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1. Introduction and statement of the Theorem. The well known
Goldbach conjecture states that every integer n > 5 is a sum of three primes.
The conjecture itself remains unsolved today, but a significant progress has
been made by applying either analytical, elementary or sieve theory meth-
ods. One of the most important results belongs to I. M. Vinogradov, who
in 1937 proved using the Hardy–Littlewood circle method that there ex-
ists a natural number n0 such that every odd n ≥ n0 is a sum of three
primes. J. R. Chen and T. Z. Wang [1] proved recently that one can take
n0 = ee

11.503
.

Another line of attack has been proposed by Šnirelman, who proved
by elementary means that there exists a positive constant S0, now called
Šnirelman’s constant, such that every integer > 1 is a sum of at most S0

primes. The numerical value of S0 in Šnirelman’s original proof was very
large; it was then reduced among others by M. Deshouillers [3] (S0 ≤ 26),
H. Riesel and R. C. Vaughan [10] (S0 ≤ 19) and recently by O. Ramaré [9]
(S0 ≤ 7).

Connections between the Goldbach conjecture and the Riemann Hy-
pothesis (R.H.) that all the non-trivial zeros of the Riemann zeta func-
tion lie on the critical line are not clear. In particular, it is not known if
the Goldbach conjecture is a corollary to R.H. At least a partial expla-
nation of this phenomenon is that the distribution of zeros of the Rie-
mann zeta function alone does not enter seriously into the circle method
when applied to this particular problem. From this point of view assump-
tion of the R.H. in connection with the Goldbach conjecture seems rather
modest.

Let us denote by G2 the least upper bound for the number G with the
property that all even natural numbers 4 ≤ n ≤ G are sums of two primes.
The Goldbach conjecture asserts obviously that G2 =∞. With this notation
we have the following result.
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362 L. Kaniecki

Theorem. Suppose the Riemann Hypothesis is true. Then every odd
natural number can be written as a sum of at most five primes. If G2 >
1.405 · 1012 then every even natural number can be written as a sum of at
most four primes.

In a recent paper M. K. Sinisalo [14] proved that G2 ≥ 4 · 1011 im-
proving earlier results by M. K. Shen [13] (G2 ≥ 3.3 · 107), M. L. Stein
and P. R. Stein [15] (G2 ≥ 108) and A. Granville, J. van de Lune and
H. J. J. te Riele [5] (G2 ≥ 2 · 1010). In a letter Prof. M. K. Sinisalo informed
the present author that his algorithm for checking the Goldbach conjec-
ture is sufficiently efficient to cover the missing range between 4 · 1011 and
1.405 · 1012. This would however need a lot of computer’s running time.

Acknowledgments. The author is greatly indebted to Professor Jerzy
Kaczorowski for numerous stimulating discussions. He also thanks Dr. Bog-
dan Szyd lo for reading the manuscript and suggesting some improvements.

2. Lemmas. In this section we formulate some lemmas needed in the
proof of the Theorem.

Lemma 1. For s 6= 1, s 6= %, s 6= −2q, where % denotes non-trivial zeros
of the Riemann zeta function ζ(s), the following identity holds:

(1)
ζ ′

ζ
(s) =

−1
s− 1

+
∑
%

(
1

s− %+
1
%

)
+
∞∑
q=1

(
1

s+ 2q
− 1

2q

)
+ log(2π)−1.

P r o o f. See [8], pp. 218 and 394.

Let us write as usual

Λ(n) =
{

log p for n = pk, k natural, p prime,
0 otherwise.

Moreover, for x, a > 1 we write

Λx,a(n) =




Λ(n) for 1 ≤ n ≤ x,
Λ(n)
a− 1

· log(xa/n)
log x

for x ≤ n ≤ xa.

Lemma 2. For s 6= 1, s 6= %, s 6= −2q we have

ζ ′

ζ
(s) = −

∑
n<xa

Λx,a(n)
ns

+
1

(a− 1) log x

(
xa(1−s) − x1−s

(1− s)2(2)

+
∞∑
q=1

x−(2q+s) − x−a(2q+s)

(2q + s)2 +
∑
%

x%−s − xa(%−s)

(%− s)2

)
.

P r o o f. This is a slightly modified Selberg formula (see [12], Lemma 2).
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Lemma 3. Suppose R.H. is true and let s = σ + it, σ = 1/2 + c/ log x ≤
3/4, t ≥ 14, c > 0, x > 1, a > 1 and (a− 1)c > e−c + e−ac. Then

∣∣∣∣
ζ ′

ζ
(s)
∣∣∣∣ ≤

(a− 1)c
(a− 1)c− e−c − e−ac

[∣∣∣∣
∑
n<xa

Λx,a(n)
ns

∣∣∣∣+
e−c + e−ac

2(a− 1)c
log t(3)

+
1

(a− 1)t2 log x

×
(
e−acxa/2 + e−cx1/2 +

1
xσ(x2 − 1)

+
1

xaσ(x2a − 1)

)]
.

P r o o f. (See also [6] and [12], Lemma 3.) Since
∣∣∣∣
xa(1−s) − x1−s

(1− s)2

∣∣∣∣ <
e−acxa/2 + e−cx1/2

t2
,

∣∣∣∣
∞∑
q=1

x−(2q+s) − x−a(2q+s)

(2q + s)2

∣∣∣∣ <
1
t2

(
1

xσ(x2 − 1)
+

1
xaσ(x2a − 1)

)

and
∣∣∣∣
∑
%

x%−s − xa(%−s)

(%− s)2

∣∣∣∣ ≤ (e−c + e−ac)
∑
γ

1
(σ − 1/2)2 + (t− γ)2 ,

where % = 1/2 + iγ,

we obtain from (2)

ζ ′

ζ
(s) = −

∑
n<xa

Λx,a(n)
ns

+
1

(a− 1) log x

[
v1
e−acxa/2 + e−cx1/2

t2
(4)

+
v2

t2

(
1

xσ(x2 − 1)
+

1
xaσ(x2a − 1)

)

+ v3(e−c + e−ac)
∑
γ

1
(σ − 1/2)2 + (t− γ)2

]
,

where vj = vj(σ, t) and |vj | ≤ 1 for j = 1, 2, 3.
According to (1) we have

<ζ
′

ζ
(s) =

1− σ
(1− σ)2 + t2

+
∑
γ

(
σ − 1/2

(σ − 1/2)2 + (t− γ)2 +
1/2

1/4 + γ2

)
(5)

+ log(2π)− 1−
∞∑
n=1

σ2 + 2nσ + t2

2n[(σ + 2n)2 + t2]
.
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Since

0 <
1− σ

(1− σ)2 + t2
<

1
392.125

,

0 <
∞∑
n=1

σ2 + 2nσ + t2

2n[(σ + 2n)2 + t2]
< 0.5427592 +

1
2

log

√
4 + t2

2
,

and

(6) k1 :=
∑
γ

1/2
1/4 + γ2 = 0.023 . . . (cf. [2], p. 82)

we can write (5) in the following way:

v6
ζ ′

ζ
(s) =

v4

392.125
+
∑
γ

σ − 1/2
(σ − 1/2)2 + (t− γ)2 + k1 + log(2π)− 1(7)

− v5

(
0.5427592 +

1
2

log

√
4 + t2

2

)
,

where vj = vj(σ, t) for j = 4, 5, 6, v4, v5 ∈ (0, 1) and |v6| ≤ 1.
Comparing (4) and (7) we obtain

ζ ′

ζ
(s)
(

1− v3v6
e−c + e−ac

(a− 1) log x(σ − 1/2)

)

= −
∑
n<xa

Λx,a(n)
ns

+ v3
e−c + e−ac

(a− 1) log x(σ − 1/2)

×
[
− v4

392.125
− k1 − log(2π) + 1 + v5

(
0.5427592 +

1
2

log

√
4 + t2

2

)]

+
1

(a− 1)t2 log x

[
v1(e−acxa/2+e−cx1/2)+

v2

xσ(x2 − 1)
+

v2

xaσ(x2a − 1)

]
.

Since σ − 1/2 = c/ log x the lemma follows.

Lemma 4. Let T > 7.02, c > 0, α > 1, a > 1, eδ = 1 + 1/T and σ =
1/2 + ac/(log T ) ≤ 3/4. Then under the Riemann Hypothesis we have

(8)
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
ζ ′

ζ
(σ + it)

∣∣∣∣
2

dt ≤ f(a, c, T, α)
log2 T

T
,

where

f(a, c, T, α) = f1 +
( 4∑

j=2

f
1/2
j

)2
f5,
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and

f1 = f1(T ) =
504

T log T

(
1

1− 7.02/T

)2

,

f2 = f2(a, c, T ) =
π

1− σ/T
(

1
4a2c2

− 0.144

log2 T

)
,

f3 = f3(a, c, T, α)

=
[

α2π

1− σ/T +
(

2 +
1
T

)2(
α2

Tα−1 +
2α

Tα−1 log T
+

2

Tα−1 log2 T

)]

×
(
e−c + e−ac

2(a− 1)c

)2

,

f4 = f4(a, c, T ) =
a2β2(1 + 1/T )2σ

8232(a− 1)2 log4 T
,

where β = β(a, c, T ) is defined by (14) below and for sufficiently large T is
equivalent to e−ac, and finally

f5 = f5(a, c) =
(

(a− 1)c
(a− 1)c− e−c − e−ac

)2

.

P r o o f. We make use of the following integral formula:

(9)
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

cos(At) dt

=

{
0 for A ≥ δ,
π

2σ
(eσ(2δ−A) − eσA) for 0 ≤ A < δ,

which easily follows from the following well known identity:
∞∫

0

cosx
x2 + h2 dx =

π

2heh
,

valid for every positive h.
We also need the following elementary inequality:

(10)
∣∣∣∣
es − 1
s

∣∣∣∣ ≤
∞∑

k=1

|s|k−1

k!
≤ 1

1− |s|/2 ,

satisfied for every complex |s| < 2.
We split the range of integration on the left-hand side of (8) into two

intervals (0, 14), [14,∞). The first part contributes at most

504
T 2

(
1

1− 7.02/T

)2
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since according to (10) we have
∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣ <
δ

1− δ|σ + it|/2 <
1

T (1− 7.02/T )

and ∣∣∣∣
ζ ′

ζ
(σ + it)

∣∣∣∣ ≤ 6 for 0 < t ≤ 14.

The last inequality follows easily from (1) taking into account the numerical
values of the first three zeros lying on the critical line (given for example in
[4], p. 96), and the known value of k1 (see (6)).

In order to estimate the second integral we use Lemma 3. Writing∣∣∣∣
ζ ′

ζ
(s)
∣∣∣∣ <

√
f5(A+B + C),

say, after applying Minkowski’s inequality we obtain
∞∫

14

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
ζ ′

ζ
(σ + it)

∣∣∣∣
2

dt < f5

( 3∑

j=1

J
1/2
j

)2
,

where

J1 =
∞∫

14

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
∑
n<xa

Λx,a(n)
nσ+it

∣∣∣∣
2

dt,

J2 =
(
e−c + e−ac

2(a− 1)c

)2 ∞∫
14

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

log2 t dt

and

J3 =
∞∫

14

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2 1

(a− 1)2t4 log2 x

×
(
e−acxa/2 + e−cx1/2 +

1
xσ(x2 − 1)

+
1

xaσ(x2a − 1)

)2

dt.

Taking now T = xa in the preceding lemma we obtain

J1 <
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2 ∑
n<xa

Λ2
x,a(n)

n2σ dt

+
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2 ∑∑

m,n<xa,m 6=n

Λx,a(m)Λx,a(n)
(mn)σ(n/m)it

dt

=
∑
n<xa

Λ2
x,a(n)

n2σ · π(e2δσ − 1)
2σ
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+
∑∑
n<m<xa

Λx,a(m)Λx,a(n)
(mn)σ

· 2
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

cos
(
t log

m

n

)
dt

= δπ
e2δσ − 1

2δσ

∑
n<xa

Λ2
x,a(n)

n2σ .

Since log m
n ≥ log m

m−1 > log(1 + 1/T ), all the integrals vanish according
to (9).

Next using (1) we have

∑
n<xa

Λ2
x,a(n)

n2σ ≤
∑
n<xa

Λ2(n)
n2σ <

∞∑
n=1

Λ(n)
n2σ logn =

d

ds

{
ζ ′

ζ
(s)
}

s=2σ

=
{

1
(1− s)2 −

∑
%

1
(s− %)2 −

∞∑
n=1

1
(s+ 2n)2

}

s=2σ

=
1

(2σ − 1)2 −
∑
γ

1
(2σ − 1/2− iγ)2 −

∞∑
n=1

1
4(σ + n)2

<
log2 T

4a2c2
+ 2
∑
γ>0

1
1/4 + γ2 − 2

∑
γ>0

1/4
(1 + γ2)2 −

∞∑
n=1

1
4(3/4 + n)2

<
log2 T

4a2c2
− 0.144.

Hence by (10),

(11) J1 <
π

T (1− σ/T )

(
log2 T

4a2c2
− 0.144

)
.

Using (9), (10) and the easy inequality

(12) |eδ(σ+it) − 1| < 2 + 1/T

we have
∞∫

14

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

log2 t dt

=
Tα∫

14

+
∞∫

Tα

<
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

log2 Tα dt+
∞∫

Tα

|eδ(σ+it) − 1|2
t2

log2 t dt

< α2 log2 T · π
2σ

(e2δσ − 1) +
(

2 +
1
T

)2 ∞∫
Tα

log2 t

t2
dt

< α2 log2 T
π

T (1− σ/T )
+
(

2 +
1
T

)2(
α2 log2 T

Tα
+

2α log T
Tα

+
2
Tα

)
,
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and hence finally,

(13) J2 <

[
α2 log2 T

π

T (1− σ/T )
+
(

2+
1
T

)2(
α2 log2 T

Tα
+

2α log T
Tα

+
2
Tα

)]

×
(
e−c + e−ac

2(a− 1)c

)2

.

Now let us define β so that

(14) e−acxa/2 + e−cx1/2 +
1

xσ(x2 − 1)
+

1
xaσ(x2a − 1)

= βT 1/2.

We easily get

(15)
1
δ

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣ ≤
(

1 +
1
T

)σ

and hence

J3 =
∞∫

14

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

a2β2T

(a− 1)2t4 log2 T
dt(16)

≤ δ2
(

1 +
1
T

)2σ
a2β2T

(a− 1)2 log2 T

∞∫
14

dt

t4

<

(
1 +

1
T

)2σ
a2β2

8232(a− 1)2T log2 T
.

Now our lemma follows easily from (11), (13) and (16).

Let as usual (x > 1)

θ(x) =
∑

p≤x, p prime

log p, θ0(x) =
1
2

(θ(x− 0) + θ(x+ 0)).

Lemma 5. Suppose R.H. is true. Then

I: =
∞∫

1

∣∣∣∣
θ(y + y/T )− θ(y)− y/T

y1/2+σ

∣∣∣∣
2

dy(17)

≤ 1
π

(f1/2 + f
1/2
6 + f

1/2
7 )2 log2 T

T
,

where

f6 = f6(a, c, T ) =
π

(1− σ/T ) log2 T

(
0.886 +

log2 T

8Ta2c2
+

log T
4T 2ac

)
,

f7 = f7(a, c, T ) =
4.51π

(1− σ/T ) log2 T

and f has the same meaning as in Lemma 4.
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P r o o f. The following identity holds (see [12]):

(18)
θ0(eδ+τ )− θ0(eτ )− eτ/T

eστ

= − 1
2π

∞∫
−∞

eδ(σ+it) − 1
σ + it

eitτ
{
ζ ′

ζ
(σ + it) + g(σ + it)

}
dt,

where τ > 0 and

g(s) =
∞∑
r=2

∑

p prime

log p
prs

for <s > 1/2.

Thus by the Parseval theorem
∞∫

0

∣∣∣∣
θ0(eδ+τ )− θ0(eτ )− eτ/T

eστ

∣∣∣∣
2

dτ

≤ 1
2π

∞∫
−∞

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
ζ ′

ζ
(σ + it) + g(σ + it)

∣∣∣∣
2

dt.

Putting on the left-hand side eτ = y and writing θ instead of θ0 we obtain

(19) I ≤ 1
π

∞∫
0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
ζ ′

ζ
(σ + it) + g(σ + it)

∣∣∣∣
2

dt.

For <s > 1/2 we have

(20) g(s) =
∞∑
n=1

Λ(n)
n2s +

∑

p prime

log p
ps(p2s − 1)

.

Inserting this identity to (19) and applying Minkowski’s inequality again we
obtain

I ≤ 1
π

( 3∑

j=1

I
1/2
j

)2
,

where

I1 =
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
ζ ′

ζ
(σ + it)

∣∣∣∣
2

dt,

I2 =
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
∞∑
n=1

Λ(n)
n2(σ+it)

∣∣∣∣
2

dt,

I3 =
∞∫

0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2∣∣∣∣
∑

p prime

log p
pσ+it(p2(σ+it) − 1)

∣∣∣∣
2

dt.
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The first integral is estimated in Lemma 4. To estimate I2 we apply (9),
(10) and (1):

I2 =
∞∑
n=1

Λ2(n)
n4σ

∞∫
0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

dt

+ 2
∑∑
m>n

Λ(m)Λ(n)
(mn)2σ

∞∫
0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

cos
(
t log

m2

n2

)
dt

= δπ

∞∑
n=1

Λ2(n)
n4σ ·

e2δσ − 1
2δσ

+ 2
∑∑
m>n

Λ(m)Λ(n)
(mn)2σ ·





0 for log
m2

n2 ≥ δ
π

2σ
(e2δσ − 1)

(
m

n

)2σ

for log
m2

n2 < δ

<
π

T (1− σ/T )

(
d

dt

{
ζ ′

ζ
(s)
}

s=4σ
+ 2

∑∑

n2<m2<n2(1+1/T )

Λ(m)Λ(n)
n4σ

)

<
π

T (1− σ/T )

[
0.886 +

2
T

∞∑
n=1

Λ(n)
n4σ−1

(
log n+

1
2T

)]

=
π

T (1− σ/T )

(
0.886 +

2
T
· d
ds

{
ζ ′

ζ
(s)
}

s=4σ−1
− 1
T 2 ·

ζ ′

ζ
(4σ − 1)

)

<
π

T (1− σ/T )

(
0.886 +

log2 T

8Ta2c2
+

log T
4T 2ac

)

and hence

(21) I2 <
π

T (1− σ/T )

(
0.886 +

log2 T

8Ta2c2
+

log T
4T 2ac

)
.

Finally, applying (9) and (10) once more we have

I3 ≤
( ∑

p prime

log p
pσ(p2σ − 1)

)2 ∞∫
0

∣∣∣∣
eδ(σ+it) − 1
σ + it

∣∣∣∣
2

dt(22)

<
π

T (1− σ/T )

( ∑

p prime

log p√
p(p− 1)

)2

< 4.51
π

T (1− σ/T )
.

Gathering (19), (21) and (22) the result follows.
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Let (p, p′) denote a generic pair of two consecutive primes. Let us write

λ(x) =
{

2 for 0 < x ≤ 7,
maxp≤x(p′ − p) for x > 7.

Lemma 6. Under the Riemann Hypothesis we have

λ(x) <
1

4π

√(
1 +

1
16597

)
x log2 x for x ≥ 2.3 · 109.

P r o o f. This follows easily from Theorems 10 and 12 of [11].

Lemma 7. Every interval of the form (x, x+ λ(λ(x))), x > 4, contains a
sum of two odd primes.

P r o o f. Let p1 be the greatest odd prime smaller than x and let p2 be
the smallest odd prime greater than x− p1. Then p1 + p2 > x and

p1 + p2 − x = p2 − (x− p1) < λ(x− p1) < λ(λ(x)).

The lemma hence follows.

3. Proof of the Theorem. Obviously it is enough to prove our Theorem
for integers ≤ n0 := ee

11.503
since for larger numbers the situation is clear

(cf. [1]). We indicate first a real constant h ≥ 7 with the property that every
interval of the form [x, x+h], 0 ≤ x ≤ n0, contains a sum of two odd primes.
Suppose on the contrary that a certain interval of this sort contains no such
sum, and put

A = {0 ≤ y ≤ x : (y, y + h/2) ∩ P0 = ∅},
B = {0 ≤ y ≤ x : (y, y + h/2) ∩ P0 6= ∅},
C = {0 ≤ y ≤ x : (x− y, x− y + h/2) ∩ P0 6= ∅},

P0 denoting the set of all odd primes. Then clearly B ∪C ⊂ [0, x], and both
sets have the same Lebesgue measure: µ(B) = µ(C). Moreover, B ∩ C = ∅.
Indeed, otherwise there would exist two odd primes p1, p2 and a real number
y0 ∈ [0, x] such that p1 ∈ (y0, y0 + h/2) and p2 ∈ (x − y0, x − y0 + h/2).
Then p1 + p2 would belong to (x, x+ h), which is impossible. Thus we have
µ(B) ≤ x/2, and consequently µ(A) = x− µ(B) ≥ x/2.

We consider the following ranges for x separately: 4 < x ≤ 7.263 · 1013,
7.263 · 1013 < x ≤ e78, e78 < x ≤ e84000 and e84000 < x ≤ n0.

In the first interval the situation is clear. According to [16] the maximal
gap between prime numbers up to 7.263 · 1013 is at most 778. Hence by
Lemma 7 we can take h = λ(778) = 18 in this case.

For 7.263 · 1013 < x ≤ e78 according to Lemma 6 we have λ(x) <
4.1926 · 1019 and thus we can take h = λ(4.1926 · 1019) < 1.052 · 1012.
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For larger x we assume additionally that h ≤ 2e−12x. Consider the inte-
gral

J :=
∞∫

2

∣∣∣∣
θ(y + y/T )− θ(y)− y/T

y1/2+σ

∣∣∣∣
2

dy

with

T =
2x
h
, σ =

1
2

+
ac

log T
and 1.6 ≤ a ≤ 2, 1 ≤ c ≤ 1.5.

Then since A ⊂ (2, x] we have

J ≥
∫
A

∣∣∣∣
θ(y + y/T )− θ(y)− y/T

y1/2+σ

∣∣∣∣
2

dy =
1
T 2

∫
A

y1−2σ dy(23)

≥ 1
T 2x

1−2σµ(A) ≥ 1
2T 2x

2(1−σ).

In case e78 < x ≤ e84000, using Lemmas 7 and 6 again we have T ≥ e51.
Hence taking a = 1.96745, c = 1.32149 and α = 1.07 in Lemmas 4 and 5 we
obtain

f1(T ) < 10−22, f2(a, c, T ) < 0.11619, f3(a, c, T, α) < 0.06636,

f4(a, c, T ) < 5 · 10−13, f5(a, c) < 1.85985, f(a, c, T, α) < 0.66614,

f6(a, c, T ) < 0.0010702, f7(a, c, T ) < 0.00544736

and consequently

(24) J < 0.271
log2 T

T
.

Comparing (23) and (24) we obtain

(25) h < 4 · 0.271e2ac log x
log((2x)/h) log2 2x

h
,

which after some elementary computations yields h < 1.4 · 1012.
For x > e84000, from Lemma 6 we have

λ(x) < x0.50024, λ(λ(x)) < x0.25035.

Then from Lemma 7 and inequality (25) we obtain

(26) h < 1116 log2 x.

In this case we have T ≥ e83970. With the same parameters a and c in
Lemmas 4 and 5 and with α = 1.00013 we have

f1(T ) < 10−36474, f2(a, c, T ) < 0.11619, f3(a, c, T, α) < 0.055895,

f4(a, c, T ) < 10−25, f5(a, c) < 1.85985, f(a, c, T, α) < 0.619816,

f6(a, c, T ) < 4 · 10−10, f7(a, c, T ) < 2.01 · 10−9.
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Then

J < 0.1973261
log2 T

T
,

and by (26),

(27) h < 143.3263 log2 2x
h
,

which for x ≤ n0 yields h < 1.4045 · 1012.
Hence every interval of the form [x, x+1.4045 ·1012], x ≤ n0, contains at

least one sum of two odd primes. Applying this observation with x = n− 2
we infer that for every 9 < n ≤ n0 there exist two odd prime numbers, p1

and p2 say, such that

3 < m := n− (p1 + p2) < 1.405 · 1012.

If n is odd then m is odd as well, and according to [14] and [16] it is a sum
of at most three primes. Hence n itself is a sum of at most five primes. In
case of even n we argue similarly. If G2 > 1.405 ·1012, m is a sum of at most
two primes, and n a sum of at most four primes. Our Theorem therefore
follows.

R e m a r k. Inequality (27) gives us the following result, connected with
Theorem 2 of [7]:

If R.H. is true then for x ≥ e84000 every interval [x, x+ 144 log2 x] con-
tains a sum of two primes.
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95, no 4, to appear.
[10] H. Riese l and R. C. Vaughan, On sums of primes, Ark. Mat. 21 (1983), 45–74.



374 L. Kaniecki

[11] L. Schoenfe ld, Sharper bounds for the Čebyshev functions ψ and θ, II , Math.
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