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1. Notation. Let K C L be number fields; we will use the following
notation:

e O is the ring of integers of K;

o Fi is its group of units;

o Wi is the group of roots of unity contained in K;

® wy is the order of Wi;

e CI(K) is the ideal class group of K;

e [a] is the ideal class generated by the ideal a;

e K denotes the Hilbert class field of K, that is the maximal abelian
extension of K which is unramified at all places;

® j._.; denotes the transfer of ideal classes for number fields K C L,
i.e. the homomorphism Cl(K) — CI(L) induced by mapping an ideal
ato a L

e 1 i denotes the capitulation kernel ker jp . ;

Now let K be a CM-field, i.e. a totally complex quadratic extension
of a totally real number field; the following definitions are standard:

e 0 is complex conjugation;

e KT denotes the maximal real subfield of K; this is the subfield fixed
by o;

o CI" (K) is the kernel of the map Ny g+ : CI(K) — CI(K*) and is
called the minus class group;

e h~(K) is the order of C1™ (K), the minus class number;

o Q(K) = (Fxg:WyEg+) € {1,2} is Hasse’s unit index.

We will need a well known result from class field theory. Assume
that K C L are CM-fields; then ker(Ny g : CI(L) — CI(K)) has order
(LN K!: K). Since K/K™ is ramified at the infinite places, the norm
N /g+ : CI(K) — CI(K) is onto.
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2. Hasse’s unit index. Hasse’s book [H] contains numerous theorems
(Satze 14-29) concerning the unit index Q(L) = (EL : WrEk), where
K = L7 is the maximal real subfield of a cyclotomic number field L. Hasse
considered only abelian number fields L/Q, hence he was able to describe
these fields in terms of their character groups X (L); as we are interested in
results on general CM-fields, we have to proceed in a different manner. But
first we will collect some of the most elementary properties of Q(L) (see also
[H] and [W]; a reference “Satz *” always refers to Hasse’s book [H]) in

ProprosITION 1. Let K C L be CM-fields; then

(a) (Satz 14) Q(L) = (EBr, : Wi Ep+) = (E{' : W2) = (EJT : B2,);
in particular, Q(L) € {1,2};

(b) (Satz 16, 17) If Q(L) = 2 then kp p+ = 1;

(c) (Satz 25) If L™ contains units with any given signature, then
Q(L) = 1;

(d) (Satz 29) Q(K)[Q(L) - (WL : Wi);

(¢) (compare Satz 26) Suppose that Ny, : W /Wi — W /WE s
onto. Then Q(L) | Q(K);

(f) ([HY, Lemma 2]) If (L : K) is odd, then Q(L) = Q(K);

(g) (Satz 27) If L = Q((m), where m # 2mod 4 is composite, then
Q(L) = 2;

(h) (see Example 4 below) Let K1 C Q((n) and Ko C Q((,) be abelian

CM-fields, where m = p* and n = ¢ are prime powers such that p # q, and
let K = K1 Ky; then Q(K) = 2.

The proofs are straightforward:

(a) The map € — €°~! induces an epimorphism E; — Ez_l W2 If
g7l = (2 for some ¢ € Wy, then ((¢)°~! =1, and (¢ € E;+. This shows
that o — 1 gives rise to an isomorphism Er/WrEp+ — EJ'/W?, hence
we have (Er : WrEp+) = (E97' : W2). The other claim is proved simi-
larly.

(b) Since W, /W# is cyclic of order 2, the first claim follows immediately
from (a). Now let a be an ideal in O such that aQ; = aOr. Then a1 = ¢
for some root of unity ¢ € L, and Q(L) = 2 shows that ¢ = 7~ for some
e € Er. Now ae! generates a and is fixed by o, hence lies in K. This shows
that a is principal in K, i.e. that kg ,p+ = 1.

(c) Units in L* which are norms from L are totally positive; our assump-
tion implies that totally positive units are squares, hence we get EZJrl =
E? ., and our claim follows from (a).

(d) First note that (W, : Wy ) = (W2 : W2); then
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QL) - Wy : Wy) = (B7" W) (WE : Wi) = (B " Ef-)(ER ' Wi)
= (E] "' ERTY - Q(K)

proves the claim.

(e) Since Q(L) = 2, there is a unit € € Ey, such that €71 = ( gener-
ates W, /WE. Taking the norm to K shows that (Np,xe)” t = Np k()
generates W, /W2, i.e. we have Q(K) = 2.

(f) If (L : K) is odd, then (W}, : W) is odd, too, and we get Q(K) | Q(L)
from (d) and Q(L) | Q(K) from (e).

(g) In this case, 1 — (,, is a unit, and we find (1 — (,,,)' =7 = —(. Since
—Cm € W, \ W2, we must have Q(L) = 2.

(h) First assume that m and n are odd. A subfield FF C L = Q((n),
where m = p* is an odd prime power, is a CM-field if and only if it contains
the maximal 2-extension contained in L, i.e. if and only if (L : F) is odd.
Since (Q(¢m) : K1) and (Q((,) : K3) are both odd, so is (Q((mn) : K1K3);
moreover, Q((,,) has unit index @ = 2, hence the assertion follows from
(£) and (g).

Now assume that p = 2. If /=1 € K1, then we must have K; = Q(()
for m = 2% and some a > 2 (complex subfields of the field of 2#th roots
of unity containing \/—1 necessarily have this form). Now n is odd and
K5 C Q(¢p) is complex, hence (Q(¢,) : K2) is odd. By (f) it suffices to show
that K1(¢n) = Q((mn) has unit index 2, and this follows from (g).

If vV—1¢ Ky, let K, = K (i); then K, = Q(¢m) for m = 2% and some
a > 2, and in the last paragraph we have seen that Q(K;K2) = 2. Hence
we only need to show that the norm map

N:Wg /WI%Q — Wy, /Wi,

is onto: since (VVI?IK2 : W[~<1) is odd, this implies 2 = Q(I~(1K2) | Q(K1K>)
by (e). But the observation that the non-trivial automorphism of Q((,,)/ K1

maps (, to —(,,! implies at once that N(¢,) = —1, and —1 generates
WKI/W?q' L]

Now let L be a CM-field with maximal real subfield K; we will call L/ K
essentially ramified if L = K(y/a) and there is a prime ideal p in Ok such
that the exact power of p dividing ak is odd; it is easily seen that this
does not depend on which « we choose. Moreover, every ramified prime ideal
p above an odd prime p is necessarily essentially ramified. We leave it as an
exercise to the reader to verify that our definition of essential ramification
coincides with Hasse’s [H, Sect. 22]; the key observation is the ideal equation
(4a) = a?d, where 0 = disc(K (y/a')/K) and a is an integral ideal in O .

We will also need certain totally real elements of norm 2 in the field of
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2"th roots of unity: to this end we define
Ty =2=2+Cit (s
M =24V2=2+(G+ G

T =2+ /Tno1 =2+ Con + (o

Let m > 2, L = Q((am+1) and K = Q(m,,); then L/K is an extension of

type (2, 2) with subfields K1 = Q({am ), K2 = Q(y/7) and K3 = Q(/—7p,).
Moreover, Ko/K and K3/K are essentially ramified, whereas K /K is not.

THEOREM 1. Let L be a CM-field with mazimal real subfield K.

(i) If wr, =2 mod 4, then:
1. If L/K is essentially ramified, then Q(L) = 1, and kp = 1.
2. If L/K is not essentially ramified, then L = K(y/a) for some

a € Ok such that aO g = a?, where a is an integral ideal in O,
and

(a) Q(L) =2 if a is principal, and
(b) Q(L) =1 and K1/ = ([a]) if a is not principal.
(i) If wy = 2™ mod 2™, where m > 2, then L/K is not essentially

ramified, and:
L. If 1O is not an ideal square, then Q(L) =1 and kr x = 1.
2. If 1O = b2 for some integral ideal b, then

(a) Q(L) =2 if b is principal, and

(b) Q(L) =1 and K1,/ = ([b]) if b is not principal.

For the proof of Theorem 1 we will need the following

LEMMA 1. Let L = K(\/7), and let o denote the non-trivial automor-
phism of L/K. Moreover, let b be an ideal in O such that bO, = (3) and
B°~1 = —1 for some B € L. Then t9Q is an ideal square in Ox. If, on
the other hand, 3°~' = (, where ¢ is a primitive 2™th root of unity, then
TmO K 15 an ideal square in O .

Proof. We have (3y/7)°~! = 1, hence 3y/m € K. Therefore b and
¢ = (By/7) are ideals in O, and (¢b~1)2 = 7Ok proves our claim.

Now assume that 3! = (; then o fixes (1—¢)37!, hence ((1 — ¢)3) and
¢ =(1—-¢) = ¢ areideals in Ok, and ¢ = Ny /(1 -¢) = (24+¢+¢ 1Ok
is indeed an ideal square in Ok as claimed. =m

Proof of Theorem 1. (i) Assume that wy, = 2 mod 4.
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Case 1: L/K is essentially ramified. Assume we had Q(L) = 2; then
Ez_l = Wy, hence there is a unit ¢ € Ep, such that 771 = —1. Write
L = K(y/7), and apply Lemma 1 to b = (1),3 = e: this will yield the
contradiction that L/K is not essentially ramified.

Case 2: L/K is not essentially ramified. Then L = K(y/a) for some
a € Ok such that aO g = a2, where a is an integral ideal in O.

(a) If a is principal, say a = B8O, then there is a unit € € Ex such that
a = [$%¢, and we see that L = K(y/z). Now Ve? ™! = —1is no square since
wy, = 2 mod 4, and Proposition 1(a) gives Q(L) = 2.

(b) If a is not principal, then the ideal class [a] capitulates in L/K
because aOy, = /aO . Proposition 1(b) shows that Q(L) = 1.

(i) Assume that w; = 2™ mod 2™*! for some m > 2.

Case 1: Assume that Q(L) =2 or s x # 1. Then Lemma 1 says that
TmO K = b2 is an ideal square in O contrary to our assumption.

Case 2: m, = b? is an ideal square in O . If b is not principal, then
6O = (1—() shows that r 1,/ x = ([b]), and Proposition 1(b) gives Q(L) = 1.
If, on the other hand, b = 39k, then n3? = m,, for some unit n € Eg. If
n were a square in O, then m,, would also be a square, and L = K(v/—1)
would contain the 2™*1th roots of unity. Now 76% = 7, = (~1(1 + ¢)?,
hence 7( is a square in L, and we have Q(L) = 2 as claimed. m

Remark. For L/Q abelian, Theorem 1 is equivalent to Hasse’s Satz 22;
we will again only sketch the proof: suppose that w; = 2™ mod 2™+! for
some m > 2, and define L' = L((ym+1), K’ = L' NR. Then K'/K is es-
sentially ramified if and only if 7, is not an ideal square in Ok (because
K' = K(mpm+1) = K(\/7m)). The asserted equivalence should now be clear.
Except for the results on capitulation, Theorem 1 is also contained in [O]
(for general CM-fields).

ExAMPLES. 1. Complex subfields L of Q((,m ), where p is prime, have unit
index Q(L) = 1 (Hasse’s Satz 23) and /1 + = 1: since p ramifies completely
in Q(¢m)/Q, L/L™ is essentially ramified if p # 2, and the claim follows
from Theorem 1. If p = 2 and L/L™" is not essentially ramified, then we must
have L = Q((an) for some p € N, and we find Q(L) = 1 by Theorem 1(ii.1).

2. L = Q(() has unit index Q(L) = 1 if and only if m # 2 mod 4 is a
prime power (Satz 27). This follows from Example 1 and Proposition 1(e).

3. If K is a CM-field, which is essentially ramified at a prime ideal p above
p € N, and if F is a totally real field such that pf disc F, then Q(L) = 1
and Kpip+ = 1 for L = KF: this is again due to the fact that either

L/L* is essentially ramified at the prime ideals above p, or p = 2 and
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K = K*(y/—1). In the first case, we have Q(L) = 1 by Theorem 1(i.1), and
in the second case by Theorem 1(ii.1).

4. Suppose that the abelian CM-field K is the compositum K = K ... K;
of fields with pairwise different prime power conductors; then Q(K) = 1 if
and only if exactly one of the K; is imaginary (Uchida [U, Prop. 3]). The
proof is easy: if there is exactly one complex field among the K, then
Q(K) = 1 by Example 3. Now suppose that K; and K5 are imaginary; we
know Q(K;1K3) =2 (Proposition 1(h)), and from the fact that the K; have
pairwise different conductors we deduce that (Wg : Wk, k,) = 1 mod 2.
Now the claim follows from Hasse’s Satz 29 (Proposition 1(c)). Observe
that kg g+ =1 in all cases.

5. Cyclic extensions L/Q have unit index Q(L) = 1 (Hasse’s Satz 24):
Let F' be the maximal subfield of L such that (F' : Q) is odd. Then F' is
totally real, and 21 disc F' (this follows from the theorem of Kronecker and
Weber). Similarly, let K be the maximal subfield of L such that (K : Q)
is a 2-power: then K is a CM-field, and L = FK. If K/K™* is essentially
ramified at a prime ideal p above an odd prime p, then so is L/L™, because
L/Q is abelian, and all prime ideals in F' have odd ramification index. Hence
the claim in this case follows by Example 3 above.

If, however, K/K™ is not essentially ramified at a prime ideal p above
an odd prime p, then disc K is a 2-power (recall that K/Q is cyclic of
2-power degree). Applying the theorem of Kronecker and Weber, we find
that K C Q((), where ( is some primitive 2"th root of unity. If K/K™ is
essentially ramified at a prime ideal above 2, then so is L/L*, and Theorem 1
gives us Q(L) = 1. If K/K™ is not essentially ramified at a prime ideal
above 2, then we must have K = Q(¢), where ( is a primitive 2"th root of
unity; but now 7,9+ is not the square of an integral ideal, and we have
Q(L) =1 by Theorem 1. Alternatively, we may apply Proposition 1(e) and
observe that Q(K) = 1 by Example 1.

6. Let p = 1 mod 8 be a prime such that the fundamental unit e, of
Q(v/2p) has norm +1 (by [S], there are infinitely many such primes; note
also that Neg, = +1 < (2,4/2p) is principal). Put K = Q(¢,1/2p) and
L = Q(i,v2,,/p). Then Q(K) = 2 by Theorem 1(ii.2)(a), whereas the
fact that L is the compositum of Q(¢s) and Q(y/p) shows that Q(L) = 1
(Example 4). This generalization of Lenstra’s example given by Martinet in
[H] is contained in Theorem 4 of [HY], where several other results of this
kind can be found.

3. Masley’s theorem h. | h, .. Now we can prove a theorem which
will contain Masley’s result A~ (K) | h~ (L) for cyclotomic fields K = Q((n)
and L = Q((mn) as a special case:
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THEOREM 2. Let K C L be CM-fields; then
(LNK!': K)

h=(K)[h™ (L) - |kr/e+ |- TN (EN K

and the last quotient is a power of 2.

Proof. Let vk and vy denote the norms Ny g+ and Ny ,p+, respec-
tively; then the following diagram is exact and commutative:

1 —— C (L) —— (L) 22— QL) —— 1

[ [ -

l —— ClI (K) —— CI(K) - Cl(Kt) —— 1

The snake lemma gives us an exact sequence
1 -ker N~ —ker N — ker NT — cok N~ — cok N — cok NT — 1.

Let h(L/K) denote the order of ker N, and let A~ (L/K) and h(L*/K™) be
defined accordingly. The remark at the end of Section 1 shows
lcokN| = (LNK': K), |cokNT|=(L"n(K")':K").
The alternating product of the orders of the groups in exact sequences equals
1, so the above sequence implies
h™(L/K)-h(LT/K")-|cok N| = h(L/K) - |cok N~ | - [cok NT|.
The exact sequence
1—-kerN™ - ClI" (L) - ClI" (K) - cok N~ — 1
gives us
h™(L/K)-h™(K)=h"(L)-|cok N~|.
Collecting everything we find that
h(L/K LtNn(KH) K+ _
h(L+/K) (LNK!':K)

Now the claimed divisibility property follows if we can prove that h(L*T/K™)
divides h(L/K) - |k, r+|. But this is easy: exactly h(LT/K™T)/|kp p+] ideal
classes of ker N C CI(L™) survive the transfer to Cl(L), and if the norm
of LT /K™ kills an ideal class ¢ € CI(L™"), the same thing happens to the
transferred class ¢/ when the norm of L/K is applied. We remark in passing
that |kp/p+| <2 (see Hasse [H, Satz 18]).

It remains to show that (LN K : K)/(LT N (K*)! : KT) is a power
of 2. Using induction on (L : K), we see that it suffices to prove that if

L/K is an unramified abelian extension of CM-fields of odd prime degree
(L : K) = g, then so is LT /K™. Suppose otherwise; then there exists a
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finite prime p which ramifies, and since L* /K™ is cyclic, p has ramification
index ¢. Now L/K™ is cyclic of order 2¢q, hence K must be the inertia field
of p, contradicting the assumption that L/K is unramified. We conclude
that L™/K™* is also unramified, and so odd factors of (L N K*! : K) cancel
against the corresponding factors of (LT N (K)!: KT). =

COROLLARY 1 ([LOOJ). Let K C L be CM-fields such that (L : K) is
odd; then h~ K | h=(L).

Proof. From (x) and the fact that (LT N (KT)! : KT) =1 (this index
is a power of 2 and divides (L : K), which is odd), we see that it is suffi-
cient to show that h(LT/K™)|h(L/K). This in turn follows if we can prove
that no ideal class from ker N* C CI(L") capitulates when transferred to
CI(L). Assume therefore that x/+ = ([a]). If wz = 2 mod 4, then by The-
orem 1(i.2) we may assume that L = L*(y/a), where aO;+ = a?. Since
(L : K) is odd, we can choose a € O+, hence N*(a) = al*) shows
that the ideal class [a] is not contained in ker N*. The proof in the case
wr, = 0 mod 4 is completely analogous. m

Remark. For any prime p, let Cl1; (K) denote the p-Sylow subgroup of
Cl™ (K); then Cl,, (K) C Cl, (L) for every p{ (L : K). This is trivial, because
ideal classes with order prime to (L : K) cannot capitulate in L/K.

COROLLARY 2 ([MM)). If K = Q(¢mn) and L = Q((mn) for some m,n €
N, then h=(K)|h=(L). m

Proof. We have shown in Section 2 that ji+_, x and jr+_, are injective
in this case. Moreover, L/K does not contain a non-trivial subfield of K*
(note that p is completely ramified in L/K if n = p, and use induction). m

The special case m = p®, n = p of Corollary 2 can already be found in
[We]. Examples of CM-fields L/K such that h~ (K){h~ (L) have been given
by Hasse [H]; here are some more:

1. Let dy € {—4,—-8,—¢ (¢ = 3mod 4)} be a prime discriminant, and
suppose that do > 0 is the discriminant of a real quadratic number field such
that (dy,ds) = 1. Put K = Q(\/d1ds ) and L = Q(v/d1,/ds ); then Q(L) = 1
and K+ = 1 by Example 4, and (LNK' : K) =2- (LT N (K*)': KT)
since L/K is unramified but L* /K™ is not. The class number formula (1)
below shows that in fact h= (K){th™(L).

2. Let dy = —4,d> = 8m for some odd m € N, and suppose that 2 =
(2,v/2m) is not principal in Oy, where k = Q(v/2m ). Then h~ (K){h~ (L)
for K = Q(v/—2m), L = Q(v/—1,v2m). Here (LNK' : K) = (LTN(K*)!:
K*), but kp/p+ = ([2]), since 207, = (1 + ). This example shows that we
cannot drop the factor £ ,r+ in Theorem 2.
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Other examples can be found by replacing d; in Example 2 by d; = —8
or dg by da = 4m, m € N odd. The proof that in fact h=(K){h~ (L) for
these fields uses Theorem 1, as well as Propositions 2 and 3 below.

4. Metsankyld’s factorization. An extension L/K is called a Vj-
extension of CM-fields if

1. L/K is normal and Gal(L/K) ~ V, = (2, 2);
2. Exactly two of the three quadratic subfields are CM-fields; call them
K7 and K, respectively.

This implies, in particular, that K is totally real, and that L is a CM-field
with maximal real subfield Lt = K3. We will write Q1 = Q(K1), W) = Wk, ,
ete.

Louboutin [Lou, Prop. 13] has given an analytic proof of the following
class number formula for Vj-extension of CM-fields, which contains Lemma 8
of Ferrero [F| as a special case:

PROPOSITION 2. Let L/K be a Vy-extension of CM-fields; then

QL) w, -
= - —=—h7(K1)h™ (K3).

0105wy, (K1)h™ (K2)

Proof. Kuroda’s class number formula (for an algebraic proof see [L])
yields

(1) h(L) = 2977727V q(L)h(K1 ) h(K2)h(LT) /h(K)?,
where

e d = (K :Q) is the number of infinite primes of K ramified in L/K;

e k. =d — 1 is the Z-rank of the unit group of K;

e v = 1 if and only if all three quadratic subfields of L/K can be written
as K (/) for units € € Fx, and v = 0 otherwise;

e (L) = (FL : E1E3Es) is the unit index for extensions of type (2,2);
here E; is the unit group of K (similarly, let W; denote the group of roots
unity in Lj).

h™(L)

Now we need to find a relation between the unit indices involved; we
assert

PROPOSITION 3. If L/K is a Vy-extension of CM-fields, then
QL) wg
1Q2 wiws

Proof of Proposition 3. We start with the observation

(E1E2E3 . W1W2E3)

(WLEg : W1W2E3) ’

=2""""¢(L).

Q(L) == (EL . WLE?,) == (EL . E1E2E3)
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In [L] we have defined groups E} = {e € Ej; : Nje is a square in Ek }, where
N; denotes the norm of K;/K; we have also shown that

(E\E2Es : EE;E3) =27 [[(E; : E})

and Ej/EY ~ Ex /N;E;. Now Proposition 1(a) gives (Ex : N;Ej) = Q; for
7 =1,2, and we claim

1. (WiEs : WiWaEs) = (W : WiWs) = 2- wwfu :
2. B{E3E = WiWLE3; 12
3. (WA\WaEs : W\WLE3) = (Es : E3).
This will give us
w4 W
(2) QL) =27""(L)Q1Q2= =,
L

completing the proof of Proposition 3; inserting (2) into equation (1) and
recalling the definition of the minus class number yields Louboutin’s formula.
We still have to prove the three claims above:
1. WLEg/W1W2E3 ~ WL/(WL ﬂW1W2E3) ~ WL/W1W2, and the claim
follows from Wy N Wy = {—1,+1};
2. We only need to show that E} E5E5 C W1 W, E3; but Proposition 1(a)
shows that € € Ef & ¢! € E% & ¢ € W1 Eg, and this implies the claim;
3. W1W2E3/W1W2E§ ~ Eg/Eg N W1W2E§ ~ .E;:,/E‘é|< ]
Combining the result of Section 3 with Proposition 2, we get the following
THEOREM 3. Let Ly and Lo be CM-fields, and let L = LiLy and
K = LT LY; then L/K is a Vy-estension of CM-fields with subfields K| =
LiL3, Ko =L{Ly, Ky=L", and
_ QL) wy
Q1Q2 wyw,y
where Ty = h~(L1L3)/h~(L1) and Ty = h™ (Lo L) /h~(La).

If we assume that k1 = ko = 1 (k1 s the group of ideal classes capitu-
lating in LiL] /K and ks is defined similarly) and that

h=(L)

h™(L)h™ (Lo) T T,

(LiL3 NLy: L) = (L L3 N (L)' : L),
(LoLf NLy: Lo) = (LFLT N (L3)": L3),
then T7 and Ty are integers.

Proof. Theorem 3 follows directly from Theorem 2 and Proposition 2. =
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The following Hasse diagram explains the situation:

L

%
\//

Now let m = p* and n = ¢¥ be prime powers, and suppose that p # q.
Moreover, let L1 € Q((,,) and Ly € Q((,) be CM-fields. Then

(1) QL) =2,Q1 = Q(LIL;) = Qs = Q(LQL:T) = 1: this has been
proved in Proposition 1(h) and Example 4 in Section 2;

Kz

L2

/\/

(2) wiwe = 2wy, (obviously);

(3) k1 = ko = 1: see Example 4 in Section 2;

(4) (L1 L nLY : Ly) = (LTL3 n (L)' : LT): this, as well as the
corresponding property for K, is obvious, because the prime ideals above
p and ¢ ramify completely in L/Ly and L/Lq, respectively.

In particular, we have the following

COROLLARY ([M]). Let L1 € Q((m) and Ly C Q((,,) be CM-fields, where
m = p! and n = ¢ are prime powers, and let L = L1 Ls; then

h™(L) = h™ (L1)h™ (L2)Th T3,

where Ty = h™(L1L3)/h~(L1) and Ty = h= (Lo L) /h~(L2) are integers.

It still remains to identify the character sums Ty, and T in [M] with the
class number factors 77 and 75 given above. But this is easy: the character
group X (Lj) corresponding to the field L is generated by a character xi,
and it is easily seen that
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X(L1) = (x1), X(L1L3) = {(x1,x3),
X (Ls) = (x2), X(LoLT) = (x2, x3)
X(L) = (x1,x2), X(LT) = (x1x2: X3)-

The analytical class number formula for an abelian CM-field K reads

3 ) =Eux [[ —— 3 (—x(@a),

X€EX~(K) 2f(X) a mod * f(x)

where a mod™ f(x) indicates that the sum is extended over all 1 < a < f(x)
such that (a,f(x)) =1, and X (L) = X (L) \ X (L") is the set of x € X (L)
such that x(—1) = —1. Applying formula (3) to the CM-fields listed above
and noting that Q(L) = 2,Q(L1) = Q(Ls) = Q(L1L}) = Q(Lo L) =1 and
2wy, = wiwsy, we find

h™(L) =h"(L1)-h™(L2) H %00 Z (—x(a)a),
XEX*(L) a mod T f(x)
where X*(L) is the subset of all x € X~ (L) not lying in X (L) or X~ (L2).
Now define X1(L) = {x = xx4 € X*(L) : = = 1mod 2, y = 0 mod 2},
and let X2(L) be defined accordingly. Then X*(L) = X;(L) U X»(L), and

) [ o— 3 (—x(@a)=h~(LiL),

cexay 0, et i

and we have shown that

1
T = H %) Z (—x(a)a).

X€X1(L) a mod T f(x)

Comparing with the definition of Metsankyla’s factor T4, this shows that
indeed T1 = Tl().
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