norm map

N : W
K̃1
/W 2

K̃1
→WK1

/W 2
K1

is onto: since (W
K̃1K2

: W
K̃1

) is odd, this implies 2 = Q(K̃1K2) |Q(K1K2)
by (e). But the observation that the non-trivial automorphism of Q(ζm)/K1

maps ζm to −ζ−1
m implies at once that N(ζm) = −1, and −1 generates

WK1
/W 2

K1
.

Now let L be a CM-field with maximal real subfield K; we will call L/K
essentially ramified if L = K(

√
α ) and there is a prime ideal p in OK such

that the exact power of p dividing αOK is odd; it is easily seen that this
does not depend on which α we choose. Moreover, every ramified prime ideal
p above an odd prime p is necessarily essentially ramified. We leave it as an
exercise to the reader to verify that our definition of essential ramification
coincides with Hasse’s [H, Sect. 22]; the key observation is the ideal equation
(4α) = a2d, where d = disc(K(

√
α )/K) and a is an integral ideal in OK .

We will also need certain totally real elements of norm 2 in the field of
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2mth roots of unity: to this end we define

π2 = 2 = 2 + ζ4 + ζ−1
4 ,

π3 = 2 +
√

2 = 2 + ζ8 + ζ−1
8 ,

...

πn = 2 +
√
πn−1 = 2 + ζ2n + ζ−1

2n .

Let m ≥ 2, L = Q(ζ2m+1) and K = Q(πm); then L/K is an extension of
type (2, 2) with subfields K1 = Q(ζ2m), K2 = Q(

√
πm) and K3 = Q(

√−πm).
Moreover, K2/K and K3/K are essentially ramified, whereas K1/K is not.

Theorem 1. Let L be a CM-field with maximal real subfield K.

(i) If wL ≡ 2 mod 4, then:
1. If L/K is essentially ramified , then Q(L) = 1, and κL/K = 1.
2. If L/K is not essentially ramified , then L = K(

√
α ) for some

α ∈ OK such that αOK = a2, where a is an integral ideal in OK ,
and
(a) Q(L) = 2 if a is principal , and
(b) Q(L) = 1 and κL/K = 〈[a]〉 if a is not principal.

(ii) If wL ≡ 2m mod 2m+1, where m ≥ 2, then L/K is not essentially
ramified , and :
1. If πmOK is not an ideal square, then Q(L) = 1 and κL/K = 1.
2. If πmOK = b2 for some integral ideal b, then

(a) Q(L) = 2 if b is principal , and
(b) Q(L) = 1 and κL/K = 〈[b]〉 if b is not principal.

For the proof of Theorem 1 we will need the following

Lemma 1. Let L = K(
√
π ), and let σ denote the non-trivial automor-

phism of L/K. Moreover , let b be an ideal in OK such that bOL = (β) and
βσ−1 = −1 for some β ∈ L. Then πOK is an ideal square in OK . If , on
the other hand , βσ−1 = ζ, where ζ is a primitive 2mth root of unity , then
πmOK is an ideal square in OK .

P r o o f. We have (β
√
π )σ−1 = 1, hence β

√
π ∈ K. Therefore b and

c = (β
√
π ) are ideals in OK , and (cb−1)2 = πOK proves our claim.

Now assume that βσ−1 = ζ; then σ fixes (1−ζ)β−1, hence ((1− ζ)β) and
c = (1− ζ) = cσ are ideals in OK , and c2 = NL/K(1− ζ) = (2 + ζ+ ζ−1)OK

is indeed an ideal square in OK as claimed.

P r o o f o f T h e o r e m 1. (i) Assume that wL ≡ 2 mod 4.
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C a s e 1: L/K is essentially ramified. Assume we had Q(L) = 2; then
Eσ−1
L = WL, hence there is a unit ε ∈ EL such that εσ−1 = −1. Write

L = K(
√
π ), and apply Lemma 1 to b = (1), β = ε: this will yield the

contradiction that L/K is not essentially ramified.

C a s e 2: L/K is not essentially ramified. Then L = K(
√
α ) for some

α ∈ OK such that αOK = a2, where a is an integral ideal in OK .

(a) If a is principal, say a = βOK , then there is a unit ε ∈ EK such that
α = β2ε, and we see that L = K(

√
ε ). Now

√
ε
σ−1 = −1 is no square since

wL ≡ 2 mod 4, and Proposition 1(a) gives Q(L) = 2.
(b) If a is not principal, then the ideal class [a] capitulates in L/K

because aOL =
√
αOL. Proposition 1(b) shows that Q(L) = 1.

(ii) Assume that wL ≡ 2m mod 2m+1 for some m ≥ 2.

C a s e 1: Assume that Q(L) = 2 or κL/K 6= 1. Then Lemma 1 says that
πmOK = b2 is an ideal square in OK contrary to our assumption.

C a s e 2: πm = b2 is an ideal square in OK . If b is not principal, then
bOL = (1−ζ) shows that κL/K = 〈[b]〉, and Proposition 1(b) givesQ(L) = 1.
If, on the other hand, b = βOK , then ηβ2 = πm for some unit η ∈ EK . If
η were a square in OK , then πm would also be a square, and L = K(

√−1 )
would contain the 2m+1th roots of unity. Now ηβ2 = πm = ζ−1(1 + ζ)2,
hence ηζ is a square in L, and we have Q(L) = 2 as claimed.

R e m a r k. For L/Q abelian, Theorem 1 is equivalent to Hasse’s Satz 22;
we will again only sketch the proof: suppose that wL ≡ 2m mod 2m+1 for
some m ≥ 2, and define L′ = L(ζ2m+1), K ′ = L′ ∩ R. Then K ′/K is es-
sentially ramified if and only if πm is not an ideal square in OK (because
K ′ = K(πm+1) = K(

√
πm)). The asserted equivalence should now be clear.

Except for the results on capitulation, Theorem 1 is also contained in [O]
(for general CM-fields).

Examples. 1. Complex subfields L ofQ(ζpm), where p is prime, have unit
index Q(L) = 1 (Hasse’s Satz 23) and κL/L+ = 1: since p ramifies completely
in Q(ζpm)/Q, L/L+ is essentially ramified if p 6= 2, and the claim follows
from Theorem 1. If p = 2 and L/L+ is not essentially ramified, then we must
have L = Q(ζ2µ) for some µ ∈ N, and we find Q(L) = 1 by Theorem 1(ii.1).

2. L = Q(ζm) has unit index Q(L) = 1 if and only if m 6≡ 2 mod 4 is a
prime power (Satz 27). This follows from Example 1 and Proposition 1(e).

3. If K is a CM-field, which is essentially ramified at a prime ideal p above
p ∈ N, and if F is a totally real field such that p - discF , then Q(L) = 1
and κL/L+ = 1 for L = KF : this is again due to the fact that either
L/L+ is essentially ramified at the prime ideals above p, or p = 2 and



352 F. Lemmermeyer

K = K+(
√−1 ). In the first case, we have Q(L) = 1 by Theorem 1(i.1), and

in the second case by Theorem 1(ii.1).

4. Suppose that the abelian CM-fieldK is the compositumK = K1 . . .Kt

of fields with pairwise different prime power conductors; then Q(K) = 1 if
and only if exactly one of the Ki is imaginary (Uchida [U, Prop. 3]). The
proof is easy: if there is exactly one complex field among the Kj , then
Q(K) = 1 by Example 3. Now suppose that K1 and K2 are imaginary; we
know Q(K1K2) = 2 (Proposition 1(h)), and from the fact that the Kj have
pairwise different conductors we deduce that (WK : WK1K2) ≡ 1 mod 2.
Now the claim follows from Hasse’s Satz 29 (Proposition 1(c)). Observe
that κK/K+ = 1 in all cases.

5. Cyclic extensions L/Q have unit index Q(L) = 1 (Hasse’s Satz 24):
Let F be the maximal subfield of L such that (F : Q) is odd. Then F is
totally real, and 2 - discF (this follows from the theorem of Kronecker and
Weber). Similarly, let K be the maximal subfield of L such that (K : Q)
is a 2-power: then K is a CM-field, and L = FK. If K/K+ is essentially
ramified at a prime ideal p above an odd prime p, then so is L/L+, because
L/Q is abelian, and all prime ideals in F have odd ramification index. Hence
the claim in this case follows by Example 3 above.

If, however, K/K+ is not essentially ramified at a prime ideal p above
an odd prime p, then discK is a 2-power (recall that K/Q is cyclic of
2-power degree). Applying the theorem of Kronecker and Weber, we find
that K ⊆ Q(ζ), where ζ is some primitive 2mth root of unity. If K/K+ is
essentially ramified at a prime ideal above 2, then so is L/L+, and Theorem 1
gives us Q(L) = 1. If K/K+ is not essentially ramified at a prime ideal
above 2, then we must have K = Q(ζ), where ζ is a primitive 2mth root of
unity; but now πmOL+ is not the square of an integral ideal, and we have
Q(L) = 1 by Theorem 1. Alternatively, we may apply Proposition 1(e) and
observe that Q(K) = 1 by Example 1.

6. Let p ≡ 1 mod 8 be a prime such that the fundamental unit ε2p of
Q(
√

2p ) has norm +1 (by [S], there are infinitely many such primes; note
also that Nε2p = +1 ⇔ (2,

√
2p ) is principal). Put K = Q(i,

√
2p ) and

L = Q(i,
√

2,
√
p ). Then Q(K) = 2 by Theorem 1(ii.2)(a), whereas the

fact that L is the compositum of Q(ζ8) and Q(
√
p ) shows that Q(L) = 1

(Example 4). This generalization of Lenstra’s example given by Martinet in
[H] is contained in Theorem 4 of [HY], where several other results of this
kind can be found.

3. Masley’s theorem h−m |h−mn. Now we can prove a theorem which
will contain Masley’s result h−(K) |h−(L) for cyclotomic fields K = Q(ζm)
and L = Q(ζmn) as a special case:
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Theorem 2. Let K ⊂ L be CM-fields; then

h−(K) |h−(L) · |κL/L+ | · (L ∩K1 : K)
(L+ ∩ (K+)1 : K+)

,

and the last quotient is a power of 2.

P r o o f. Let νK and νL denote the norms NK/K+ and NL/L+ , respec-
tively; then the following diagram is exact and commutative:

1 −−−−→ Cl−(L) −−−−→ Cl(L) νL−−−−→ Cl(L+) −−−−→ 1yN−
yN

yN+

1 −−−−→ Cl−(K) −−−−→ Cl(K) νK−−−−→ Cl(K+) −−−−→ 1

The snake lemma gives us an exact sequence

1→ kerN− → kerN → kerN+ → cokN− → cokN → cokN+ → 1.

Let h(L/K) denote the order of kerN , and let h−(L/K) and h(L+/K+) be
defined accordingly. The remark at the end of Section 1 shows

|cokN | = (L ∩K1 : K), |cokN+| = (L+ ∩ (K+)1 : K+).

The alternating product of the orders of the groups in exact sequences equals
1, so the above sequence implies

h−(L/K) · h(L+/K+) · |cokN | = h(L/K) · |cokN−| · |cokN+|.
The exact sequence

1→ kerN− → Cl−(L)→ Cl−(K)→ cokN− → 1

gives us
h−(L/K) · h−(K) = h−(L) · |cokN−|.

Collecting everything we find that

(∗) h−(K) · h(L/K)
h(L+/K+)

· (L+ ∩ (K+)1 : K+)
(L ∩K1 : K)

= h−(L).

Now the claimed divisibility property follows if we can prove that h(L+/K+)
divides h(L/K) · |κL/L+ |. But this is easy: exactly h(L+/K+)/|κL/L+ | ideal
classes of kerN+ ⊂ Cl(L+) survive the transfer to Cl(L), and if the norm
of L+/K+ kills an ideal class c ∈ Cl(L+), the same thing happens to the
transferred class cj when the norm of L/K is applied. We remark in passing
that |κL/L+ | ≤ 2 (see Hasse [H, Satz 18]).

It remains to show that (L ∩ K1 : K)/(L+ ∩ (K+)1 : K+) is a power
of 2. Using induction on (L : K), we see that it suffices to prove that if
L/K is an unramified abelian extension of CM-fields of odd prime degree
(L : K) = q, then so is L+/K+. Suppose otherwise; then there exists a
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finite prime p which ramifies, and since L+/K+ is cyclic, p has ramification
index q. Now L/K+ is cyclic of order 2q, hence K must be the inertia field
of p, contradicting the assumption that L/K is unramified. We conclude
that L+/K+ is also unramified, and so odd factors of (L ∩K1 : K) cancel
against the corresponding factors of (L+ ∩ (K+)1 : K+).

Corollary 1 ([LOO]). Let K ⊂ L be CM-fields such that (L : K) is
odd ; then h−K | h−(L).

P r o o f. From (∗) and the fact that (L+ ∩ (K+)1 : K+) = 1 (this index
is a power of 2 and divides (L : K), which is odd), we see that it is suffi-
cient to show that h(L+/K+) |h(L/K). This in turn follows if we can prove
that no ideal class from kerN+ ⊆ Cl(L+) capitulates when transferred to
Cl(L). Assume therefore that κL/L+ = 〈[a]〉. If wL ≡ 2 mod 4, then by The-
orem 1(i.2) we may assume that L = L+(

√
α ), where αOL+ = a2. Since

(L : K) is odd, we can choose α ∈ OK+ , hence N+(a) = a(L:K) shows
that the ideal class [a] is not contained in kerN+. The proof in the case
wL ≡ 0 mod 4 is completely analogous.

R e m a r k. For any prime p, let Cl−p (K) denote the p-Sylow subgroup of
Cl−(K); then Cl−p (K) ⊆ Cl−p (L) for every p - (L : K). This is trivial, because
ideal classes with order prime to (L : K) cannot capitulate in L/K.

Corollary 2 ([MM]). If K = Q(ζm) and L = Q(ζmn) for some m,n ∈
N, then h−(K) |h−(L).

P r o o f. We have shown in Section 2 that jK+→K and jL+→L are injective
in this case. Moreover, L/K does not contain a non-trivial subfield of K1

(note that p is completely ramified in L/K if n = p, and use induction).

The special case m = pa, n = p of Corollary 2 can already be found in
[We]. Examples of CM-fields L/K such that h−(K) -h−(L) have been given
by Hasse [H]; here are some more:

1. Let d1 ∈ {−4,−8,−q (q ≡ 3 mod 4)} be a prime discriminant, and
suppose that d2 > 0 is the discriminant of a real quadratic number field such
that (d1, d2) = 1. Put K = Q(

√
d1d2 ) and L = Q(

√
d1,
√
d2 ); then Q(L) = 1

and κL/L+ = 1 by Example 4, and (L ∩K1 : K) = 2 · (L+ ∩ (K+)1 : K+)
since L/K is unramified but L+/K+ is not. The class number formula (1)
below shows that in fact h−(K) -h−(L).

2. Let d1 = −4, d2 = 8m for some odd m ∈ N, and suppose that 2 =
(2,
√

2m ) is not principal in Ok, where k = Q(
√

2m ). Then h−(K) -h−(L)
for K = Q(

√−2m ), L = Q(
√−1,

√
2m ). Here (L∩K1 : K) = (L+∩(K+)1 :

K+), but κL/L+ = 〈[2]〉, since 2OL = (1 + i). This example shows that we
cannot drop the factor κL/L+ in Theorem 2.
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Other examples can be found by replacing d1 in Example 2 by d1 = −8
or d2 by d2 = 4m, m ∈ N odd. The proof that in fact h−(K) -h−(L) for
these fields uses Theorem 1, as well as Propositions 2 and 3 below.

4. Metsänkylä’s factorization. An extension L/K is called a V4-
extension of CM-fields if

1. L/K is normal and Gal(L/K) ' V4 = (2, 2);
2. Exactly two of the three quadratic subfields are CM-fields; call them

K1 and K2, respectively.

This implies, in particular, that K is totally real, and that L is a CM-field
with maximal real subfield L+ = K3. We will writeQ1 = Q(K1),W1 = WK1 ,
etc.

Louboutin [Lou, Prop. 13] has given an analytic proof of the following
class number formula for V4-extension of CM-fields, which contains Lemma 8
of Ferrero [F] as a special case:

Proposition 2. Let L/K be a V4-extension of CM-fields; then

h−(L) =
Q(L)
Q1Q2

· wL
w1w2

h−(K1)h−(K2).

P r o o f. Kuroda’s class number formula (for an algebraic proof see [L])
yields

(1) h(L) = 2d−κ−2−υq(L)h(K1)h(K2)h(L+)/h(K)2,

where

• d = (K : Q) is the number of infinite primes of K ramified in L/K;
• κ = d− 1 is the Z-rank of the unit group of K;
• υ = 1 if and only if all three quadratic subfields of L/K can be written

as K(
√
ε ) for units ε ∈ EK , and υ = 0 otherwise;

• q(L) = (EL : E1E2E3) is the unit index for extensions of type (2, 2);
here Ej is the unit group of Kj (similarly, let Wj denote the group of roots
unity in Lj).

Now we need to find a relation between the unit indices involved; we
assert

Proposition 3. If L/K is a V4-extension of CM-fields, then

Q(L)
Q1Q2

· wL
w1w2

= 2−1−υq(L).

P r o o f o f P r o p o s i t i o n 3. We start with the observation

Q(L) = (EL : WLE3) = (EL : E1E2E3)
(E1E2E3 : W1W2E3)
(WLE3 : W1W2E3)

.
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In [L] we have defined groups E∗j = {ε ∈ Ej : Njε is a square in EK}, where
Nj denotes the norm of Kj/K; we have also shown that

(E1E2E3 : E∗1E
∗
2E
∗
3 ) = 2−υ

∏
(Ej : E∗j )

and Ej/E∗j ' EK/NjEj . Now Proposition 1(a) gives (EK : NjEj) = Qj for
j = 1, 2, and we claim

1. (WLE3 : W1W2E3) = (WL : W1W2) = 2 · wL
w1w2

;
2. E∗1E

∗
2E
∗
3 = W1W2E

∗
3 ;

3. (W1W2E3 : W1W2E
∗
3 ) = (E3 : E∗3 ).

This will give us

(2) Q(L) = 2−1−υq(L)Q1Q2
w1w2

wL
,

completing the proof of Proposition 3; inserting (2) into equation (1) and
recalling the definition of the minus class number yields Louboutin’s formula.

We still have to prove the three claims above:

1. WLE3/W1W2E3 'WL/(WL∩W1W2E3) 'WL/W1W2, and the claim
follows from W1 ∩W2 = {−1,+1};

2. We only need to show that E∗1E
∗
2E
∗
3 ⊂W1W2E

∗
3 ; but Proposition 1(a)

shows that ε ∈ E∗1 ⇔ εσ+1 ∈ E2
K ⇔ ε ∈W1EK , and this implies the claim;

3. W1W2E3/W1W2E
∗
3 ' E3/E3 ∩W1W2E

∗
3 ' E3/E

∗
3 .

Combining the result of Section 3 with Proposition 2, we get the following

Theorem 3. Let L1 and L2 be CM-fields, and let L = L1L2 and
K = L+

1 L
+
2 ; then L/K is a V4-extension of CM-fields with subfields K1 =

L1L
+
2 , K2 = L+

1 L2, K3 = L+, and

h−(L) =
Q(L)
Q1Q2

· wL
w1w2

h−(L1)h−(L2)T1T2,

where T1 = h−(L1L
+
2 )/h−(L1) and T2 = h−(L2L

+
1 )/h−(L2).

If we assume that κ1 = κ2 = 1 (κ1 is the group of ideal classes capitu-
lating in L1L

+
2 /K and κ2 is defined similarly) and that

(L1L
+
2 ∩ L1

1 : L1) = (L+
1 L

+
2 ∩ (L+

1 )1 : L+
1 ),

(L2L
+
1 ∩ L1

2 : L2) = (L+
2 L

+
1 ∩ (L+

2 )1 : L+
2 ),

then T1 and T2 are integers.

P r o o f. Theorem 3 follows directly from Theorem 2 and Proposition 2.
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The following Hasse diagram explains the situation:

L

K1 L+ K2

K L2

L1 L+
2

L+
1

Q

{{{{{{ CCCCCC

|||||||||||||| CCCCCC {{{{{{ BBBBBB

}}}}}}}}}}}}}} BBBBBB }}}}}}

@@@@@@

}}}}}}}}}}}}}}

BBBBBB

Now let m = pµ and n = qν be prime powers, and suppose that p 6= q.
Moreover, let L1 ⊆ Q(ζm) and L2 ⊆ Q(ζn) be CM-fields. Then

(1) Q(L) = 2, Q1 = Q(L1L
+
2 ) = Q2 = Q(L2L

+
1 ) = 1: this has been

proved in Proposition 1(h) and Example 4 in Section 2;
(2) w1w2 = 2wL (obviously);
(3) κ1 = κ2 = 1: see Example 4 in Section 2;
(4) (L1L

+
2 ∩ L1

1 : L1) = (L+
1 L

+
2 ∩ (L+

1 )1 : L+
1 ): this, as well as the

corresponding property for K2, is obvious, because the prime ideals above
p and q ramify completely in L/L2 and L/L1, respectively.

In particular, we have the following

Corollary ([M]). Let L1 ⊆ Q(ζm) and L2 ⊆ Q(ζn) be CM-fields, where
m = pµ and n = qν are prime powers, and let L = L1L2; then

h−(L) = h−(L1)h−(L2)T1T2,

where T1 = h−(L1L
+
2 )/h−(L1) and T2 = h−(L2L

+
1 )/h−(L2) are integers.

It still remains to identify the character sums T01 and T10 in [M] with the
class number factors T1 and T2 given above. But this is easy: the character
group X(L1) corresponding to the field L1 is generated by a character χ1,
and it is easily seen that
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X(L1) = 〈χ1〉, X(L1L
+
2 ) = 〈χ1, χ

2
2〉,

X(L2) = 〈χ2〉, X(L2L
+
1 ) = 〈χ2, χ

2
1〉,

X(L) = 〈χ1, χ2〉, X(L+) = 〈χ1χ2, χ
2
1〉.

The analytical class number formula for an abelian CM-field K reads

(3) h−(K) = Q(K)wK
∏

χ∈X−(K)

1
2f(χ)

∑

a mod + f(χ)

(−χ(a)a),

where amod+ f(χ) indicates that the sum is extended over all 1 ≤ a ≤ f(χ)
such that (a, f(χ)) = 1, and X−(L) = X(L) \X(L+) is the set of χ ∈ X(L)
such that χ(−1) = −1. Applying formula (3) to the CM-fields listed above
and noting that Q(L) = 2, Q(L1) = Q(L2) = Q(L1L

+
2 ) = Q(L2L

+
1 ) = 1 and

2wL = w1w2, we find

h−(L) = h−(L1) · h−(L2)
∏

χ∈X∗(L)

1
2f(χ)

∑

a mod + f(χ)

(−χ(a)a),

where X∗(L) is the subset of all χ ∈ X−(L) not lying in X−(L1) or X−(L2).
Now define X1(L) = {χ = χx1χ

y
2 ∈ X∗(L) : x ≡ 1 mod 2, y ≡ 0 mod 2},

and let X2(L) be defined accordingly. Then X∗(L) = X1(L) ∪X2(L), and

h−(L1) ·
∏

χ∈X1(L)

1
2f(χ)

∑

a mod + f(χ)

(−χ(a)a) = h−(L1L
+
2 ),

and we have shown that

T1 =
∏

χ∈X1(L)

1
2f(χ)

∑

a mod + f(χ)

(−χ(a)a).

Comparing with the definition of Metsänkylä’s factor T10, this shows that
indeed T1 = T10.
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