Numeration systems and fractal sequences

by
Clark Kimberling (Evansville, Ind.)

Let \mathbb{N} denote the set of positive integers. Every sequence $\mathbb{B}=\left(b_{0}, b_{1}, \ldots\right)$ of numbers in \mathbb{N} satisfying

$$
\begin{equation*}
1=b_{0}<b_{1}<\ldots \tag{1}
\end{equation*}
$$

is a basis for \mathbb{N}, as each n in \mathbb{N} has a \mathbb{B}-representation

$$
\begin{equation*}
n=c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{k} b_{k} \tag{2}
\end{equation*}
$$

where $b_{k} \leq n<b_{k+1}$ and the coefficients c_{i} are given by the division algorithm:

$$
\begin{equation*}
n=c_{k} b_{k}+r_{k}, \quad c_{k}=\left[n / b_{k}\right], \quad 0 \leq r_{k}<b_{k} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i}=c_{i-1} b_{i-1}+r_{i-1}, \quad c_{i-1}=\left[r_{i} / b_{i-1}\right], \quad 0 \leq r_{i-1}<b_{i-1} \tag{4}
\end{equation*}
$$

for $1 \leq i<k$. In (2) let i be the least index h such that $c_{h} \neq 0$; then b_{i} is the \mathbb{B}-residue of n. A proper basis is a basis other than the sequence $(1,2, \ldots)$ consisting of all the positive integers.

We extend the above notions to finite sequences $\mathbb{B}_{j}=\left(b_{0}, b_{1}, \ldots, b_{j}\right)$ satisfying

$$
1=b_{0}<b_{1}<\ldots<b_{j}
$$

for $j \geq 0$. Such a finite sequence is a finite basis, and a \mathbb{B}_{j}-representation is a sum

$$
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{j} b_{j}
$$

such that if $n=c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{j} b_{j}$, then there exist integers $r_{0}, r_{1}, \ldots, r_{j}$ such that

$$
n=c_{j} b_{j}+r_{j}, \quad c_{j}=\left[n / b_{j-1}\right], \quad 0 \leq r_{j}<b_{j}
$$

[^0]and
$$
r_{i}=c_{i-1} b_{i-1}+r_{i-1}, \quad c_{i-1}=\left[r_{i} / b_{i-1}\right], \quad 0 \leq r_{i-1}<b_{i-1}
$$
for $1 \leq i \leq j$.
From any basis or finite basis \mathbb{B} we construct an array $A(\mathbb{B})$ of numbers $a(i, j)$ here called the \mathbb{B}-numeration system. Row 1 of $A(\mathbb{B})$ is the basis \mathbb{B}; i.e., $a(1, j)=b_{j-1}$, for $j=1,2, \ldots$ Column 1 is the ordered residue class containing 1 ; i.e., $a(i, 1)$ is the i th number n whose \mathbb{B}-residue is 1 . Generally, column j is the ordered residue class whose least element is b_{j-1}, so that $a(i, j)$ is the i th number n whose \mathbb{B}-residue is b_{j-1}. Note that every n in \mathbb{N} occurs exactly once in $A(\mathbb{B})$. As an example, the first six rows of the \mathbb{B}-numeration system of the finite basis $\mathbb{B}=(1,2,3,5,8,13)$ are
\[

$$
\begin{array}{rrrrrr}
1 & 2 & 3 & 5 & 8 & 13 \\
4 & 7 & 11 & 18 & 21 & 26 \\
6 & 10 & 16 & 31 & 34 & 39 \\
9 & 15 & 24 & 44 & 47 & 52 \\
12 & 20 & 29 & 57 & 60 & 65 \\
14 & 23 & 37 & 70 & 73 & 78
\end{array}
$$
\]

A \mathbb{B}-numeration system can also be represented as a sequence $S(\mathbb{B})=$ $\left(s_{1}, s_{2}, \ldots\right)$, where
s_{n} is the number of the row of the array $A(\mathbb{B})$ in which n occurs;
i.e., if $n=a(i, j)$, then $s_{n}=i$. We call $S(\mathbb{B})$ the paraphrase of \mathbb{B}. For example, the paraphrase of the finite basis $(1,2,3,5,8,13)$ begins with

$$
\begin{equation*}
111213214325164372852 . \tag{5}
\end{equation*}
$$

As a second example, let \mathbb{B} be the basis for the ordinary binary system:

$$
\mathbb{B}=\left(1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}, \ldots\right) ;
$$

in this case, $S(\mathbb{B})$ begins with
(6) 112132415362748195103116122137144158161 .

Now suppose $S=\left(s_{1}, s_{2}, \ldots\right)$ is any sequence such that for every i in \mathbb{N} there are infinitely many n such that $s_{n}=i$; and further, that if $i+1=s_{n}$, then $i=s_{m}$ for some $m<n$. The upper-trimmed subsequence of S is the sequence $\Lambda(S)$ obtained from S by deleting the first occurrence of n, for each n. If $\Lambda(S)=S$, then S is a fractal sequence, so named, in [3], because the self-similarity property $\Lambda(S)=S$ implies that S contains a copy of itself, and hence contains infinitely many copies of itself. The sequence begun in (6), and also the paraphrases of trinary and the other -ary number systems, are examples of fractal sequences. Another familiar sequence that is a fractal basis is the sequence $(1,2,3,5,8,13,21, \ldots)$ of Fibonacci numbers.

To determine which bases are fractal bases, we shall extend finite bases one term at a time, with attention to certain shift functions. To define them, let $\mathbb{B}_{j}=\left(b_{0}, b_{1}, \ldots, b_{j}\right)$, where $j \geq 1$, and for each n in \mathbb{N}, let the \mathbb{B}_{j-1}-representation of n be given by

$$
\begin{equation*}
n=\sum_{h=0}^{j-1} c_{h} b_{h} \tag{7}
\end{equation*}
$$

then the shift-function $f_{\mathbb{B}_{j}}$ is defined by

$$
\begin{equation*}
f_{\mathbb{B}_{j}}(n)=\sum_{h=0}^{j-1} c_{h} b_{h+1} . \tag{8}
\end{equation*}
$$

We call \mathbb{B}_{j} an affable finite basis if the sum in (8) is a \mathbb{B}_{j}-representation whenever the sum in (7) is a \mathbb{B}_{j-1}-representation. To see what can go wrong, consider the finite basis $\mathbb{B}_{j}=\mathbb{B}_{3}=(1,3,6,10)$: here the \mathbb{B}_{2}-representation of 5 is $2 \cdot 1+1 \cdot 3$, so that $f_{\mathbb{B}_{2}}(5)=2 \cdot 3+1 \cdot 6=12$; but alas, the \mathbb{B}_{3}-representation of 12 is $2 \cdot 1+1 \cdot 10$, not $2 \cdot 3+1 \cdot 6$. Theorem 1 gives lower bounds on successive b_{i} 's that ensure that \mathbb{B}_{j} is affable.

Lemma 1. If the sum in (2) is a \mathbb{B}-representation, then

$$
\begin{equation*}
\sum_{h=0}^{i} c_{h} b_{h}<b_{i+1} \tag{9}
\end{equation*}
$$

for $i=0,1, \ldots, k$; conversely, if (9) holds for $i=0,1, \ldots, k$, then each of the $k+1$ sums is a \mathbb{B}-representation. Similarly, if $n<b_{j}$ and the sum in (2') is a \mathbb{B}_{j}-representation, then (9) holds for $i=0,1, \ldots, j-1$; and conversely, if (9) holds for $i=0,1, \ldots, j-1$, then each of the j sums is a \mathbb{B}_{j}-representation.

Proof. The proof for \mathbb{B}-representations is essentially given in [4]. A similar proof for \mathbb{B}_{j}-representations is given here for the sake of completeness. First, suppose $n<b_{j}$ and that n equals the sum (2^{\prime}), a \mathbb{B}_{j}-representation. Then by (4^{\prime}),

$$
\begin{aligned}
& b_{1}>r_{1}=c_{0} b_{0}, \\
& b_{2}>r_{2}=c_{1} b_{1}+r_{1}=c_{1} b_{1}+c_{0} b_{0}, \\
& b_{3}>r_{3}=c_{2} b_{2}+r_{2}=c_{2} b_{2}+c_{1} b_{1}+c_{0} b_{0} \\
& \quad \vdots \\
& b_{j-1}>r_{j-1}=c_{j-2} b_{j-2}+r_{j-2}=\sum_{h=0}^{j-2} c_{h} b_{h} .
\end{aligned}
$$

These $j-1$ inequalities together with $n<b_{j}$ show that (9) holds for $i=$ $0,1, \ldots, j-1$.

For the converse, suppose $c_{0}, c_{1}, \ldots, c_{j-1}$ are nonnegative integers such that the sum in (9) is a \mathbb{B}_{j}-representation for $i=0,1, \ldots, j-1$. Let $r_{0}=0$ and

$$
r_{i}=c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{i-1} b_{i-1}
$$

for $1 \leq i<j$. Clearly $r_{0}<b_{0}$, and $r_{i-1}<b_{i-1}$ for $i=2,3, \ldots, j$, by (9), so that conditions (4^{\prime}) hold. Write the sum $c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{j-1} b_{j-1}$ as n; then condition (3^{\prime}) holds, since $r_{j}<b_{j}$, by (9).

Theorem 1. Suppose $j \geq 2$. Let $\mathbb{B}_{j}=\left(b_{0}, b_{1}, \ldots, b_{j}\right)$ be a finite basis. The following statements are equivalent:
(i) \mathbb{B}_{j} is an affable finite basis.
(ii) If $c_{0}, c_{1}, \ldots, c_{j-2}$ are nonnegative integers satisfying the $j-1$ inequalities

$$
\begin{gathered}
c_{0} b_{0}<b_{1}, \\
c_{0} b_{0}+c_{1} b_{1}<b_{2}, \\
\vdots \\
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{j-2} b_{j-2}<b_{j-1},
\end{gathered}
$$

then the following $j-1$ inequalities also hold:

$$
\begin{gathered}
c_{0} b_{1}<b_{2}, \\
c_{0} b_{1}+c_{1} b_{2}<b_{3}, \\
\vdots \\
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{j-2} b_{j-1}<b_{j} .
\end{gathered}
$$

(iii) $b_{i} \geq f_{\mathbb{B}_{i-1}}\left(b_{i-1}-1\right)+1$ for $i=2, \ldots, j$.
(iv) $f_{\mathbb{B}_{j}}$ is strictly increasing on the set $\left\{m \in \mathbb{N}: 1 \leq m \leq b_{j-1}\right\}$.

Proof. A proof is given in four parts: (i) \Leftrightarrow (ii), (iii) \Rightarrow (ii) and (iv), $(\mathrm{i}) \Rightarrow(\mathrm{iii})$, and (iv) \Rightarrow (iii).

Part 1: (i) \Leftrightarrow (ii). Suppose \mathbb{B}_{j} is an affable finite basis and $c_{0}, c_{1}, \ldots, c_{j-2}$ are nonnegative integers satisfying $\sum_{h=0}^{i} c_{h} b_{h}<b_{i+1}$ for $i=0,1, \ldots, j-2$. By Lemma 1 , each of these $j-1$ sums is a \mathbb{B}_{j-1}-representation. Since \mathbb{B}_{j} is affable, each of the sums $\sum_{h=0}^{i} c_{h} b_{h+1}$, for $i=0,1, \ldots, j-2$, is a \mathbb{B}_{j}-representation, so that by Lemma 1 ,

$$
\begin{gathered}
c_{0} b_{1}<b_{2}, \\
c_{0} b_{1}+c_{1} b_{2}<b_{3}, \\
\vdots \\
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{j-2} b_{j-1}<b_{j}
\end{gathered}
$$

and (ii) holds.

Now suppose n is given by a \mathbb{B}_{j-1}-representation as in (7). Then the $j-1$ inequalities in the hypothesis of (ii) hold, by definition of $\mathbb{B}_{j-1^{-}}$ representation. So, the $j-1$ inequalities in the conclusion of (ii) hold. These are precisely the inequalities that must be satisfied for the sum in (8) to be a \mathbb{B}_{j}-representation.

Part 2: $(\mathrm{iii}) \Rightarrow(\mathrm{ii})$ and (iv). Suppose \mathbb{B}_{j} is a finite basis and $c_{0}, c_{1}, \ldots, c_{j-2}$ are nonnegative integers satisfying $\sum_{h=0}^{i} c_{h} b_{h}<b_{i+1}$ for $i=0,1, \ldots, j-$ 1. As a first step in an induction argument, assume that $b_{0} c_{0}<b_{1}$. By definition of basis, $b_{0}=1$ and $b_{1} \geq 2$, and by hypothesis,

$$
b_{2} \geq f_{\mathbb{B}_{1}}\left(b_{1}-1\right)+1= \begin{cases}3 & \text { if } b_{1}=2 \\ b_{1}^{2}-b_{1}+1 & \text { if } b_{1} \geq 3\end{cases}
$$

If $b_{1}=2$, then $c_{0} b_{0}<b_{1}$ implies $c_{0}=1$, so that $c_{0} b_{1}<b_{1}+1 \leq b_{2}$, as desired. Otherwise, $b_{1} \geq 3$, so that $c_{0} \leq b_{1}-1$, and $c_{0} b_{1} \leq b_{1}^{2}-b_{1}<b_{2}$, as desired. As a first step toward proving (iv), if $c_{0} b_{0}<c_{0}^{\prime} b_{0}$, then clearly $c_{0} b_{1}<c_{0}^{\prime} b_{1}$.

We shall now use a bipartite induction hypothesis.
Hypothesis I. If $h \leq j-1$ and the $h-2$ inequalities

$$
\begin{gathered}
c_{0} b_{0}<b_{1}, \\
c_{0} b_{0}+c_{1} b_{1}<b_{2}, \\
\vdots \\
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3}<b_{h-2}
\end{gathered}
$$

hold, then also the following $h-2$ inequalities hold:

$$
\begin{gathered}
c_{0} b_{1}<b_{2} \\
c_{0} b_{1}+c_{1} b_{2}<b_{3} \\
\vdots \\
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{h-3} b_{h-2}<b_{h-1}
\end{gathered}
$$

Hypothesis II. If $c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{h-3}^{\prime}$ are nonnegative integers such that $c_{0}^{\prime} b_{0}+c_{1}^{\prime} b_{1}+\ldots+c_{h-3}^{\prime} b_{h-3}$ is a \mathbb{B}_{h-3}-representation, and the $h-2$ inequalities

$$
\begin{aligned}
& c_{0} b_{0}<c_{0}^{\prime} b_{0}, \\
& c_{0} b_{0}+c_{1} b_{1}<c_{0}^{\prime} b_{0}+c_{1}^{\prime} b_{1}, \\
& \vdots \\
& c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3}<c_{0}^{\prime} b_{0}+c_{1}^{\prime} b_{1}+\ldots+c_{h-3}^{\prime} b_{h-3}
\end{aligned}
$$

hold, then also the following $h-2$ inequalities hold:

$$
\begin{aligned}
& c_{0} b_{1}<c_{0}^{\prime} b_{1} \\
& c_{0} b_{1}+c_{1} b_{2}<c_{0}^{\prime} b_{1}+c_{1}^{\prime} b_{2} \\
& \vdots \\
& c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{h-3} b_{h-2}<c_{0}^{\prime} b_{1}+c_{1}^{\prime} b_{2}+\ldots+c_{h-3}^{\prime} b_{h-2} .
\end{aligned}
$$

Now suppose that the $h-1$ inequalities

$$
\begin{gathered}
c_{0} b_{0}<b_{1}, \\
c_{0} b_{0}+c_{1} b_{1}<b_{2}, \\
\vdots \\
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3}<b_{h-2}, \\
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3}+c_{h-2} b_{h-2}<b_{h-1}
\end{gathered}
$$

have been shown to hold. There are $h-1$ inequalities to be proved. The first $h-2$ hold by Hypothesis I, and we now wish to see that the remaining inequality holds, namely

$$
\begin{equation*}
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{h-2} b_{h-1}<b_{h} . \tag{10}
\end{equation*}
$$

Let $d_{0} b_{0}+d_{1} b_{1}+\ldots+d_{h-2} b_{h-2}$ be the \mathbb{B}_{h-2}-representation of $b_{h-1}-1$. Then

$$
\begin{equation*}
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-2} b_{h-2} \leq d_{0} b_{0}+d_{1} b_{1}+\ldots+d_{h-2} b_{h-2} . \tag{11}
\end{equation*}
$$

Case 1: $d_{h-2}=c_{h-2}$. In this case, (11) implies

$$
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3} \leq d_{0} b_{0}+d_{1} b_{1}+\ldots+d_{h-3} b_{h-3},
$$

which by Hypothesis II yields

$$
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{h-3} b_{h-2} \leq d_{0} b_{1}+d_{1} b_{2}+\ldots+d_{h-3} b_{h-2} .
$$

We add $c_{h-2} b_{h-1}=d_{h-2} b_{h-1}$ to both sides to obtain

$$
\begin{aligned}
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{h-2} b_{h-1} & \leq d_{0} b_{1}+d_{1} b_{2}+\ldots+d_{h-2} b_{h-1} \\
& =f_{\mathbb{B}_{h-1}}\left(b_{h-1}-1\right)<b_{h},
\end{aligned}
$$

so that (10) holds.
Case 2: $\quad d_{h-2}>c_{h-2}$. Since $c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3}<b_{h-2}$, we have $c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{h-3} b_{h-2}<b_{h-1}$, by Hypothesis I. Then

$$
\begin{aligned}
c_{0} b_{1}+ & c_{1} b_{2}+\ldots+c_{h-3} b_{h-2} \\
& \leq\left(d_{h-2}-c_{h-2}\right) b_{h-1} \\
& \leq d_{0} b_{1}+d_{1} b_{2}+\ldots+d_{h-3} b_{h-2}+\left(d_{h-2}-c_{h-2}\right) b_{h-1}
\end{aligned}
$$

from which (10) follows as at the end of Case 1.

Case 3: $d_{h-2}<c_{h-2}$. We rewrite (11) as
$c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{h-3} b_{h-3}+\left(c_{h-2}-d_{h-2}\right) b_{h-2}<d_{0} b_{0}+d_{1} b_{1}+\ldots+d_{h-3} b_{h-3}$.
This implies $b_{h-2}<d_{0} b_{0}+d_{1} b_{1}+\ldots+d_{h-3} b_{h-3}$, but this violates the premise that the sum $d_{0} b_{0}+d_{1} b_{1}+\ldots+d_{h-2} b_{h-2}$, and therefore also $d_{0} b_{0}+$ $d_{1} b_{1}+\ldots+d_{h-3} b_{h-3}$, is a \mathbb{B}_{h-2}-representation. Therefore Case 3 does not occur.

A proof of (ii) is now finished, and we continue with a proof of (iv). Suppose $c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{j-2}^{\prime}$ are nonnegative integers and

$$
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{j-2} b_{j-2}<c_{0}^{\prime} b_{0}+c_{1}^{\prime} b_{1}+\ldots+c_{j-2}^{\prime} b_{j-2}<b_{j-1}
$$

where both sums are \mathbb{B}_{j-1}-representations.
Case 1.1: $c_{j-2}^{\prime}=c_{j-2}$. Here $c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{j-3} b_{j-3}<c_{0}^{\prime} b_{0}+c_{1}^{\prime} b_{1}+$ $\ldots+c_{j-3}^{\prime} b_{j-3}$, which by Hypothesis II yields

$$
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{j-3} b_{j-2}<c_{0}^{\prime} b_{1}+c_{1}^{\prime} b_{2}+\ldots+c_{j-3}^{\prime} b_{j-2} .
$$

We add $c_{j-2} b_{j-1}=c_{j-2}^{\prime} b_{j-1}$ to both sides to obtain

$$
\begin{equation*}
c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{j-2} b_{j-1}<c_{0}^{\prime} b_{1}+c_{1}^{\prime} b_{2}+\ldots+c_{j-2}^{\prime} b_{j-1} . \tag{12}
\end{equation*}
$$

This proof of (12) for Case 1.1 is obviously very similar to that for Case 1 above. Cases 2.1 and 3.1 are similar to the previous Cases 2 and 3 , and corresponding proofs of (12) are omitted. Now suppose $1 \leq m<n \leq b_{j-1}$. Write \mathbb{B}_{j}-representations for m and n :

$$
\begin{aligned}
m & =c_{0} b_{0}+\ldots+c_{j-2} b_{j-2}, \\
n & = \begin{cases}c_{0}^{\prime} b_{0}+\ldots+c_{j-2}^{\prime} b_{j-2} & \text { if } n<b_{j-1} \\
b_{j-1} & \text { otherwise }\end{cases}
\end{aligned}
$$

and let

$$
\begin{aligned}
& h=\max \left\{i: c_{i} \neq 0, i \leq j-2\right\}, \\
& k= \begin{cases}\max \left\{i: c_{i}^{\prime} \neq 0, i \leq j-2\right\} & \text { if } n<b_{j-1}, \\
j-1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Case 1.2: $h=k$. In this case, $f_{\mathbb{B}_{j}}(m)<f_{\mathbb{B}_{j}}(n)$ by (12).
Case 2.2: $h<k$ (the case $h>k$ is similar and omitted). Here, $m \leq$ $b_{k}<n$ or $m<b_{k} \leq n$, so that $f_{\mathbb{B}_{j}}(m) \leq f_{\mathbb{B}_{j}}\left(b_{k}\right)=b_{k+1} \leq f_{\mathbb{B}_{j}}(n)$, with strict inequality in at least one place, and a proof of (iv) is finished.

Part 3: (i) \Rightarrow (iii). Suppose $2 \leq i \leq j$. Then $b_{i-1}-1$ has a $\mathbb{B}_{i-2^{-}}$ representation $c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{i-2} b_{i-2}$. By Lemma 1 (reading $i-1$ for j), we have $i-1$ inequalities:

$$
\begin{gathered}
c_{0} b_{0}<b_{1} \\
c_{0} b_{0}+c_{1} b_{1}<b_{2} \\
\vdots \\
c_{0} b_{0}+c_{1} b_{1}+\ldots+c_{i-2} b_{i-2}<b_{i-1}
\end{gathered}
$$

By (i), the representation for $f_{\mathbb{B}_{i-1}}\left(b_{i-1}-1\right)$ as $c_{0} b_{1}+c_{1} b_{2}+\ldots+c_{i-2} b_{i-1}$ is a \mathbb{B}_{i-1}-representation, and by (ii), already proved to follow from (i), we have $f_{\mathbb{B}_{i-1}}\left(b_{i-1}-1\right)<b_{i}$, and (iii) holds.

Part 4: (iv) $\Rightarrow($ iii $)$. For $i=2,3, \ldots, j$, if (iv) holds then $f_{\mathbb{B}_{i-1}}\left(b_{i-1}-\right.$ $1)=f_{\mathbb{B}_{j}}\left(b_{i-1}-1\right)<f_{\mathbb{B}_{j}}\left(b_{i-1}\right)=b_{i}$, so that (iii) holds.

DEFInITIONS. We extend the notion of affability given earlier: an infinite basis $\mathbb{B}=\left(b_{0}, b_{1}, \ldots\right)$ is an affable basis if the sum $\sum_{h=0}^{k} c_{h} b_{h+1}$ is a \mathbb{B} representation whenever the sum $\sum_{h=0}^{k} c_{h} b_{h}$ is a \mathbb{B}-representation. The notion of shift-function is extended also:
if $n=\sum_{h=0}^{k} c_{h} b_{h}$ is a \mathbb{B}-representation, then $f_{\mathbb{B}}(n)=\sum_{h=0}^{k} c_{h} b_{h+1}$.
THEOREM 2. Let $\mathbb{B}=\left(b_{0}, b_{1}, \ldots\right)$ be a basis, and let $\mathbb{B}_{j}=\left(b_{0}, b_{1}, \ldots, b_{j}\right)$ for $j \geq 2$. The following statements are equivalent:
(i) \mathbb{B} is an affable basis.
(ii) \mathbb{B}_{j} is an affable finite basis for all $j \geq 2$.
(iii) $b_{j} \geq f_{\mathbb{B}_{j-1}}\left(b_{j-1}-1\right)+1$ for all $j \geq 2$.
(iv) $f_{\mathbb{B}}$ is strictly increasing on \mathbb{N}.

Proof. This follows easily from Theorem 1.
Definitions. Suppose $S=\left(s_{n}\right)$ is a sequence (possibly finite) of numbers in \mathbb{N}. The counting array of S is the array $C(S)$ with terms $a(i, j)$ given by
$a(i, j)$ is the index n for which s_{n} is the j th occurrence of i in S.
Note that if S is the paraphrase of an infinite basis \mathbb{B}, then

$$
C(S)=A(\mathbb{B}) \quad \text { and } \quad \mathbb{B}=(a(1,1), a(1,2), a(1,3), \ldots)
$$

The following notation will be helpful: if A is a numeration system or a counting array, then
$\# n$ is the number of terms of A that are $\leq n$
and do not lie in column 1 of A.
Lemma 3.1. A sequence $S=\left(s_{n}\right)$ is a fractal sequence if and only if the counting array $C(S)$, with terms $a(i, j)$, satisfies

$$
\begin{equation*}
\# a(i, j+1)=a(i, j) \tag{13}
\end{equation*}
$$

for all i and j in \mathbb{N}.

Proof. It is proved in [3, Theorem 2] that S is a fractal sequence if and only if $C(S)$ is an interspersion. In [3, Lemma 2], it is proved (in different notation) that $C(S)$ is an interspersion if and only if the number of terms of $C(S)$ that lie in column 1 and are not greater than $a(i, j+1)$ is $a(i, j+1)-a(i, j)$. Equivalently, the number of terms of $C(S)$ that lie outside column 1 and are not greater than $a(i, j+1)$ is $a(i, j)$.

Definitions. A finite sequence $S=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ is a prefractal sequence if the following properties hold:
(PF1) if $i+1=s_{n}$ for some $n \leq k$, then $i=s_{m}$ for some $m<n$, for all i in \mathbb{N};
(PF2) if $\Lambda(S)$ is the sequence obtained from S by deleting the first occurrence of n for each n in S, then $\Lambda(S)$ is an initial segment of S.

A prefractal basis is a finite basis $\mathbb{B}=\left(b_{0}, b_{1}, \ldots, b_{j}\right)$ such that the first b_{j} terms of $S(\mathbb{B})$ form a prefractal sequence. For example, if $S=$ $(1,1,1,2,1,3,2,1,4,3,2,5,1)$, the first 13 terms in (5), then $\Lambda(S)=$ $(1,1,1,2,1,3,2,1)$, and this is the initial eight-term segment of S; thus S is a prefractal sequence, and $(1,2,3,5,8,13)$ is a prefractal basis.

Lemma 3.2. A finite sequence $T=\left(t_{0}, t_{1}, \ldots, t_{k}\right)$ satisfying (PF1) is a prefractal sequence if and only if (13) holds for all i and j such that $a(i, j)$ and $a(i, j+1)$ are terms of $C(T)$.

Proof. The counting array $C(T)$ consists of terms $a(i, j)$ which are the numbers $1, \ldots, t_{k}$. The proof is now similar to that of Lemma 3.1, since all the inequalities needed from [3] and [2] remain intact in the case where the only terms being considered are $1, \ldots, t_{k}$.

Lemma 3.3. If $1 \leq j_{2}<j_{1}$ and $1 \leq x \leq b_{j_{2}}-1$, then $f_{\mathbb{B}_{j_{1}}}(x)=f_{\mathbb{B}_{j_{2}}}(x)$.
Proof. If $1 \leq x \leq b_{j_{2}}-1$, then the $\mathbb{B}_{j_{1}}$-representation of x and the $\mathbb{B}_{j_{2}}$-representation of x are identical. Thus, the shift-functions defined by (8) have identical values at x.

The next theorem shows that the lower bound for b_{j} in Theorem 2(iii) for an affable basis is also a lower bound for b_{j} for a fractal basis. The theorem also gives an upper bound for b_{j}.

Theorem 3. Let $\mathbb{B}=\left(b_{0}, b_{1}, \ldots\right)$ be a proper basis, and let $\mathbb{B}_{j}=$ $\left(b_{0}, b_{1}, \ldots, b_{j}\right)$ for $j \geq 2$. The following statements are equivalent:
(i) \mathbb{B} is a fractal basis.
(ii) $\# a(i, j+1)=a(i, j)$ for all i and j in \mathbb{N}.
(iii) $f_{\mathbb{B}_{j-1}}\left(b_{j-1}-1\right)+1 \leq b_{j} \leq f_{\mathbb{B}_{j-1}}\left(b_{j-1}\right)$ for all $j \geq 2$.
(iv) $a(i, j+1)=f_{\mathbb{B}}(a(i, j))$ for all i and j in \mathbb{N}.

Proof. A proof is given in four parts: (i) \Leftrightarrow (ii), (iii) \Rightarrow (iv), (iv) \Rightarrow (ii), and (ii) \Rightarrow (iii).

Part 1: (i) $\Leftrightarrow(\mathrm{ii})$. This is an immediate consequence of Lemma 3.2.
Part 2: (iii) \Rightarrow (iv). Suppose, to the contrary, that (iii) holds but (iv) fails. Let i be the least index for which

$$
\begin{equation*}
a(i, j+1) \neq f_{\mathbb{B}}(a(i, j)) \tag{14}
\end{equation*}
$$

for some j, and assume that j is the least index such that (14) holds for the stipulated i. Write x for $f_{\mathbb{B}}(a(i, j))$. This number must occur somewhere in the array $A(\mathbb{B})$, and then only in column $j+1$ or else row 1 .

Case 1: x in column $j+1$. There is some h for which $a(i, j+1)=$ $f_{\mathbb{B}}(a(h, j))$, and $h>i$, so that x must occur after $f_{\mathbb{B}}(a(h, j))$ in column $j+1$. But now $a(i, j)<a(h, j)$ while $f_{\mathbb{B}}(a(i, j))>f_{\mathbb{B}}(a(h, j))$, contrary to Theorem 2(iv).

Case 2: x in row 1. Here, $x=b_{k}$ for some $k>1$, so that $x=f_{\mathbb{B}}\left(b_{k-1}\right)$. But also, $f_{\mathbb{B}}(a(i, j))=x$, so that $a(i, j)=b_{k-1}$, since, by Theorem $2, f_{\mathbb{B}}$ is strictly increasing. But this implies $i=1$, a contradiction, since we have equality in (14) when $i=1$, by definition of $f_{\mathbb{B}}$.

Part 3: (iv) \Rightarrow (ii). For any i and j in \mathbb{N}, let $S_{1}=\{1,2, \ldots, a(i, j)\}$ and $S_{2}=\{m: m \leq a(i, j+1)$ and m is not in column 1 of $A(\mathbb{B})\}$. By (iv), the mapping $f_{\mathbb{B}}$ is a one-to-one correspondence from S_{1} onto S_{2}. Therefore, $\# a(i, j+1)=a(i, j)$.

Part 4: (ii) \Rightarrow (iii). Suppose, to the contrary, that (iii) fails. Let k be the least index not less than 2 for which $b_{k}<f_{\mathbb{B}_{k-1}}\left(b_{k-1}-1\right)+1$ or $b_{k}>f_{\mathbb{B}_{k-1}}\left(b_{k-1}\right)$. Let $\widehat{b}_{h}=b_{h}$ for $h=0,1, \ldots, k-1$, and define inductively

$$
\widehat{b}_{k+h}=f_{\widehat{\mathbb{B}}_{k+h-1}}\left(\widehat{b}_{k+h-1}-1\right)+1 \quad \text { and } \quad \widehat{\mathbb{B}}_{k+h}=\left(\widehat{b}_{0}, \widehat{b}_{1}, \ldots, \widehat{b}_{k+h}\right)
$$

for $h=0,1, \ldots$ The basis $\widehat{\mathbb{B}}=\left(\widehat{b}_{0}, \widehat{b}_{1}, \ldots\right)$ satisfies (iii) (with notation modified in an obvious way), so that by Parts 2 and 3 of this proof, already proved, property (ii) holds for the array $A(\widehat{\mathbb{B}})$. That is, $\# \widehat{a}(i, j+1)=\widehat{a}(i, j)$ for all i and j in \mathbb{N}, where \widehat{a} denotes terms of $A(\widehat{\mathbb{B}})$.

Case 1: $b_{k}<f_{\mathbb{B}_{k-1}}\left(b_{k-1}-1\right)+1$. The number $b_{k-1}-1$ is in $A(\mathbb{B})$, which is to say that it is $a(i, j)$ for some (i, j). The inequality $b_{k-1}-1<b_{k-1}$ can therefore be written as

$$
\begin{equation*}
a(i, j)<a(1, k) . \tag{15}
\end{equation*}
$$

Now $a(h, j+1)=\widehat{a}(h, j+1)$ for $h=1, \ldots, i-1$, and this accounts for the first $i-1$ terms of column $j+1$ of array $A(\mathbb{B})$. The greatest of these, $a(i-1, j+1)$, is the greatest number that has \mathbb{B}-residue less than b_{k}. Additionally, the
number $b_{k-1}+b_{k}=a(1, k)+a(1, k+1)$ is the least number not less than b_{k} whose \mathbb{B}-residue is b_{k-1}; hence $a(i, j+1)=a(1, k)+a(1, k+1)$, so that

$$
\begin{equation*}
a(i, j+1)>a(1, k+1) \tag{16}
\end{equation*}
$$

But since (ii) holds in $A(\mathbb{B})$, the inequalities (15) and (16) are incompatible, and we conclude that $b_{k} \geq f_{\mathbb{B}_{k-1}}\left(b_{k-1}-1\right)+1$.

Case 2: $b_{k}>f_{\mathbb{B}_{k-1}}\left(b_{k-1}\right)$. Let i be the index for which $a(i, 1)=b_{k-1}+$ 1. Then in $A(\widehat{\mathbb{B}})$ we have $f_{\mathbb{B}_{k-1}}(\widehat{a}(i, 1))=f_{\mathbb{B}_{k-1}}\left(b_{k-1}+1\right)$, or equivalently, $\widehat{a}(i, 2)=f_{\mathbb{B}_{k-1}}\left(b_{k-1}\right)+b_{1}$. Now $a(h, 2)=\widehat{a}(h, 2)$ for $h=1, \ldots, i-1$, and this accounts for the first $i-1$ terms of column 2 of $A(\widehat{\mathbb{B}})$. Since $\widehat{a}(i, 2)$ and b_{1} both have \mathbb{B}-residue b_{1}, their difference, $f_{\mathbb{B}_{k-1}}\left(b_{k-1}\right)$, also has \mathbb{B}-residue b_{1}, so that

$$
a(i, 2) \leq f_{\mathbb{B}_{k-1}}\left(b_{k-1}\right)=a(1, k+1) .
$$

We now have $a(i, 1)>a(1, k)$ and $a(i, 2) \leq a(1, k+1)$, contrary to (ii). Therefore, $b_{k} \leq f_{\mathbb{B}_{k-1}}\left(b_{k-1}\right)$.

Fig. 1. The first six terms of the fractal bases in which $b_{1}=2$

Corollary 3.1. With reference to statement (iii) in Theorem 3, the number of allowable b_{j} is not greater than b_{1}.

Proof. By Theorem 3, the greatest allowable b_{j} is the number $f_{\mathbb{B}_{j-1}}\left(b_{j-1}\right)$, which we abbreviate as M. In the array $A(\mathbb{B})$, the consecutive integers

$$
M-1, M-2, \ldots, M-\left[f_{\mathbb{B}_{j-1}}\left(b_{j-1}\right)-f_{\mathbb{B}_{j-1}}\left(b_{j-1}-1\right)-1\right]
$$

all lie in column 1 , since none of them is of the form $f_{\mathbb{B}_{j-1}}(x)$. It follows easily from the definition of \mathbb{B}_{j-1}-representation and Theorem 3(iii), that the maximum number of consecutive integers for which this is possible is b_{1}.

Corollary 3.2. Let $\mathbb{B}=\left(b_{0}, b_{1}, \ldots\right)$ be a proper basis. Suppose $\mathbb{B}_{j_{1}}=$ $\left(b_{0}, b_{1}, \ldots, b_{j_{1}}\right)$ is a prefractal basis for all $j_{1} \geq 1$, and $b_{j}=f_{\mathbb{B}_{j-1}}\left(b_{j-1}\right)$ for $j=j_{1}+1, j_{1}+2, \ldots$ Then \mathbb{B} is a fractal basis. If the $\mathbb{B}_{j_{1}-1}$-representation of $b_{j_{1}}$ is given by

$$
\begin{equation*}
b_{j_{1}}=\gamma_{j_{1}-p} b_{j_{1}-p}+\gamma_{j_{1}-p+1} b_{j_{1}-p+1}+\ldots+\gamma_{j_{1}-1} b_{j_{1}-1}, \tag{17}
\end{equation*}
$$

then the row sequences of $A(\mathbb{B})$ satisfy the homogeneous linear recurrence inherited from (17):
$a\left(i, j_{1}+q\right)$
$=\gamma_{j_{1}-p} a\left(i, j_{1}+q-p\right)+\gamma_{1} a\left(i, j_{1}+q-p+1\right)+\ldots+\gamma_{j_{1}-1} a\left(i, j_{1}+q-1\right)$,
$i \geq 1, q \geq 0$.
Proof. This is an obvious consequence of Theorem 3(iv).
In summary, a prefractal basis $\left(b_{0}, b_{1}, \ldots, b_{j}\right)$ can always be extended to a prefractal basis ($b_{0}, b_{1}, \ldots, b_{j}, b_{j+1}$), where the number p of allowable values of b_{j+1} satisfies $1 \leq p \leq b_{1}$. Extending inductively, we can in this manner construct any fractal basis as a limit of prefractal bases. If the choice of b_{j+1} is always maximal beginning with the first term after some particular $b_{j_{1}}$, then we obtain, in accord with Corollary 3.2, the homogeneous extension of $\left(b_{0}, b_{1}, \ldots, b_{j_{1}}\right)$. Specifically, if $b_{j_{1}}$ is given by the $\mathbb{B}_{j_{1}-1}$-representation

$$
b_{j_{1}}=\mathcal{R}\left(b_{0}, b_{1}, \ldots, b_{j_{1}-1}\right)=\gamma_{0} b_{0}+\gamma_{1} b_{1}+\ldots+\gamma_{j_{1}-1} b_{j_{1}-1},
$$

then all the row sequences of the limiting fractal basis satisfy the homogeneous recurrence determined by \mathcal{R}. We now turn to certain nonhomogeneous linear recurrences, associated with minimal choices of b_{j+1}, as given by (20).

Corollary 3.3. Suppose $\mathbb{B}_{j_{1}}=\left(b_{0}, b_{1}, \ldots, b_{j_{1}}\right)$ is a prefractal basis for all $j_{1} \geq 1$. Let the $\mathbb{B}_{j_{1}}$-representation of $b_{j_{1}}-1$ be given by

$$
\begin{equation*}
b_{j_{1}}-1=\delta_{j_{1}-p} b_{j_{1}-p}+\delta_{j_{1}-p+1} b_{j_{1}-p+1}+\ldots+\delta_{j_{1}-1} b_{j_{1}-1}, \tag{18}
\end{equation*}
$$

where $\delta_{j_{1}-p} \neq 0$, so that the order of the homogeneous linear recurrence \mathcal{S} given by

$$
\begin{equation*}
\mathcal{S}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\delta_{j_{1}-p} x_{1}+\delta_{j_{1}-p+1} x_{2}+\ldots+\delta_{j_{1}-1} x_{p} \tag{19}
\end{equation*}
$$

is p. Let \mathbb{B} be the fractal basis obtained inductively from $\mathbb{B}_{j_{1}}$ by defining

$$
\begin{equation*}
b_{j_{1}+q+1}=f_{\mathbb{B}_{j_{1}+q}}\left(b_{j_{1}+q}-1\right)+1 \tag{20}
\end{equation*}
$$

for $q=0,1, \ldots$ Then row 1 of $A(\mathbb{B})$ satisfies the nonhomogeneous linear recurrence

$$
\begin{align*}
b_{j} & =a(1, j+1)=\mathcal{S}\left(b_{j-p}, b_{j-p+1}, \ldots, b_{j-1}\right)+1 \tag{21}\\
& =\mathcal{S}(a(1, j-p+1), a(1, j-p+2), \ldots, a(1, j))+1,
\end{align*}
$$

for $j=j_{1}, j_{1}+1, \ldots$, and row i of $A(\mathbb{B})$ satisfies the nonhomogeneous linear recurrence

$$
\begin{equation*}
a(i, j+1)=\mathcal{S}(a(i, j-p+1), a(i, j-p+2), \ldots, a(i, j))+Q_{i} \tag{22}
\end{equation*}
$$

where Q_{i} depends only on i, for all i in \mathbb{N}, for $j=j_{1}, j_{1}+1, \ldots$
Proof. Equations (18) and (19) give

$$
f_{\mathbb{B}_{j_{1}}}\left(b_{j_{1}}-1\right)=f_{\mathbb{B}_{j_{1}}}\left(\mathcal{S}\left(b_{j_{1}-p}, b_{j_{1}-p+1}, \ldots, b_{j_{1}-1}\right)\right),
$$

so that by (20) with $q=0$, we have $b_{j_{1}+1}=\mathcal{S}\left(b_{j_{1}-p+1}, b_{j_{1}-p+2}, \ldots, b_{j_{1}}\right)+1$. The same method easily completes an induction proof that (21) holds for all $j \geq j_{1}$, so that (22) is established for $i=1$.

Assume now that $i \geq 2$ and $j \geq j_{1}$. Let the \mathbb{B}-representation of $a(i, 1)$ be given by $a(i, 1)=\sum_{h=1}^{v} c_{h-1} a(1, h)$, and let $Q_{i}=\sum_{h=0}^{v-1} c_{h}$. By Theorem 3,

$$
\begin{aligned}
a(i, j+1) & =\sum_{h=1}^{v} c_{h-1} a(1, j+h) \\
& =\sum_{h=1}^{v} c_{h-1}\left(\mathcal{S}\left(b_{j-p+h-1}, b_{j-p+h}, \ldots, b_{j+h-1}\right)+1\right) \\
& =Q_{i}+\sum_{h=1}^{v} c_{h-1} \sum_{k=0}^{p-1} \delta_{j-p+k} b_{j-p+k} \\
& =Q_{i}+\sum_{k=1}^{p} \delta_{j-k} \sum_{h=1}^{v} c_{h-1} a(1, j-k+h) \\
& =Q_{i}+\sum_{k=1}^{p} \delta_{j-k} a(i, j-k+1) \\
& =\mathcal{S}(a(i, j-p+1), a(i, j-p+2), \ldots, a(i, j))+Q_{i} .
\end{aligned}
$$

Fig. 2. The first five terms of the fractal bases in which $b_{1}=4$
Figures 1 and 2 lead one to conjecture that every prefractal basis has uncountably many extensions to fractal bases. Another question concerns the inequality in Theorem 3(iii): when is there only one possible choice of b_{j}, as exemplified by $b_{4}=8$ following $b_{3}=5$ in Figure 1, and also by $b_{4}=142$ following $b_{3}=43$ in Figure 2?

Finally, as you may have already observed, for each choice of $b_{1} \geq 2$, the fractal bases with second term b_{1} fan themselves out between two extreme cases, one an arithmetic sequence and the other a geometric sequence.

References

[1] A. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), 105-114.
[2] C. Kimberling, Interspersions and dispersions, Proc. Amer. Math. Soc. 117 (1993), 313-321.
[3] -, Fractal sequences and interspersions, Ars Combin., to appear.
[4] A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems With Elementary Solutions, Vol. II, Dover, New York, 1967.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF EVANSVILLE
EVANSVILLE, INDIANA 47722
U.S.A.

[^0]: 1991 Mathematics Subject Classification: Primary 11B75; Secondary 11B37.
 Key words and phrases: fractal sequence, fractal basis, interspersion, linear recurrence, numeration system.

