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A construction of low-discrepancy sequences
using global function fields

by

Chaoping Xing (Hefei) and Harald Niederreiter (Wien)

1. Introduction. The idea of using global function fields for the con-
struction of s-dimensional low-discrepancy sequences was first sketched by
Niederreiter [9, Section 5], [10, Section 5], and the details were worked out
in an improved form by Niederreiter and Xing [11]. In the method of [11]
one chooses a suitable global function field which contains s elements sat-
isfying special properties. This global function field can, for instance, be a
rational function field, in which case one obtains an earlier construction of
low-discrepancy sequences due to Niederreiter [7]. If one chooses certain el-
liptic function fields, then it was shown in [11] that one gets improvements
on the construction in [7].

Important progress in the construction of low-discrepancy sequences was
achieved in the paper [12] of the authors. The key idea of the construction
in [12] is to work with global function fields containing many rational places,
i.e., places of degree 1. This method yields significantly better results than
all previous methods. The only essential condition in this construction is
that the global function field contains at least s+ 1 rational places.

In the present paper we describe a different construction which is also
based on global function fields, but which is somewhat more explicit than
the construction in [12]. This new construction is also more flexible than
that in [12], since we can now use not only rational places, but also places of
larger degree. Just like the method in [12], the present construction produces
low-discrepancy sequences that are in a sense asymptotically optimal. The
new construction produces the best results if places of small degree are
used. In the case where we work only with rational places, we get the same
results as in [12], but by a different method. Some examples in Section 4
demonstrate that in certain cases the new construction yields improvements
on the results in [12] if we use also places of degree greater than 1.
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Like all the constructions mentioned above, our method is based on the
general theory of (t, s)-sequences. The standard procedure is to use the so-
called digital method to obtain (t, s)-sequences, usually in a prime-power
base q. In Section 2 we review the digital method for constructing (t, s)-
sequences by means of the finite field Fq of order q. Our new construction
of digital (t, s)-sequences using global function fields over Fq is described
in detail in Section 3. Some consequences of the construction are drawn in
Section 4. In particular, it is shown that we can obtain digital (t, s)-sequences
for which the values of t are asymptotically optimal.

2. The digital method for the construction of sequences. With
regard to low-discrepancy point sets and sequences we follow the notation
and terminology in the book of Niederreiter [8]. For s ≥ 1 let Is = [0, 1)s

be the half-open s-dimensional unit cube. The following standard concept
is fundamental.

Definition 1. For integers b ≥ 2 and 0 ≤ t ≤ m, a (t,m, s)-net in base
b is a point set consisting of bm points in Is such that every subinterval J
of Is of the form

J =
s∏

i=1

[aib−di , (ai + 1)b−di)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s and of volume bt−m

contains exactly bt points of the point set.

Given a base b ≥ 2, we write Zb = {0, 1, . . . , b− 1} for the least residue
system mod b. For a real number x ∈ [0, 1] let

x =
∞∑

j=1

yjb
−j with all yj ∈ Zb

be a b-adic expansion of x, where the case yj = b − 1 for almost all j is
allowed. For an integer m ≥ 1 we define the truncation

[x]b,m =
m∑

j=1

yjb
−j .

It should be emphasized that this truncation operates on the expansion of x
and not on x itself, since it may yield different results depending on which
b-adic expansion of x is used. If I

s
= [0, 1]s is the closed s-dimensional unit

cube and x = (x(1), . . . , x(s)) ∈ Is, where the x(i), 1 ≤ i ≤ s, are given by
prescribed b-adic expansions, then we define

[x]b,m = ([x(1)]b,m, . . . , [x(s)]b,m).
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Note that we always have [x]b,m ∈ Is. For the following slight generalization
of a definition in [6, Section 2] see Niederreiter and Xing [12] and Tezuka [16].

Definition 2. For integers b ≥ 2 and t ≥ 0, a sequence x0,x1, . . . of
points in I

s
with prescribed b-adic expansions of all coordinates is called a

(t, s)-sequence in base b if for all integers k ≥ 0 and m > t the points [xn]b,m
with kbm ≤ n < (k + 1)bm form a (t,m, s)-net in base b.

It is clear from Definition 2 that smaller values of t mean stronger uni-
formity properties of the sequence. The number t is sometimes called the
“quality parameter”.

Now we describe the digital method for the construction of sequences,
where we follow the presentation in [12]. This method can be applied with
any base b, but for the purposes of the present paper it suffices to consider a
prime-power base q. Let Fq again be the finite field of order q and let s ≥ 1
be a given dimension. Then we choose the following:

(S1) bijections ψr : Zq → Fq for r ≥ 0, with ψr(0) = 0 for all sufficiently
large r;

(S2) bijections η(i)
j : Fq → Zq for 1 ≤ i ≤ s and j ≥ 1;

(S3) elements c(i)j,r ∈ Fq for 1 ≤ i ≤ s, j ≥ 1, and r ≥ 0.

For n = 0, 1, . . . let

n =
∞∑
r=0

ar(n)qr

be the digit expansion of n in base q, where ar(n) ∈ Zq for r ≥ 0 and
ar(n) = 0 for all sufficiently large r. We put

(1) x(i)
n =

∞∑

j=1

y
(i)
n,jq

−j for n ≥ 0 and 1 ≤ i ≤ s,

with

y
(i)
n,j = η

(i)
j

( ∞∑
r=0

c
(i)
j,rψr(ar(n))

)
∈ Zq for n ≥ 0, 1 ≤ i ≤ s, and j ≥ 1.

Note that the sum over r is always a finite sum. Now we define the sequence

(2) xn = (x(1)
n , . . . , x(s)

n ) ∈ Is for n = 0, 1, . . .

Definition 3. If the sequence in (2) is a (t, s)-sequence in base q for
some integer t ≥ 0, then this sequence is called a digital (t, s)-sequence
constructed over Fq. Here the truncations are required to operate on the
expansions in (1).

The quality parameter t can be determined from the elements c(i)j,r ∈ Fq
in (S3) in the following way. If F∞q is the sequence space over Fq, then we
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use the c(i)j,r to set up the sequences

c(i)
j = (c(i)j,0, c

(i)
j,1, . . .) ∈ F∞q for 1 ≤ i ≤ s and j ≥ 1,

and we consider the two-parameter system

C(∞) = {c(i)
j ∈ F∞q : 1 ≤ i ≤ s and j ≥ 1}.

For m ≥ 1 we define the projection

πm : (c0, c1, . . .) ∈ F∞q 7→ (c0, . . . , cm−1) ∈ Fmq ,
and we put

C(m) = {πm(c(i)
j ) ∈ Fmq : 1 ≤ i ≤ s, 1 ≤ j ≤ m}.

As in [8, Definition 4.27], for fixed m we let %(C(m)) be the largest integer d
such that any system {πm(c(i)

j ) : 1 ≤ j ≤ di, 1 ≤ i ≤ s} with 0 ≤ di ≤ m for
1 ≤ i ≤ s and

∑s
i=1 di = d is linearly independent over Fq (here the empty

system is viewed as linearly independent). Finally, we set

τ(C(∞)) = sup
m≥1

(m− %(C(m))).

We are interested only in the case where τ(C(∞)) < ∞. The proofs of
Theorems 4.35 and 4.36 in [8] yield the following result.

Lemma 1. If the elements c(i)j,r ∈ Fq in (S3) are such that τ(C(∞)) <∞,
then the sequence in (2) is a digital (t, s)-sequence constructed over Fq with
t = τ(C(∞)).

Most known constructions of (t, s)-sequences employ the digital method
over a finite field. Important previous constructions using the digital method
are those of Sobol’ [14], Faure [1], Niederreiter [6], [7], and Niederreiter and
Xing [11], [12]. A recent survey of (t,m, s)-net and (t, s)-sequence construc-
tions is given in [5]. A generalization of the concept of a (t, s)-sequence was
recently introduced by Larcher and Niederreiter [3].

Any (t, s)-sequence S in an arbitrary base b ≥ 2 is a low-discrepancy
sequence, in the sense that the star discrepancyD∗N (S) of the firstN terms of
S satisfies D∗N (S) = O(N−1(logN)s). More precisely, by [8, Theorem 4.17]
(see also [12] for the slightly more general case in Definition 2) we have

(3) D∗N (S) ≤ Cb(s, t)N−1(logN)s +O(N−1(logN)s−1) for all N ≥ 2,

where the implied constant in the Landau symbol depends only on b, s, and
t. Here

Cb(s, t) =
bt

s

(
b− 1
2 log b

)s
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if either s = 2 or b = 2, s = 3, 4; otherwise

Cb(s, t) =
bt

s!
· b− 1

2bb/2c
(bb/2c

log b

)s
.

It is again clear from the discrepancy bound (3) that small values of t are
preferable if one wants to obtain good low-discrepancy sequences. Thus, the
aim in the construction of (t, s)-sequences in base b is to make the value of
the quality parameter t as small as possible for given b and s.

3. The new construction of sequences. We now describe our new
method of obtaining digital (t, s)-sequences constructed over the finite field
Fq by means of global function fields over Fq. The notation K/Fq for a
global function field signifies that Fq is the full constant field of the algebraic
function field K. The genus of K/Fq is denoted by g(K/Fq). We write νP
for the normalized discrete valuation corresponding to the place P of K/Fq.
For an arbitrary divisor D of K/Fq, the Fq-vector space

L(D) = {k ∈ K\{0} : (k) +D ≥ 0} ∪ {0}
has a finite dimension which we denote by l(D). Here (k) is the principal
divisor of k.

Now let s ≥ 1 be a given dimension. Let K/Fq be a global function
field containing at least one rational place P∞, and let D be a positive
divisor of K/Fq with deg(D) = 2g(K/Fq) and P∞ 6∈ supp(D). We choose s
distinct places P1, . . . , Ps of K/Fq with Pi 6= P∞ for 1 ≤ i ≤ s, and we put
ei = deg(Pi) for 1 ≤ i ≤ s. With the abbreviation g = g(K/Fq) we have
l(D) = g + 1 by the Riemann–Roch theorem. We choose a basis of L(D) in
the following way. Note that l(D−P∞) = g by the Riemann–Roch theorem
and l(D − (2g + 1)P∞) = 0, hence there exist integers 0 = n0 < n1 < . . . <
ng ≤ 2g such that

l(D − nfP∞) = l(D − (nf + 1)P∞) + 1 for 0 ≤ f ≤ g.
Choose wf ∈ L(D − nfP∞)\L(D − (nf + 1)P∞), then

(4) νP∞(wf ) = nf for 0 ≤ f ≤ g,
and it is easily seen that {w0, w1, . . . , wg} is a basis of L(D).

For each 1 ≤ i ≤ s we consider the chain

L(D) ⊂ L(D + Pi) ⊂ L(D + 2Pi) ⊂ . . .
of Fq-vector spaces. By starting from the basis {w0, w1, . . . , wg} of L(D)
and successively adding basis vectors at each step of the chain, we obtain
for each n ≥ 1 a basis

{w0, w1, . . . , wg, k
(i)
1 , k

(i)
2 , . . . , k(i)

nei}
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of L(D + nPi). We note that we then have

(5) k
(i)
j ∈ L

(
D +

(⌊
j − 1
ei

⌋
+ 1
)
Pi

)
for 1 ≤ i ≤ s and j ≥ 1.

Lemma 2. The system {w0, w1, . . . , wg} ∪ {k(i)
j }1≤i≤s,j≥1 of elements of

K is linearly independent over Fq.

P r o o f. Suppose that
g∑

f=0

afwf +
s∑

i=1

N∑

j=1

b
(i)
j k

(i)
j = 0

for some N ≥ 1 and af , b
(i)
j ∈ Fq. For a fixed 1 ≤ h ≤ s we write

(6)
N∑

j=1

b
(h)
j k

(h)
j = −

g∑

f=0

afwf −
s∑

i=1
i 6=h

b
(i)
j k

(i)
j .

Abbreviate the left-hand side of (6) by k. If k 6= 0, then by the construction
of the k(h)

j we have k 6∈ L(D), and so

νPh(k) ≤ −νPh(D)− 1

in view of (5). On the other hand, by using the expression for k on the
right-hand side of (6) we get

νPh(k) ≥ −νPh(D),

thus we must have k = 0. It follows that all b(h)
j = 0, and since h was

arbitrary, we get b(i)j = 0 for 1 ≤ i ≤ s and 1 ≤ j ≤ N , and so also af = 0
for 0 ≤ f ≤ g.

Let z be a local uniformizing parameter at P∞ and let the integers 0 =
n0 < n1 < . . . < ng ≤ 2g be as in (4). For r = 0, 1, . . . we put

zr =
{
zr if r 6∈ {n0, n1, . . . , ng},
wf if r = nf for some f ∈ {0, 1, . . . , g}.

Note that then νP∞(zr) = r for all r ≥ 0. For 1 ≤ i ≤ s and j ≥ 1 we have
k

(i)
j ∈ L(D + nPi) for some n ≥ 1 and also P∞ 6∈ supp(D + nPi), hence

νP∞(k(i)
j ) ≥ 0. Thus we have the expansions

(7) k
(i)
j =

∞∑
r=0

a
(i)
j,rzr for 1 ≤ i ≤ s and j ≥ 1,

where all coefficients a(i)
j,r ∈ Fq. For 1 ≤ i ≤ s and j ≥ 1 we now define the
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sequences

(8) c(i)
j = (â(i)

j,n0
, a

(i)
j,1, . . . , â

(i)
j,n1

, a
(i)
j,n1+1, . . . , â

(i)
j,ng

, a
(i)
j,ng+1, . . .) ∈ F∞q ,

where the hat indicates that the corresponding term is deleted. If we then
write

c(i)
j = (c(i)j,0, c

(i)
j,1, . . .),

then the terms c(i)j,r ∈ Fq serve as the elements in (S3) in the digital method
for the construction of (t, s)-sequences described in Section 2. The bijections
ψr and η

(i)
j are chosen as in (S1) and (S2), respectively. Then the digital

method yields the sequence x0,x1, . . . of points in I
s

as in (2), and this
completes the description of our new construction of sequences.

To obtain the quality parameter for this sequence, we proceed as in
Section 2, i.e., we use the c(i)

j from (8) to set up the two-parameter system

(9) C(∞) = {c(i)
j ∈ F∞q : 1 ≤ i ≤ s and j ≥ 1}.

Theorem 1. Given a prime power q and a dimension s ≥ 1, let K/Fq
be a global function field of genus g = g(K/Fq) which contains at least one
rational place P∞, and let D be a positive divisor of K/Fq with deg(D) = 2g
and P∞ 6∈ supp(D). Let P1, . . . , Ps be s distinct places of K/Fq with Pi 6= P∞
for 1 ≤ i ≤ s. Then the system C(∞) in (9) satisfies

τ(C(∞)) ≤ g +
s∑

i=1

(ei − 1),

where ei = deg(Pi) for 1 ≤ i ≤ s.
P r o o f. It suffices to verify the following property: for any integer m >

g +
∑s
i=1(ei − 1) and any integers d1, . . . , ds ≥ 0 with 1 ≤ ∑s

i=1 di ≤
m− g −∑s

i=1(ei − 1), the vectors

πm(c(i)
j ) = (c(i)j,0, . . . , c

(i)
j,m−1) ∈ Fmq for 1 ≤ j ≤ di, 1 ≤ i ≤ s,

are linearly independent over Fq. Let H be the set of i with 1 ≤ i ≤ s for
which di ≥ 1, and suppose that we have

(10)
∑

i∈H

di∑

j=1

b
(i)
j πm(c(i)

j ) = 0 ∈ Fmq

for some b(i)j ∈ Fq. Now we consider the element k ∈ K given by

(11) k =
∑

i∈H

di∑

j=1

b
(i)
j k

(i)
j −

∑

i∈H

di∑

j=1

b
(i)
j

g∑

f=0

a
(i)
j,nf

wf .
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We put R = {n0, n1, . . . , ng} and use (7) to obtain

k =
∑

i∈H

di∑

j=1

b
(i)
j

( ∞∑
r=0

a
(i)
j,rzr −

g∑

f=0

a
(i)
j,nf

znf

)
=
∞∑
r=0
r 6∈R

(∑

i∈H

di∑

j=1

b
(i)
j a

(i)
j,r

)
zr.

From (8) and (10) we get

∑

i∈H

di∑

j=1

b
(i)
j a

(i)
j,r = 0

for the first m nonnegative integers r that are not in R. If we use also m > g
and ng ≤ 2g, then we arrive at

νP∞(k) ≥ m+ g + 1.

Furthermore, (5) and (11) yield

k ∈ L
(
D +

∑

i∈H

(⌊
di − 1
ei

⌋
+ 1
)
Pi

)
.

If we had k 6= 0, then by looking at the poles of k we would obtain

deg
(
D +

∑

i∈H

(⌊
di − 1
ei

⌋
+ 1
)
Pi

)
≥ m+ g + 1,

and so
s∑

i=1

di ≥ m− g −
∑

i∈H
(ei − 1) + 1 ≥ m− g −

s∑

i=1

(ei − 1) + 1,

a contradiction. Thus k = 0, and by appealing to (11) and Lemma 2 we
conclude that all b(i)j = 0.

Theorem 2. Given a prime power q and a dimension s ≥ 1, let K/Fq
be a global function field of genus g and P1, . . . , Ps be places of K/Fq satis-
fying the conditions in Theorem 1. Then there exists a digital (t, s)-sequence
constructed over Fq with

t = g +
s∑

i=1

(ei − 1),

where ei = deg(Pi) for 1 ≤ i ≤ s.
P r o o f. This follows from Lemma 1 and Theorem 1. Note also that any

(t, s)-sequence in an arbitrary base b is a (u, s)-sequence in base b for every
integer u ≥ t (compare with [8, Remark 4.3]).

4. Some consequences of the construction. In the following let
N(K/Fq) denote the number of rational places of a global function field
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K/Fq. As in [12], for any prime power q and any dimension s ≥ 1 we define

Vq(s) = min g(K/Fq),

where the minimum is extended over all global function fields K/Fq with
N(K/Fq) ≥ s + 1 (by [13, Théorème 4] such global function fields always
exist). Now choose K/Fq such that g(K/Fq) = Vq(s) and N(K/Fq) ≥ s+ 1,
and let P∞, P1, . . . , Ps be s + 1 distinct rational places of K/Fq. Then we
can apply the construction in Section 3 with D = 2g(K/Fq)P1, for instance,
and this yields a digital (Vq(s), s)-sequence constructed over Fq according
to Theorem 2. Let us point out that the somewhat less explicit method in
[12] yields also a digital (Vq(s), s)-sequence constructed over Fq for every
prime power q and every s ≥ 1. By means of deep results from the class
field theory of global function fields it was shown in [12] that Vq(s) = O(s)
with an absolute implied constant.

For any prime power q and any dimension s ≥ 1, let dq(s) be the least
value of t such that there exists a digital (t, s)-sequence constructed over
Fq. It is clear from the above that dq(s) ≤ Vq(s), so that in particular
dq(s) = O(s) with an absolute implied constant. It should be pointed out,
though, that in most cases class field theory does not describe the required
global function fields explicitly. The following result shows dq(s) = O(s)
via explicitly given global function fields. The construction in the proof of
Theorem 3 does not work with the method in [12] since the former makes use
of places of degree 2, whereas the construction in [12] allows only rational
places.

Theorem 3. For every prime power q and every dimension s ≥ 1 we
have

dq(s) ≤ 3q − 1
q − 1

(s− 1)− (2q + 4)(s− 1)1/2

(q2 − 1)1/2
+ 2.

P r o o f. Consider the tower K1 ⊆ K2 ⊆ . . . of global function fields over
Fq, where K1 = Fq(x1) is a rational function field and Kn+1 = Kn(zn+1)
for n = 1, 2, . . . with

zqn+1 + zn+1 = xq+1
n and xn+1 =

zn+1

xn
.

If for each n ≥ 1 we let En = KnFq2 be a constant field extension of Kn,
then we obtain the tower E1 ⊆ E2 ⊆ . . . of global function fields over Fq2

constructed by Garcia and Stichtenoth [2]. It follows from the invariance of
the genus under constant field extensions [15, Theorem III.6.3] and from the
genus bound in [2] that

g(Kn/Fq) = g(En/Fq2) ≤ qn+qn−1−q(n+1)/2−2q(n−1)/2+1 for all n ≥ 1.
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By another result from [2] we have

N(En/Fq2) ≥ (q2 − 1)qn−1 + 1 for all n ≥ 1.

Let Q1 be the pole of x1 in K1/Fq. We will prove by induction on n that
Q1 is totally ramified in Kn/K1 and that its unique extension Qn to Kn/Fq
satisfies νQn(xn) = −1. This being trivial for n = 1, we assume that it has
been shown for some n ≥ 1. If Qn+1 is a place of Kn+1/Fq lying over Qn,
then with e(Qn+1|Qn) denoting the ramification index we get

νQn+1(xq+1
n ) = e(Qn+1|Qn)νQn(xq+1

n ) = −(q + 1)e(Qn+1|Qn),

but also

νQn+1(xq+1
n ) = νQn+1(zqn+1 + zn+1) = qνQn+1(zn+1).

Thus, q divides e(Qn+1|Qn). On the other hand, e(Qn+1|Qn) ≤ [Kn+1 :
Kn] ≤ q, hence e(Qn+1|Qn) = [Kn+1 : Kn] = q, and so Q1 is totally
ramified in Kn+1/K1. Moreover, νQn+1(zn+1) = −q − 1, thus

νQn+1(xn+1) = νQn+1

(
zn+1

xn

)
= −q − 1− qνQn(xn) = −1,

and the induction is complete. Note that we have shown in particular that
N(Kn/Fq) ≥ 1 for all n ≥ 1.

Since En/Kn is an unramified extension of degree 2, we have

N(Kn/Fq) + 2N2(Kn/Fq) = N(En/Fq2) ≥ (q2 − 1)qn−1 + 1 for all n ≥ 1,

where N2(Kn/Fq) denotes the number of places of Kn/Fq of degree 2. To-
gether with N(Kn/Fq) ≥ 1 this yields

(12) N(Kn/Fq) +N2(Kn/Fq) ≥ 1
2 (q2 − 1)qn−1 + 1 for all n ≥ 1.

Now we are ready to prove the bound for dq(s) in the theorem. For all
s we will get this bound by applying the construction in Section 3 with a
suitable global function field Kn/Fq from the tower described above. First
let 1 ≤ s ≤ q. Then an obvious application of Theorem 2 to K1/Fq yields
dq(s) = 0, and the bound holds. Next let q + 1 ≤ s ≤ 1

2 (q2 − 1). Since
N(K1/Fq) = q + 1 and N2(K1/Fq) = 1

2 (q2 − q), it follows from Theorem
2, applied to K1/Fq with q places of degree 1 (the remaining rational place
serving as P∞) and s− q places of degree 2, that

dq(s) ≤ s− q ≤ 3q − 1
q − 1

(s− 1)− (2q + 4)(s− 1)1/2

(q2 − 1)1/2
+ 2.

Finally, let s ≥ 1
2 (q2 − 1) + 1. Then there exists some n ≥ 1 such that

1
2 (q2 − 1)qn−1 + 1 ≤ s ≤ 1

2 (q2 − 1)qn.

Recall that we have N(Kn+1/Fq) ≥ 1 and (12), so that Kn+1/Fq has at
least one rational place which can serve as P∞ and s additional places of
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degree ≤ 2. Thus, Theorem 2 yields

dq(s) ≤ g(Kn+1/Fq) + s ≤ qn+1 + qn − q(n+2)/2 − 2qn/2 + 1 + s

≤ 2q
q − 1

(s− 1)− (q + 2)
(

2q(s− 1)
q2 − 1

)1/2

+ 1 + s

≤ 3q − 1
q − 1

(s− 1)− (2q + 4)(s− 1)1/2

(q2 − 1)1/2
+ 2.

R e m a r k 1. From Theorem 3 we get for all s ≥ 1 the bounds

d2(s) ≤ 5s− 8√
3

(s− 1)1/2 − 3,

d3(s) ≤ 4s− 5√
2

(s− 1)1/2 − 2,

d5(s) ≤ 7
2
s− 7√

6
(s− 1)1/2 − 3

2
,

which are better than the bounds d2(s) ≤ 9s + 1, d3(s) ≤ 6s + 1, and
d5(s) ≤ 4s+ 1 obtained from the results in [12].

Corollary 1. For every prime power q we have

Lq := lim inf
s→∞

dq(s)
s
≤ q + 1
q − 1

.

P r o o f. We proceed as in the proof of Theorem 3, and with the notation
there we put

sn = N(Kn/Fq) +N2(Kn/Fq)− 1 for all n ≥ 1.

Then by Theorem 2 and results from the proof of Theorem 3 we obtain

dq(sn)
sn

≤ g(Kn/Fq) + sn
sn

≤ 1 +
qn + qn−1 − q(n+1)/2 − 2q(n−1)/2 + 1

1
2 (q2 − 1)qn−1

for all n ≥ 1, and so the desired bound for Lq follows.

R e m a r k 2. Corollary 1 yields the bounds L2 ≤ 3, L3 ≤ 2, and L5 ≤ 3/2,
which improves on the bounds L2 ≤ 9/2, L3 ≤ 3, and L5 ≤ 2 obtained from
the results in [12].

Example 1. Let K = F3(x, y) be the Artin–Schreier extension of the
rational function field F3(x) with

y3 − y =
x3 − x

(x2 + x− 1)2 .

Then we have g(K/F3) = 4 and N(K/F3) = 12; the rational places of K/F3

are obtained from the four rational places of F3(x) which split completely in
the extension K/F3(x). Furthermore, the zero of x2+x−1 is totally ramified
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in the extension K/F3(x) by [15, Proposition III.7.8], hence K/F3 has at
least one place of degree 2. Let P∞, P1, . . . , P11 be the 12 rational places of
K/F3 and let P12 be a place of K/F3 of degree 2. Then by Theorem 2 we
get d3(12) ≤ g(K/F3) + 1 = 5. This improves on the corresponding bound
in [12].

Example 2. Let K = F3(x, y1, y2) be the extension of the rational func-
tion field F3(x) with

y3
1 − y1 = x(x− 1), y3

2 − y2 =
x(x− 1)
x+ 1

.

Note that K can be obtained from F3(x) by two successive Artin–Schreier
extensions. We have g(K/F3) = 9 and N(K/F3) = 19; the rational places of
K/F3 are obtained from the pole of x which is totally ramified in the exten-
sion K/F3(x) and from the zeros of x and x−1 which split completely in the
extension K/F3(x). Furthermore, there is a unique place Q of F3(x, y1)/F3

of degree 3 lying over the zero of x + 1, and Q is totally ramified in the
extension K/F3(x, y1). Thus, K/F3 has at least one place of degree 3. Let
P∞, P1, . . . , P18 be the 19 rational places of K/F3 and let P19 be a place of
K/F3 of degree 3. Then by Theorem 2 we get d3(19) ≤ g(K/F3) + 2 = 11.
This improves on the corresponding bound in [12].

In the case where q is a square, Theorem 4 below yields an improvement
on the bound for dq(s) in Theorem 3. First we need the following auxiliary
result.

Lemma 3. For a prime power q , let K/Fq2 be a global function field , let
w ∈ K, and let P be a place of K/Fq2 satisfying νP (w) = −m < 0 with
gcd(m, q) = 1. Let E = K(y) with yq + y = w, and let F be a field with
K ⊆ F ⊆ E. Let P ′ and P ′′ be places of F , respectively E , lying over P.
Then the different exponent d(P ′′|P ′) is given by

d(P ′′|P ′) = ([E : F ]− 1)(m+ 1).

P r o o f. Since the polynomial zq + z ∈ Fq[z] has all its roots in Fq2 , it is
clear that E/K is a Galois extension. If e(P ′′|P ) is the ramification index,
then

νP ′′(w) = e(P ′′|P )νP (w) = −e(P ′′|P )m,
but also

νP ′′(w) = νP ′′(yq + y) = qνP ′′(y).
From gcd(m, q) = 1 it follows that q divides e(P ′′|P ). On the other hand,
e(P ′′|P ) ≤ [E : K] ≤ q, hence e(P ′′|P ) = [E : K] = q. Thus, P is totally
ramified in the extension E/K and νP ′′(y) = −m.

Let x ∈ K with νP (x) = 1 and let the integers k ≥ 1 and h be
such that hq − km = 1. Then t = xhyk satisfies νP ′′(t) = 1. For any
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σ ∈ Gal(E/K)\{id} we have σ(y) = y + c for some nonzero c ∈ Fq2 , thus

t− σ(t) = t(1− (1 + cy−1)k) = −t
k∑

j=1

(
k

j

)
cjy−j .

Note that k 6= 0 in Fq2 , hence νP ′′(t − σ(t)) = 1 + m. Then with G =
Gal(E/F ) we get by the arguments in the proof of [15, Proposition III.7.8(c)],

d(P ′′|P ′) =
∑

σ∈G\{id}
νP ′′(t− σ(t)) = ([E : F ]− 1)(m+ 1).

Theorem 4. If q = pr with a prime p and a positive integer r , then for
every dimension s ≥ 1 we have

dq2(s) ≤ ps

q − 1
.

P r o o f. Let E1 ⊆ E2 ⊆ . . . be the tower of global function fields over
Fq2 considered in the proof of Theorem 3, i.e., E1 = Fq2(x1) and En+1 =
En(zn+1) for n = 1, 2, . . . with

zqn+1 + zn+1 = xq+1
n and xn+1 =

zn+1

xn
.

Then En+1/En is a Galois extension of degree q for each n ≥ 1. Hence there
exists a chain of fields

En = Kn,0 ⊂ Kn,1 ⊂ . . . ⊂ Kn,r = En+1

such that [Kn,i+1 : Kn,i] = p for 0 ≤ i ≤ r − 1. From results in [2] we know
that for all n ≥ 1 we have

g(En/Fq2) ≤ qn + qn−1, N(En/Fq2) ≥ (q2 − 1)qn−1.

The last inequality implies

(13) N(Kn,i/Fq2) ≥ N(En+1/Fq2)
[En+1 : Kn,i]

≥ pi(q2 − 1)qn−1 for 0 ≤ i ≤ r.

Next we establish an upper bound for g(Kn,i/Fq2). From [2, Section 2]
we know that for each place P of En/Fq2 that is ramified in the extension
En+1/En we have νP (xn) = −1, hence νP (xq+1

n ) = −q − 1. It follows then
from the first part of the proof of Lemma 3 that P is totally ramified in
En+1/En. According to [2, Section 2], the sum of the degrees of these places
P is equal to qbn/2c, and so the same holds for the sum of the degrees of the
places P ′ of Kn,i/Fq2 that are ramified in En+1/Kn,i, where 0 ≤ i ≤ r − 1.
For any such P ′ and the unique place P ′′ of En+1/Fq2 lying over it we have
d(P ′′|P ′) = (pr−i − 1)(q + 2) by Lemma 3. By combining these facts with
the Hurwitz genus fomula, we obtain

2g(En+1/Fq2)− 2 = pr−i(2g(Kn,i/Fq2)− 2) + qbn/2c(q + 2)(pr−i − 1)
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for 0 ≤ i ≤ r, and so

g(Kn,i/Fq2) =
pi

q
(g(En+1/Fq2)− 1)− 1

2
qbn/2c−1(q + 2)(q − pi) + 1

≤ pi(qn + qn−1).

The result of the theorem is trivial for 1 ≤ s ≤ q2. If s ≥ q2 + 1, then
there are integers n ≥ 1 and 1 ≤ i ≤ r such that

pi−1(q2 − 1)qn−1 ≤ s ≤ pi(q2 − 1)qn−1 − 1.

In view of (13) we get

dq2(s) ≤ Vq2(s) ≤ g(Kn,i/Fq2) ≤ p

q − 1
pi−1(q2 − 1)qn−1 ≤ ps

q − 1
.

R e m a r k 3. Since an exact formula for g(En/Fq2) is given in [2, Theo-
rem 2.10], the proof of Theorem 4 yields an exact formula for g(Kn,i/Fq2).

We note that the bound dq(s) = O(s) is best possible as far as the
order of magnitude is concerned. This follows from a result of Larcher and
Schmid [4], which in the improved form given in [11, Corollary 2] says that
for every prime power q and every dimension s ≥ 1 we have

dq(s) >
(q − 1)(s+ 1)
eq2 log q

− 1
log q

.

It is a standard principle that if, for any prime power q, we are able
to obtain digital (t, s)-sequences constructed over Fq, then we can construct
(t, s)-sequences in an arbitrary base b ≥ 2, namely by using a digital method
with a direct product of finite fields (see [7], [8, Chapter 4], [12]). In partic-
ular, if b = q1 . . . qh is a product of prime powers and if for each 1 ≤ v ≤ h
there exists a digital (tv, s)-sequence constructed over Fqv , then there exists
a (t, s)-sequence in base b with

t = max(t1, . . . , th)

which is obtained by a digital method (see e.g. [12]). From the fact that
dq(s) = O(s) with an absolute implied constant, we can thus infer that for
every base b ≥ 2 and every dimension s ≥ 1 there exists a (t, s)-sequence
in base b obtained by a digital method such that the quality parameter
t = t(b, s) satisfies t(b, s) = O(s) with an absolute implied constant. As far
as (t, s)-sequences in base b obtained by a digital method are concerned, this
order of magnitude is again best possible, according to a result in [12] which
shows that t must grow at least linearly in s.

The fact that we can always achieve a value t = t(b, s) of the quality
parameter with t(b, s) = O(s) has an important implication for the coeffi-
cient Cb(s, t) of the leading term in the discrepancy bound (3). To wit, the
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formula for Cb(s, t) yields

logCb(s, t(b, s)) ≤ −s log s+O(s),

where the implied constant depends only on b. In the earlier constructions
of Faure [1] and Niederreiter [7] we have to vary the base with increasing
s, only to obtain a coefficient C ′(s) of the leading term N−1(logN)s in the
discrepancy bound which satisfies

logC ′(s) ≤ −s log log s+O(s).

Finally, we recall another general principle according to which a (t, s)-
sequence in base b obtained by a digital method yields (t,m, s + 1)-nets in
base b for every integer m ≥ t, and these nets are again produced by a
digital method (see [8, Chapter 4], [12]). Thus, by the discussion above, for
every base b ≥ 2 and every s ≥ 1 we can construct a (t(b, s),m, s+ 1)-net in
base b for every m ≥ t(b, s), where t(b, s) = O(s) with an absolute implied
constant and where the net is obtained by a digital method.
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TECHNOLOGY OF CHINA DER WISSENSCHAFTEN

HEFEI, ANHUI 230026, P.R. CHINA SONNENFELSGASSE 19

A-1010 WIEN, AUSTRIA

E-mail: NIEDERREITER@OEAW.AC.AT

Received on 7.4.1995 (2769)


