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Let N denote the set of positive integers. Every sequence B = (b0, b1, . . .)
of numbers in N satisfying

(1) 1 = b0 < b1 < . . .

is a basis for N, as each n in N has a B-representation

(2) n = c0b0 + c1b1 + . . . + ckbk,

where bk ≤ n < bk+1 and the coefficients ci are given by the division algo-
rithm:

(3) n = ckbk + rk, ck = [n/bk], 0 ≤ rk < bk

and

(4) ri = ci−1bi−1 + ri−1, ci−1 = [ri/bi−1], 0 ≤ ri−1 < bi−1

for 1 ≤ i < k. In (2) let i be the least index h such that ch 6= 0; then bi is the
B-residue of n. A proper basis is a basis other than the sequence (1, 2, . . .)
consisting of all the positive integers.

We extend the above notions to finite sequences Bj = (b0, b1, . . . , bj)
satisfying

1 = b0 < b1 < . . . < bj

for j ≥ 0. Such a finite sequence is a finite basis, and a Bj-representation is
a sum

(2′) c0b0 + c1b1 + . . . + cjbj

such that if n = c0b0+c1b1+ . . .+cjbj , then there exist integers r0, r1, . . . , rj

such that

(3′) n = cjbj + rj , cj = [n/bj−1], 0 ≤ rj < bj
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and

(4′) ri = ci−1bi−1 + ri−1, ci−1 = [ri/bi−1], 0 ≤ ri−1 < bi−1

for 1 ≤ i ≤ j.
From any basis or finite basis B we construct an array A(B) of numbers

a(i, j) here called the B-numeration system. Row 1 of A(B) is the basis B;
i.e., a(1, j) = bj−1, for j = 1, 2, . . . Column 1 is the ordered residue class
containing 1; i.e., a(i, 1) is the ith number n whose B-residue is 1. Generally,
column j is the ordered residue class whose least element is bj−1, so that
a(i, j) is the ith number n whose B-residue is bj−1. Note that every n in
N occurs exactly once in A(B). As an example, the first six rows of the
B-numeration system of the finite basis B = (1, 2, 3, 5, 8, 13) are

1 2 3 5 8 13
4 7 11 18 21 26
6 10 16 31 34 39
9 15 24 44 47 52

12 20 29 57 60 65
14 23 37 70 73 78

A B-numeration system can also be represented as a sequence S(B) =
(s1, s2, . . .), where

sn is the number of the row of the array A(B) in which n occurs;

i.e., if n = a(i, j), then sn = i. We call S(B) the paraphrase of B. For
example, the paraphrase of the finite basis (1, 2, 3, 5, 8, 13) begins with

(5) 1 1 1 2 1 3 2 1 4 3 2 5 1 6 4 3 7 2 8 5 2.

As a second example, let B be the basis for the ordinary binary system:

B = (1, 2, 22, 23, 24, 25, . . .);

in this case, S(B) begins with

(6) 1 1 2 1 3 2 4 1 5 3 6 2 7 4 8 1 9 5 10 3 11 6 12 2 13 7 14 4 15 8 16 1.

Now suppose S = (s1, s2, . . .) is any sequence such that for every i in N

there are infinitely many n such that sn = i; and further, that if i + 1 = sn,
then i = sm for some m < n. The upper-trimmed subsequence of S is the
sequence Λ(S) obtained from S by deleting the first occurrence of n, for each
n. If Λ(S) = S, then S is a fractal sequence, so named, in [3], because the
self-similarity property Λ(S) = S implies that S contains a copy of itself,
and hence contains infinitely many copies of itself. The sequence begun in
(6), and also the paraphrases of trinary and the other -ary number systems,
are examples of fractal sequences. Another familiar sequence that is a fractal
basis is the sequence (1, 2, 3, 5, 8, 13, 21, . . .) of Fibonacci numbers.
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To determine which bases are fractal bases, we shall extend finite bases
one term at a time, with attention to certain shift functions. To define
them, let Bj = (b0, b1, . . . , bj), where j ≥ 1, and for each n in N, let the
Bj−1-representation of n be given by

(7) n =

j−1∑

h=0

chbh;

then the shift-function fBj
is defined by

(8) fBj
(n) =

j−1∑

h=0

chbh+1.

We call Bj an affable finite basis if the sum in (8) is a Bj-representation
whenever the sum in (7) is a Bj−1-representation. To see what can go wrong,
consider the finite basis Bj = B3 = (1, 3, 6, 10): here the B2-representation of
5 is 2·1+1·3, so that fB2

(5) = 2·3+1·6 = 12; but alas, the B3-representation
of 12 is 2 · 1 + 1 · 10, not 2 · 3 + 1 · 6. Theorem 1 gives lower bounds on
successive bi’s that ensure that Bj is affable.

Lemma 1. If the sum in (2) is a B-representation, then

(9)
i∑

h=0

chbh < bi+1

for i = 0, 1, . . . , k; conversely , if (9) holds for i = 0, 1, . . . , k, then each of

the k + 1 sums is a B-representation. Similarly , if n < bj and the sum

in (2′) is a Bj-representation, then (9) holds for i = 0, 1, . . . , j − 1; and

conversely , if (9) holds for i = 0, 1, . . . , j − 1, then each of the j sums is a

Bj-representation.

P r o o f. The proof for B-representations is essentially given in [4]. A sim-
ilar proof for Bj-representations is given here for the sake of completeness.
First, suppose n < bj and that n equals the sum (2′), a Bj-representation.
Then by (4′),

b1 > r1 = c0b0,

b2 > r2 = c1b1 + r1 = c1b1 + c0b0,

b3 > r3 = c2b2 + r2 = c2b2 + c1b1 + c0b0,

...

bj−1 > rj−1 = cj−2bj−2 + rj−2 =

j−2∑

h=0

chbh.

These j − 1 inequalities together with n < bj show that (9) holds for i =
0, 1, . . . , j − 1.
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For the converse, suppose c0, c1, . . . , cj−1 are nonnegative integers such
that the sum in (9) is a Bj-representation for i = 0, 1, . . . , j − 1. Let r0 = 0
and

ri = c0b0 + c1b1 + . . . + ci−1bi−1

for 1 ≤ i < j. Clearly r0 < b0, and ri−1 < bi−1 for i = 2, 3, . . . , j, by (9), so
that conditions (4′) hold. Write the sum c0b0 + c1b1 + . . . + cj−1bj−1 as n;
then condition (3′) holds, since rj < bj , by (9).

Theorem 1. Suppose j ≥ 2. Let Bj = (b0, b1, . . . , bj) be a finite basis.

The following statements are equivalent :

(i) Bj is an affable finite basis.

(ii) If c0, c1, . . . , cj−2 are nonnegative integers satisfying the j − 1 in-

equalities
c0b0 < b1,

c0b0 + c1b1 < b2,

...

c0b0 + c1b1 + . . . + cj−2bj−2 < bj−1,

then the following j − 1 inequalities also hold :

c0b1 < b2,

c0b1 + c1b2 < b3,

...

c0b1 + c1b2 + . . . + cj−2bj−1 < bj .

(iii) bi ≥ fBi−1
(bi−1 − 1) + 1 for i = 2, . . . , j.

(iv) fBj
is strictly increasing on the set {m ∈ N : 1 ≤ m ≤ bj−1}.

P r o o f. A proof is given in four parts: (i)⇔(ii), (iii)⇒(ii) and (iv),
(i)⇒(iii), and (iv)⇒(iii).

P a r t 1: (i)⇔(ii). Suppose Bj is an affable finite basis and c0, c1, . . . , cj−2

are nonnegative integers satisfying
∑i

h=0
chbh < bi+1 for i = 0, 1, . . . , j − 2.

By Lemma 1, each of these j − 1 sums is a Bj−1-representation. Since

Bj is affable, each of the sums
∑i

h=0
chbh+1, for i = 0, 1, . . . , j − 2, is a

Bj-representation, so that by Lemma 1,

c0b1 < b2,

c0b1 + c1b2 < b3,

...

c0b1 + c1b2 + . . . + cj−2bj−1 < bj ,

and (ii) holds.
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Now suppose n is given by a Bj−1-representation as in (7). Then the
j − 1 inequalities in the hypothesis of (ii) hold, by definition of Bj−1-
representation. So, the j − 1 inequalities in the conclusion of (ii) hold.
These are precisely the inequalities that must be satisfied for the sum in (8)
to be a Bj-representation.

P a r t 2: (iii)⇒(ii) and (iv). Suppose Bj is a finite basis and c0, c1,. . ., cj−2

are nonnegative integers satisfying
∑i

h=0
chbh < bi+1 for i = 0, 1, . . . , j −

1. As a first step in an induction argument, assume that b0c0 < b1. By
definition of basis, b0 = 1 and b1 ≥ 2, and by hypothesis,

b2 ≥ fB1
(b1 − 1) + 1 =

{
3 if b1 = 2,
b2
1 − b1 + 1 if b1 ≥ 3.

If b1 = 2, then c0b0 < b1 implies c0 = 1, so that c0b1 < b1 + 1 ≤ b2, as
desired. Otherwise, b1 ≥ 3, so that c0 ≤ b1 − 1, and c0b1 ≤ b2

1 − b1 < b2,
as desired. As a first step toward proving (iv), if c0b0 < c′0b0, then clearly
c0b1 < c′0b1.

We shall now use a bipartite induction hypothesis.

Hypothesis I. If h ≤ j − 1 and the h − 2 inequalities

c0b0 < b1,

c0b0 + c1b1 < b2,

...

c0b0 + c1b1 + . . . + ch−3bh−3 < bh−2

hold , then also the following h − 2 inequalities hold :

c0b1 < b2,

c0b1 + c1b2 < b3,

...

c0b1 + c1b2 + . . . + ch−3bh−2 < bh−1.

Hypothesis II. If c′0, c
′

1, . . . , c
′

h−3
are nonnegative integers such that

c′0b0+c′1b1+. . .+c′h−3
bh−3 is a Bh−3-representation, and the h−2 inequalities

c0b0 < c′0b0,

c0b0 + c1b1 < c′0b0 + c′1b1,

...

c0b0 + c1b1 + . . . + ch−3bh−3 < c′0b0 + c′1b1 + . . . + c′h−3bh−3
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hold , then also the following h − 2 inequalities hold :

c0b1 < c′0b1,

c0b1 + c1b2 < c′0b1 + c′1b2,

...

c0b1 + c1b2 + . . . + ch−3bh−2 < c′0b1 + c′1b2 + . . . + c′h−3bh−2.

Now suppose that the h − 1 inequalities

c0b0 < b1,

c0b0 + c1b1 < b2,

...

c0b0 + c1b1 + . . . + ch−3bh−3 < bh−2,

c0b0 + c1b1 + . . . + ch−3bh−3 + ch−2bh−2 < bh−1

have been shown to hold. There are h − 1 inequalities to be proved. The
first h− 2 hold by Hypothesis I, and we now wish to see that the remaining
inequality holds, namely

(10) c0b1 + c1b2 + . . . + ch−2bh−1 < bh.

Let d0b0 + d1b1 + . . . + dh−2bh−2 be the Bh−2-representation of bh−1 − 1.
Then

(11) c0b0 + c1b1 + . . . + ch−2bh−2 ≤ d0b0 + d1b1 + . . . + dh−2bh−2.

C a s e 1: dh−2 = ch−2. In this case, (11) implies

c0b0 + c1b1 + . . . + ch−3bh−3 ≤ d0b0 + d1b1 + . . . + dh−3bh−3,

which by Hypothesis II yields

c0b1 + c1b2 + . . . + ch−3bh−2 ≤ d0b1 + d1b2 + . . . + dh−3bh−2.

We add ch−2bh−1 = dh−2bh−1 to both sides to obtain

c0b1 + c1b2 + . . . + ch−2bh−1 ≤ d0b1 + d1b2 + . . . + dh−2bh−1

= fBh−1
(bh−1 − 1) < bh,

so that (10) holds.

C a s e 2: dh−2 > ch−2. Since c0b0 + c1b1 + . . . + ch−3bh−3 < bh−2, we
have c0b1 + c1b2 + . . . + ch−3bh−2 < bh−1, by Hypothesis I. Then

c0b1 + c1b2 + . . . + ch−3bh−2

≤ (dh−2 − ch−2)bh−1

≤ d0b1 + d1b2 + . . . + dh−3bh−2 + (dh−2 − ch−2)bh−1,

from which (10) follows as at the end of Case 1.
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C a s e 3: dh−2 < ch−2. We rewrite (11) as

c0b0+c1b1+. . .+ch−3bh−3+(ch−2−dh−2)bh−2 < d0b0+d1b1+. . .+dh−3bh−3.

This implies bh−2 < d0b0 + d1b1 + . . . + dh−3bh−3, but this violates the
premise that the sum d0b0 +d1b1 + . . .+dh−2bh−2, and therefore also d0b0 +
d1b1 + . . . + dh−3bh−3, is a Bh−2-representation. Therefore Case 3 does not
occur.

A proof of (ii) is now finished, and we continue with a proof of (iv).
Suppose c′0, c

′

1, . . . , c
′

j−2 are nonnegative integers and

c0b0 + c1b1 + . . . + cj−2bj−2 < c′0b0 + c′1b1 + . . . + c′j−2bj−2 < bj−1,

where both sums are Bj−1-representations.

C a s e 1.1: c′j−2 = cj−2. Here c0b0 +c1b1 + . . .+cj−3bj−3 < c′0b0 +c′1b1 +
. . . + c′j−3bj−3, which by Hypothesis II yields

c0b1 + c1b2 + . . . + cj−3bj−2 < c′0b1 + c′1b2 + . . . + c′j−3bj−2.

We add cj−2bj−1 = c′j−2bj−1 to both sides to obtain

(12) c0b1 + c1b2 + . . . + cj−2bj−1 < c′0b1 + c′1b2 + . . . + c′j−2bj−1.

This proof of (12) for Case 1.1 is obviously very similar to that for Case 1
above. Cases 2.1 and 3.1 are similar to the previous Cases 2 and 3, and
corresponding proofs of (12) are omitted. Now suppose 1 ≤ m < n ≤ bj−1.
Write Bj-representations for m and n:

m = c0b0 + . . . + cj−2bj−2,

n =

{
c′0b0 + . . . + c′j−2bj−2 if n < bj−1,
bj−1 otherwise

and let

h = max{i : ci 6= 0, i ≤ j − 2},

k =

{
max{i : c′i 6= 0, i ≤ j − 2} if n < bj−1,
j − 1 otherwise.

C a s e 1.2: h = k. In this case, fBj
(m) < fBj

(n) by (12).

C a s e 2.2: h < k (the case h > k is similar and omitted). Here, m ≤
bk < n or m < bk ≤ n, so that fBj

(m) ≤ fBj
(bk) = bk+1 ≤ fBj

(n), with
strict inequality in at least one place, and a proof of (iv) is finished.

P a r t 3: (i)⇒(iii). Suppose 2 ≤ i ≤ j. Then bi−1 − 1 has a Bi−2-
representation c0b0 + c1b1 + . . . + ci−2bi−2. By Lemma 1 (reading i − 1 for
j), we have i − 1 inequalities:
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c0b0 < b1,

c0b0 + c1b1 < b2,

...

c0b0 + c1b1 + . . . + ci−2bi−2 < bi−1.

By (i), the representation for fBi−1
(bi−1 − 1) as c0b1 + c1b2 + . . . + ci−2bi−1

is a Bi−1-representation, and by (ii), already proved to follow from (i), we
have fBi−1

(bi−1 − 1) < bi, and (iii) holds.

P a r t 4: (iv)⇒(iii). For i = 2, 3, . . . , j, if (iv) holds then fBi−1
(bi−1 −

1) = fBj
(bi−1 − 1) < fBj

(bi−1) = bi, so that (iii) holds.

Definitions. We extend the notion of affability given earlier: an infinite
basis B = (b0, b1, . . .) is an affable basis if the sum

∑k

h=0
chbh+1 is a B-

representation whenever the sum
∑k

h=0
chbh is a B-representation. The

notion of shift-function is extended also:

if n =
∑k

h=0
chbh is a B-representation, then fB(n) =

∑k

h=0
chbh+1.

Theorem 2. Let B = (b0, b1, . . .) be a basis, and let Bj = (b0, b1, . . . , bj)
for j ≥ 2. The following statements are equivalent :

(i) B is an affable basis.

(ii) Bj is an affable finite basis for all j ≥ 2.
(iii) bj ≥ fBj−1

(bj−1 − 1) + 1 for all j ≥ 2.
(iv) fB is strictly increasing on N.

P r o o f. This follows easily from Theorem 1.

Definitions. Suppose S = (sn) is a sequence (possibly finite) of num-
bers in N. The counting array of S is the array C(S) with terms a(i, j)
given by

a(i, j) is the index n for which sn is the jth occurrence of i in S.

Note that if S is the paraphrase of an infinite basis B, then

C(S) = A(B) and B = (a(1, 1), a(1, 2), a(1, 3), . . .).

The following notation will be helpful: if A is a numeration system or a
counting array, then

#n is the number of terms of A that are ≤ n

and do not lie in column 1 of A.

Lemma 3.1. A sequence S = (sn) is a fractal sequence if and only if the

counting array C(S), with terms a(i, j), satisfies

(13) #a(i, j + 1) = a(i, j)

for all i and j in N.
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P r o o f. It is proved in [3, Theorem 2] that S is a fractal sequence if
and only if C(S) is an interspersion. In [3, Lemma 2], it is proved (in
different notation) that C(S) is an interspersion if and only if the number
of terms of C(S) that lie in column 1 and are not greater than a(i, j + 1)
is a(i, j + 1) − a(i, j). Equivalently, the number of terms of C(S) that lie
outside column 1 and are not greater than a(i, j + 1) is a(i, j).

Definitions. A finite sequence S = (s0, s1, . . . , sk) is a prefractal se-

quence if the following properties hold:

(PF1) if i + 1 = sn for some n ≤ k, then i = sm for some m < n, for all
i in N;

(PF2) if Λ(S) is the sequence obtained from S by deleting the first oc-
currence of n for each n in S, then Λ(S) is an initial segment of S.

A prefractal basis is a finite basis B = (b0, b1, . . . , bj) such that the
first bj terms of S(B) form a prefractal sequence. For example, if S =
(1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1), the first 13 terms in (5), then Λ(S) =
(1, 1, 1, 2, 1, 3, 2, 1), and this is the initial eight-term segment of S; thus S is
a prefractal sequence, and (1, 2, 3, 5, 8, 13) is a prefractal basis.

Lemma 3.2. A finite sequence T = (t0, t1, . . . , tk) satisfying (PF1) is a

prefractal sequence if and only if (13) holds for all i and j such that a(i, j)
and a(i, j + 1) are terms of C(T ).

P r o o f. The counting array C(T ) consists of terms a(i, j) which are the
numbers 1, . . . , tk. The proof is now similar to that of Lemma 3.1, since all
the inequalities needed from [3] and [2] remain intact in the case where the
only terms being considered are 1, . . . , tk.

Lemma 3.3. If 1 ≤ j2 < j1 and 1 ≤ x ≤ bj2 − 1, then fBj1
(x) = fBj2

(x).

P r o o f. If 1 ≤ x ≤ bj2 − 1, then the Bj1-representation of x and the
Bj2-representation of x are identical. Thus, the shift-functions defined by
(8) have identical values at x.

The next theorem shows that the lower bound for bj in Theorem 2(iii)
for an affable basis is also a lower bound for bj for a fractal basis. The
theorem also gives an upper bound for bj .

Theorem 3. Let B = (b0, b1, . . .) be a proper basis, and let Bj =
(b0, b1, . . . , bj) for j ≥ 2. The following statements are equivalent :

(i) B is a fractal basis.

(ii) #a(i, j + 1) = a(i, j) for all i and j in N.

(iii) fBj−1
(bj−1 − 1) + 1 ≤ bj ≤ fBj−1

(bj−1) for all j ≥ 2.

(iv) a(i, j + 1) = fB(a(i, j)) for all i and j in N.
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P r o o f. A proof is given in four parts: (i)⇔(ii), (iii)⇒(iv), (iv)⇒(ii),
and (ii)⇒(iii).

P a r t 1: (i)⇔(ii). This is an immediate consequence of Lemma 3.2.

P a r t 2: (iii)⇒(iv). Suppose, to the contrary, that (iii) holds but (iv)
fails. Let i be the least index for which

(14) a(i, j + 1) 6= fB(a(i, j))

for some j, and assume that j is the least index such that (14) holds for the
stipulated i. Write x for fB(a(i, j)). This number must occur somewhere in
the array A(B), and then only in column j + 1 or else row 1.

C a s e 1: x in column j + 1. There is some h for which a(i, j + 1) =
fB(a(h, j)), and h > i, so that x must occur after fB(a(h, j)) in column
j + 1. But now a(i, j) < a(h, j) while fB(a(i, j)) > fB(a(h, j)), contrary to
Theorem 2(iv).

C a s e 2: x in row 1. Here, x = bk for some k > 1, so that x = fB(bk−1).
But also, fB(a(i, j)) = x, so that a(i, j) = bk−1, since, by Theorem 2, fB is
strictly increasing. But this implies i = 1, a contradiction, since we have
equality in (14) when i = 1, by definition of fB.

P a r t 3: (iv)⇒(ii). For any i and j in N, let S1 = {1, 2, . . . , a(i, j)} and
S2 = {m : m ≤ a(i, j + 1) and m is not in column 1 of A(B)}. By (iv),
the mapping fB is a one-to-one correspondence from S1 onto S2. Therefore,
#a(i, j + 1) = a(i, j).

P a r t 4: (ii)⇒(iii). Suppose, to the contrary, that (iii) fails. Let k
be the least index not less than 2 for which bk < fBk−1

(bk−1 − 1) + 1 or

bk > fBk−1
(bk−1). Let b̂h = bh for h = 0, 1, . . . , k − 1, and define inductively

b̂k+h = f
B̂k+h−1

(̂bk+h−1 − 1) + 1 and B̂k+h = (̂b0, b̂1, . . . , b̂k+h)

for h = 0, 1, . . . The basis B̂ = (̂b0, b̂1, . . .) satisfies (iii) (with notation mod-
ified in an obvious way), so that by Parts 2 and 3 of this proof, already

proved, property (ii) holds for the array A(B̂). That is, #â(i, j +1) = â(i, j)

for all i and j in N, where â denotes terms of A(B̂).

C a s e 1: bk < fBk−1
(bk−1 − 1) + 1. The number bk−1 − 1 is in A(B),

which is to say that it is a(i, j) for some (i, j). The inequality bk−1−1 < bk−1

can therefore be written as

(15) a(i, j) < a(1, k).

Now a(h, j+1) = â(h, j+1) for h = 1, . . . , i−1, and this accounts for the first
i−1 terms of column j+1 of array A(B). The greatest of these, a(i−1, j+1),
is the greatest number that has B-residue less than bk. Additionally, the
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number bk−1 + bk = a(1, k) + a(1, k + 1) is the least number not less than
bk whose B-residue is bk−1; hence a(i, j + 1) = a(1, k) + a(1, k + 1), so that

(16) a(i, j + 1) > a(1, k + 1).

But since (ii) holds in A(B), the inequalities (15) and (16) are incompatible,
and we conclude that bk ≥ fBk−1

(bk−1 − 1) + 1.

C a s e 2: bk > fBk−1
(bk−1). Let i be the index for which a(i, 1) = bk−1+

1. Then in A(B̂) we have fBk−1
(â(i, 1)) = fBk−1

(bk−1 + 1), or equivalently,
â(i, 2) = fBk−1

(bk−1) + b1. Now a(h, 2) = â(h, 2) for h = 1, . . . , i − 1, and

this accounts for the first i− 1 terms of column 2 of A(B̂). Since â(i, 2) and
b1 both have B-residue b1, their difference, fBk−1

(bk−1), also has B-residue
b1, so that

a(i, 2) ≤ fBk−1
(bk−1) = a(1, k + 1).

We now have a(i, 1) > a(1, k) and a(i, 2) ≤ a(1, k + 1), contrary to (ii).
Therefore, bk ≤ fBk−1

(bk−1).

1 2

3

4

5

6

7

6
9

5 8

4

7

12

13

8

15

16

12

13

20

21

23

24

28

29

31

32

Fig. 1. The first six terms of the fractal bases in which b1 = 2
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Corollary 3.1. With reference to statement (iii) in Theorem 3, the

number of allowable bj is not greater than b1.

P r o o f. By Theorem 3, the greatest allowable bj is the number
fBj−1

(bj−1), which we abbreviate as M . In the array A(B), the consecu-
tive integers

M − 1,M − 2, . . . ,M − [fBj−1
(bj−1) − fBj−1

(bj−1 − 1) − 1]

all lie in column 1, since none of them is of the form fBj−1
(x). It follows

easily from the definition of Bj−1-representation and Theorem 3(iii), that
the maximum number of consecutive integers for which this is possible is
b1.

Corollary 3.2. Let B = (b0, b1, . . .) be a proper basis. Suppose Bj1 =
(b0, b1, . . . , bj1) is a prefractal basis for all j1 ≥ 1, and bj = fBj−1

(bj−1) for

j = j1 + 1, j1 + 2, . . . Then B is a fractal basis. If the Bj1−1-representation

of bj1 is given by

(17) bj1 = γj1−pbj1−p + γj1−p+1bj1−p+1 + . . . + γj1−1bj1−1,

then the row sequences of A(B) satisfy the homogeneous linear recurrence

inherited from (17):

a(i, j1 + q)

= γj1−pa(i, j1 + q − p) + γ1a(i, j1 + q − p + 1) + . . . + γj1−1a(i, j1 + q − 1),

i ≥ 1, q ≥ 0.

P r o o f. This is an obvious consequence of Theorem 3(iv).

In summary, a prefractal basis (b0, b1, . . . , bj) can always be extended to a
prefractal basis (b0, b1, . . . , bj , bj+1), where the number p of allowable values
of bj+1 satisfies 1 ≤ p ≤ b1. Extending inductively, we can in this manner
construct any fractal basis as a limit of prefractal bases. If the choice of bj+1

is always maximal beginning with the first term after some particular bj1 ,
then we obtain, in accord with Corollary 3.2, the homogeneous extension of
(b0, b1, . . . , bj1). Specifically, if bj1 is given by the Bj1−1-representation

bj1 = R(b0, b1, . . . , bj1−1) = γ0b0 + γ1b1 + . . . + γj1−1bj1−1,

then all the row sequences of the limiting fractal basis satisfy the homoge-
neous recurrence determined by R. We now turn to certain nonhomogeneous
linear recurrences, associated with minimal choices of bj+1, as given by (20).

Corollary 3.3. Suppose Bj1 = (b0, b1, . . . , bj1) is a prefractal basis for

all j1 ≥ 1. Let the Bj1-representation of bj1 − 1 be given by

(18) bj1 − 1 = δj1−pbj1−p + δj1−p+1bj1−p+1 + . . . + δj1−1bj1−1,
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where δj1−p 6= 0, so that the order of the homogeneous linear recurrence S
given by

(19) S(x1, x2, . . . , xp) = δj1−px1 + δj1−p+1x2 + . . . + δj1−1xp

is p. Let B be the fractal basis obtained inductively from Bj1 by defining

(20) bj1+q+1 = fBj1+q
(bj1+q − 1) + 1

for q = 0, 1, . . . Then row 1 of A(B) satisfies the nonhomogeneous linear

recurrence

bj = a(1, j + 1) = S(bj−p, bj−p+1, . . . , bj−1) + 1(21)

= S(a(1, j − p + 1), a(1, j − p + 2), . . . , a(1, j)) + 1,

for j = j1, j1 +1, . . . , and row i of A(B) satisfies the nonhomogeneous linear

recurrence

(22) a(i, j + 1) = S(a(i, j − p + 1), a(i, j − p + 2), . . . , a(i, j)) + Qi,

where Qi depends only on i, for all i in N, for j = j1, j1 + 1, . . .

P r o o f. Equations (18) and (19) give

fBj1
(bj1 − 1) = fBj1

(S(bj1−p, bj1−p+1, . . . , bj1−1)),

so that by (20) with q = 0, we have bj1+1 = S(bj1−p+1, bj1−p+2, . . . , bj1)+1.
The same method easily completes an induction proof that (21) holds for
all j ≥ j1, so that (22) is established for i = 1.

Assume now that i ≥ 2 and j ≥ j1. Let the B-representation of a(i, 1) be

given by a(i, 1) =
∑v

h=1
ch−1a(1, h), and let Qi =

∑v−1

h=0
ch. By Theorem 3,

a(i, j + 1) =

v∑

h=1

ch−1a(1, j + h)

=

v∑

h=1

ch−1(S(bj−p+h−1, bj−p+h, . . . , bj+h−1) + 1)

= Qi +

v∑

h=1

ch−1

p−1∑

k=0

δj−p+kbj−p+k

= Qi +

p∑

k=1

δj−k

v∑

h=1

ch−1a(1, j − k + h)

= Qi +

p∑

k=1

δj−ka(i, j − k + 1)

= S(a(i, j − p + 1), a(i, j − p + 2), . . . , a(i, j)) + Qi.
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49

50

1 4

13

14

15

16

40

41

42

43

47

48

54

55

56

57

61

62

63

64

121 to 124

128 to 131

135 to 138

142 only

156 to 159

163 to 166

170 to 173

177 and 178

193 to 196

200 to 203

207 to 210

214 to 216

232 to 235

239 to 242

246 to 249

253 to 256

Fig. 2. The first five terms of the fractal bases in which b1 = 4

Figures 1 and 2 lead one to conjecture that every prefractal basis has
uncountably many extensions to fractal bases. Another question concerns
the inequality in Theorem 3(iii): when is there only one possible choice of bj ,
as exemplified by b4 = 8 following b3 = 5 in Figure 1, and also by b4 = 142
following b3 = 43 in Figure 2?

Finally, as you may have already observed, for each choice of b1 ≥ 2, the
fractal bases with second term b1 fan themselves out between two extreme
cases, one an arithmetic sequence and the other a geometric sequence.
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