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Numbers with a large prime factor
by

R. C. BAKER (Provo, Ut.) and G. HARMAN (Cardiff)

1. Introduction. Given a large positive number z, let P(z) denote the
greatest prime factor of
m -

m<n§m+ml/2

Lower bounds for P(z) have been given by Ramachandra [15,16], Graham
[9], Baker [1], Jia [12] and Liu [13]. The last paper contains the bound

P(z) > 272,
In the present paper we give a sharper bound.
THEOREM 1. For sufficiently large x, we have
P(z) > 20732,

As in previous papers on the subject, we combine sieve methods with
estimates for exponential sums

hz
(L.1) - bne(—>.
h;[g v<n§<ev mmn

Here e(f) = €2™%. The paper of Fouvry and Iwaniec [7] was an important
step forward in the study of sums (1.1), and one of the results of [7] is used
in [13] with a little adaptation; see Lemma 2, below. Some results in [1] are
still useful; see Lemmas 2, 3.

For the special sums (1.1) in which

(1.2) am =1,
the best results are due to Liu [13]. He uses different methods for

(1.3) v < x007¢
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and
(1.4) v > z"0E.

Here and below, ¢ is a positive number, supposed sufficiently small.

In the present paper, we give a theorem on bilinear exponential sums
from which the results of [13] follow in both cases (1.3), (1.4) (Theorem 2
and its corollaries; see Section 3). Theorem 2 has other applications, which
will be taken up elsewhere.

Let y = z'/2, L = log z, and

N@dy= > 1

r<n<z+y
dln

Let v be a positive number in (2'/2, 23/4]. We write v = 27,

A={n:v<n<ev,N(n)=1}, SAz)=|{necA:p|n=p>=z}

where p denotes a prime variable, and

S(0) =[{p:p € A}
Theorem 1 will follow if we establish that

(1.5) Z N(p)logp > 0.

20792 <p< P(z)

Just as in [1], §1, it suffices to prove that

(1.6) S A@N(d) = <g - a> yL+ 0(y)

d<z3/5-¢

and
(1.7) > N(p)logp < 2yL/5

23/5—5 <p< p0-732
in order to establish (1.5). The formula (1.6) is given in [13], but for the
sake of completeness we shall deduce it from Theorem 2 (see Corollary 2).
As on p. 229 of [1], (1.7) will follow from the bound

0.732 5

[ 05(6)do < <g — 6>yL1.
0.6—¢
Thus we seek the sharpest attainable upper bounds for S(). As in [1, 12,
13], we use the Rosser—Iwaniec sieve, at least for 6 > 0.661. For 6 < 0.661,
we use the alternative sieve procedure developed by Harman [11] and Baker,
Harman and Rivat [2] to give sharper bounds for S(#). It is here that we
gain a sizeable advantage over Liu [13].

Throughout the paper, we suppose that x > C(e) and write n =

exp(—3/¢), J = [vy 1z*"]. Constants implied by <, > and O.() depend
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at most on €. Constants implied by O( ) are absolute. The notations A < B
and Y =< Z are abbreviations for A < B(1+O(e)) and Y € Z K Y.
We write

G(a) = exp <1 - G) log (é)) (a > 0),

We write m ~ M as an abbreviation for M < m < 2M. The smallest
prime factor of n is written Q(n), with Q(1) = oc.

The first-named author would like to thank the Institute of Advanced
Study at Princeton, where the penultimate draft of the paper was prepared.

2. Exponential sums of form (1.1)

LEMMA 1. Let a,a1,ay be given real numbers such that o # 1 and
aoias #0. Let 1 < M, My, My <x. Let A >0, and

S = Z ‘ Z Z by ms€(Ammi ms?) where by, m,| < 1.

m~M mi~M; ma~Ms
Writing F = AM®M{" M3?, Ly = log(MM;M5(1 + A)), we have
S < LY (M1 M)/ MO/ FYMY 4 My My M/
+ My Ma M2 =14 4 (M M3/ M + (M M,)*/* M2 FHY),

Proof. This is a variant of [7], Theorem 3; see [2] for a proof. In [2], the
authors included terms (M; M3)?3/24 M F=1/6 and (M, M,)?3/24 M7/12 p1/24,
These are superfluous, since

(M1M2)23/24MF71/6
— (M Mo M3/ 2 =1/ 4410 (A, vy M2/3Y YO (M3 g ) e,
(M, My)23/24 \[7/12 /24
_ (Mf’/4M§/4M1/2F1/4)1/6(M1M2M2/3)5/6M_1/18-

LEMMA 2. Let a,, (m ~ M), b, (n ~ N) be complex numbers of modulus
<1. We have

o 5 5 ) (@)

m~ M n~N
v<mn<ev

for 1/2 <6 <2/3 ¢ and vr~ Y/ < N <« max(z2 03 o/ Tg/14=¢),
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Proof. If the sum (2.1) is nonempty, then MN =< v. (This will fre-
quently be used implicitly in the rest of the paper.)

In view of [1], Lemma 7, and the proof of [1], inequality (50), it suffices
to establish

(2.2) ;H EMEN b ( ) < vz

for H < J, MN =< v, ( < x. (We have dispensed with the summation
condition v < mn < ewv; this is permissible just as in [1], Lemma 15.)

We now get the desired result by an appeal to Lemma 9 of [1] and Lemma
2 of [13].

LEMMA 3. Let (k,A) be an exponent pair. Let 0.64 < 6 < 0.72. Then
(2.1) holds for all N satisfying

(2.3) g2« N (g 2R Al r— M/ (LA=k) —e

Proof. Asin the previous lemma, it suffices to establish (2.2). Accord-
ing to Lemma 14 of [1], for N satisfying (2.3) we have
(2.4) T2 « M2(NH)F 4 HY/2HAN3/24A-25 N f1/2- 0,1/ 245420,

It is now easy to verify that (2.3) and (2.4) together imply (2.2). This
completes the proof of Lemma 3.

We shall apply Lemma 3 with three exponent pairs:
(i) Let u = 89/560 + n. Then (p,1/2 + u) is an exponent pair (Watt

[19]). Let
1 142u 14+ 2u
(1, A) = BA(”’ﬁ +M> - <4—|—4u’ 2+2,u>'
(ii) (k,A) = BA3B(0,1) = (11/30,8/15).
(iii) (k,A) = BA*B(0,1) = (13/31,16/31).
The corresponding expressions in (2.3) are respectively
p(B+20)/(5+6p1) = (1+u)/(5+6u) =€ )5/T;,=3/10—c = 14/17—3/8—¢

LEMMA 4. We have

(2.5) XN bne(%> < va™n

h~H n~N M<m<M,;
v<mn<ev

for

(2.6) (=xm, 1/2<0<3/4—¢, M <2M, |b,|<1, H<J
if either

(2.7) N < z'/37¢
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or
(2.8) /37 < N < 23/%° and H < vzt 3/8N"1/2,

Proof. This is a variant of an argument of Wu [20]. We apply Poisson’s
summation formula to the inner summation. As in the proof of [1], Lemma 4,
the left-hand side of (2.5) is

Muy1/2 , hr¢ Muyt/?
3 S e () ) o (v (a1,
h~Hn~N T
where b/, ¢, have modulus < 1 and the summation range for r is

h¢n™" max <M12, <ﬂ> ) <7 < h(n 'min (M—2, <3> >
n n

We may readily verify that

Moyt/2

(29) HN (W

+ L) < vx~

As in the proof of Lemma 2, it now suffices to show that

1/2
(2.10) Z Z Zb” / ( ( ) ) <<M_1v1/2H1/2x1/2_7”,

h~Hn~Nr~R

where
(2.11) R=<HxM *N!

and [b!| < 1,|c.| < 1. By a standard divisor argument, the sum (2.10) may
be rewritten as

(2.12) S % bgake<2<%>l/2>’

n~N kxRH

where a;, < 2".

We apply Lemma 1 with M; < RH, Ms =1 and M replaced by N. It is
easily verified that (2.10) is a consequence of (2.7) or (2.8). This completes
the proof of Lemma 4. The reader will note that (2.8) is unnecessarily
strong. The reason for the form of the condition (2.8) will become clear
when we prove Corollary 1 of Theorem 2.

3. Bilinear exponential sums

LEMMA 5. Let M < N < Ny < My. Let a, (M <n < M) be complex
numbers. Then

Y < [ KO T anm|as

N<n<N; — 00 M<m<M,;
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with K(¢) = min(M; — M + 1, (r|¢]) 7L, (7¢)~2) and
[ K(¢)dg < 3log(2+ My — M).

Proof. This is Lemma 2.2 of Bombieri and Iwaniec [3].

THEOREM 2. Let o, 8 be given nonzero real numbers, a # 1. Let X,Y
> 1. Let ay (z ~ X) and b, (y ~Y) be complex numbers of modulus < 1.

Let
S = Z Z azbye(Az®y?),
r~X y~Y
where the positive number F = AX*Y? satisfies
(3.1) F <min(Y? XY 37),

Then for any natural number Q, 1 < Q < Y1~ we have
S < (XY)?’”{XYQ*UQ £ XY32E-12Q-1/2 L pr1/6g-1/3 xy18/12
4 F3/8QS/6 Xy 1/8 | pl/aq1/s x1/2y 3/
+F1/3Ql/6X1/2Y7/12 4 F1/8Q3/16X1/2y7/8}‘

Proof. We may suppose that Y > ¢o(n). We begin in the same way as
Liu [13], proof of Lemma 4. By Cauchy’s inequality and a “Weyl shift” (see
e.g. Graham and Kolesnik [10], Lemma 2.5),

517 < X 30 | 3 bye(dany®)|

z~X y~Y

< (Xg Q Yo > bybyrg Y e(Ax”t(y,q)).

0<]q|<Q y,y+a~Y z~X

Here t(y,q) = (y + q)® — y?. After splitting the range of ¢ into dyadic
intervals, we obtain

YIS <« ( ‘ Do D bubyeg ) e(As®t(y,aq)

q~Q1 y,y+q~Y r~X

for some (@1, 1 < @1 < Q.
There are now two cases to consider.

Case 1: Q; < Y2 Now
%(Amat(y,q)) < FQY X 1<y
by (3.1). Lemmata 4.2 and 4.8 of [17] yield
Y e(Azt(y,q)) < (FQ1) 'XY

z~X
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and

(XY)2  XY?

0 + 0 Q1(FQ1) ' XY

< (XY)P(Q '+ YF'QY,
so that the theorem is true in this case.

Y52 «

Case 2: Q1 > Y?7. We apply a sharp form of the Poisson summation
formula to the innermost sum (Min [14], Theorem 2.2):

(32) > e(Az®t) = > Ci[(At)Tu" 27V |e(Cy(At) ! )

r~X uel

*O(min ((25? >/ el ||92(;,q)||))

+(XY)".

n XY
Q1 F
Here I = [C3AX7 Y|, CLAX7 Y], v = 1/(2(1 — @), 2y(2y — 1) # 0,
g1 = aAX* 't and g = aA(2X)* 't. (The constants Cy, Cs,... depend
only on «.)
For fixed g ~ Q1, we have

5 F (v )

i "lg;(y, a)l

< (L+FQ XY ) (XY Q 'F~)/? + PT1Q, ' XY?H)

by a variant of Lemma 9 of Vinogradov [18], Chapter 1. Thus if we sum
(3.2) over y, interchange summations, and apply a partial summation, we
find that

(3.4) (XY) ?1|8)?
< (Xy)zQ—l +X2Y3/2Q_1/2F_1/2 +F_1Q_1X2Y3
+ FPQYPXY? 4 XY?
+XYQ Y14+ FQ: X 'Y HY(AQ, Y )Y (XY FIQ7 1) +1/28y).
Here, for some fixed u < FQ; X 'Y 1,
S1=3 "> bybysee(Ca(At)u' ),

Yy g~Q1

where the outer summation is taken over a subinterval of (Y, 2Y].
By Lemma 5, we have

(XY)781] < Z ‘ Z by+qe(¢Q)€(Cz(At)2711,1_27)

y~Y qg~Q1
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for some real number ¢ independent of y and ¢q. Applying Cauchy’s inequal-
ity and a Weyl shift, we have

2
_ —agpg 2 o Y@ Y@ g
(3.5) (XY)™2118° <« 0. T o, 1@2@ 5(q1)]

with

Sa(q1) = Z Z by+qby+q+q €(t1)-

y~Y q,q+q1~Q1
Here

t1=t1(y,q,q1) = Cou' 2TA (t(y, g + ¢1)*" — t(y. 9)*).
The choice of Q3 (1 < Q2 < Q1) is at our disposal. For reasons which should
shortly become clear, we take

Q> = min(Q{" /2, (@Y F ),

We now estimate Sy for a given value of ¢;. (We suppress dependence
on ¢qq.) Writing y + ¢ = z, we get

Sy = Z Z 5zbz-i—q1€(T)

4,9+q1~Q1 z—g~Y
with

T =T(zq) = Cou' YA (t(z — q,q + ¢1)*" — t(z — ¢,9)*").
Applying Lemma 5 once more gives
XYV) S < DY (=),
Y/2<2<2Y q~Q1
A final application of Cauchy’s inequality and a Weyl shift yields

2
36)  (XY) S, < T YO e s g )
@3 @s 1<g2<Qs g~ Qs

with Q3 = Q3 < Q7 " and
S3(qaq2) = Z G(T(Z,q) *T(ZaCI+Q2))
Y/2<2<2Y

Now it is easy to verify that, in the last sum,
d —1y —2 31y —2 -n
E(T(zaQ) ~T(2,9+ @) X Fq12Q; Y~ < FQ3Q; Y " <Y

By Lemmata 4.2 and 4.8 of [17], we have
S3(q:42) < (Fq1qaQy 'Y ™%)71,
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With (3.6), (3.5), this yields
Y2Q3 n YiQ?
Q3 Qa1 F’
~ Y22 Y5/2Q5/2
(XY)~48? < SRy TR
Q2 Qy " F/2

(XY)™3|8,)? <

Using the definition of Q)2, we get
(XY) "8 P < ¥? §/2 + Y4/3Q?/3F1/3
+ Y5/2QI/4F_1/2 + Y3/2Q§_

Since Q1 < Y, the last term may be omitted. Recalling (3.4), and noting
that

(AQ Y ) (XYF'Qy ) = X1/2,
we obtain
(Xy)f5n‘s‘2 << (XY)QQil +X2Y3/2Q71/2F71/2
+F QXY+ FIPQVPXY? 4 XY
+ X2Y2QTIFT2QT A (1 + FQIX Y T
x (YQ‘;’M + Y2/3Q?/6F1/6 + Y5/4QI/8F*1/4)
< X2Y2Q71 +X2y3/2Q71/2F71/2 +F71Q71X2Y3
+F1/2Q1/2XY1/2 +XY2 +X2Y5/2Q_3/4F_1/2
4 Po3Q23 X2y 18/6 | p=3/4()=5/8 x 2y 11/4
+XY3/2Q1/4F1/2 +XY7/6F2/3Q1/3 +XY7/4F1/4Q3/8
:T1+...+T11, s5ay.-
Clearly Ty < Ty and Ty, < Ty = T11/3T82/3 < max (T}, Tg). We may suppose

that T3 < X2?Y2; consequently, Y < FQ and Ts < Ty;. The result follows
in Case 2. This completes the proof of Theorem 2.

COROLLARY 1. We have, for 1/2 < 6 < 3/4 — ¢,

(3.7) > bn{¢<TJWU> w(%)} < gz

M<m<M; n~N
v<mn<ev

whenever |b,| <1, My <2M and
(3.8) N < z3/8=¢,

Proof. Asin the proof of Lemma 2, it suffices to show that (2.5) holds
when ( <z, H < J. In view of Lemma 4, we may suppose that

(39) m1/3—E S N S .’I/'3/8_E
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and that
(3.10) H > vzt 3/8N~1/2,

As in the proof of Lemma 4, we only have to prove that the left-hand
side of (2.12) is

(3.11) < M~ 2HY2 020,
We apply Theorem 2 with
X=N, Y=<H?w™ 2N, Fx<Hzw ! Q= [.7;1/4].
It is easy to deduce from (3.10) that @ < Y~ and that (3.1) holds. The
bound (3.11) may readily be verified, and Corollary 1 is proved.
COROLLARY 2. The formula (1.6) holds.

Proof. An examination of the proof of [1], Proposition 1, reveals that
it suffices to prove that (3.7) holds whenever |b,| <1, My < 2M and

(3.12) M > gt /4=6n gy < g3/52

Now (3.12) implies N < vM ! <« x7/20%2¢ Hence Corollary 2 follows from
Corollary 1.

4. The Rosser—Iwaniec sieve. Let 7(6) be defined to be 2 — 36 in
(3/5—¢,27/44], (20+1)/14 in (27/44,0.642], (3+2u)0/ (5+64) — (1+1)/(5+
6u) in (0.642,0.671], 50/7 — 3/10 in (0.671,357/520] and 146/17 — 3/8 in
(357/520,0.7]. Let

a=g"1*e p=gmOe pgl=g9, = [a, b].
Then
(4.1) The bound (2.1) holds for N € I.

This is a consequence of Lemma 2 for 8 < 0.642. We use the remarks
following Lemma 3 for the remaining intervals. When 6 > 0.661, we shall
apply the Rosser Iwaniec sieve as in [1] to bound S(A, z) from above. Here
z = D/3 the “level of distribution” D being defined as follows. For 0.661 <
0 <0.7, let

Dy =z~ min(b3a"t, z3/4a™2)
and
D = max(Dy, z3/8+975%) = z2()  gay.
For 0.7 < 0 < 0.732, let D = 2209), where p(f) = 3/8 — 4e.
The interval of # in which D = Dj is rather short, 0.6825 < 6 <

0.6854 ..., but the device seems worth including, partly because analogous
situations may occur in other sieve problems.
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LEMMA 6. Let Aq,. .., A; be positive numbers with Ay > ... > A > 1,

(4.2) A AgjAS L < DY (0< < (t—1)/2).
Then for 0.661 < 0 < 0.7, either
(4.3) A Ay < g3/87%
or some set S C {1,...,t} satisfies
(4.4) T[Acer
i€ES

For 0.7 < 6 <0.73, the inequality (4.3) holds.

Proof. The lemma is obvious for # > 0.7, since (4.2) implies that
Ay, Ay € DY« g3/873¢ Now let § € (0.661,0.7]. Suppose that
neither (4.3) nor (4.4) holds; we shall obtain a contradiction.

Suppose first that D = 23/8+97% By Lemma 5 of Fouvry [6], with
Y; = A;, W = D27 U =q, V = b, we have

Ay .. Ay < DYt < gB/82¢
This is absurd.
Next, suppose that D = Dy. As in [1], p. 215, we partition A; ... A;
into two products P and (), with
P< D(l)/2+n, Q< D(l)/2+n.
Suppose if possible that P < b. Then P < a. Now
Ar.. Ay = PQ < aDy/*t" < 23/87%,

This is absurd, so P > b. Similarly, @ > b.

Let P’ be the subproduct of P formed from those A; that exceed ba~?!
define @' similarly. Since (4.4) never holds, it is clear that P’ > b and
Q' >0b. If PPQ" = Aj, ... A;, with j; > ... > j, then, from (4.2),

D't > P'Q'A;, > b* ba?,
which is absurd. This completes the proof of Lemma 6.

LEMMA 7. Let z = D'/3. Then
2
S(6) < S(A.2) S —
0(6)
Proof. In view of Lemma 6 and (4.1), thi
way as [1], Lemma 16. (The condition (63) of

Sl

follows in exactly the same
] is obviously satisfied.)

q
1
5. An alternative sieve. In this section and the next we suppose that

3/5—¢ <6 <0.661.
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Let
B={n:v<n<ev}, w(n)=y/n (née€bB).
For £ = Aor B, let &, = {n:mn € £}. We write
S(Bm,u) = Z w(nm)
mneB
Qmy>u

whenever Q(m) > u. The quantity S(B,u) will act as a model for S(A, u).
We let w(u) be Buchstab’s function, so that

ww)=1/u (1<u<?), (@) =ww-1) (> 2.
As u — oo, we have
(5.1) w(u) = e~ + O(G(1/u)).
See Cheer and Goldston [4].

LEMMA 8. For m < v'/? and 2= < X <wv/m, Q(m) > X, we have

S(Bon. A) = w (logl(();/;”’)> ml-zg S+ 0(L7).

Proof. Let I'(u) = [{n < u: Q(n) > A}. For u € [y/m,ev/m|, we
have

I'(u) = 11)(10%(22/;1)) 107;)\ (14+0-(L7Y)

(see Friedlander [8]). Consequently,

ev/m
Yy 1y dl’(u)
S = — _ = —
(B A) m Z n m f u
mnéeB m
Q(n)>A
y ([T i D)
m U / ]
v/m v/m
log(v/m)\ 1
= 14+ O (L .
w( log A mlogA( + Ol )
This completes the proof of Lemma 8.
LEMMA 9. For M < z3/37¢, we have
G _
(52) Z am|-’4m‘ =Y Z E + Oe(yx 4”)

whenever |a,,| < 1.
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Proof. The left-hand side of (5.2) is

doam D, D1

m<M v<mn<ev k
z<mnk<z+y
Y T+y T
- S Y (5 ol
<M = mn mn mn
ms v<mn<ev
A 1 _4
oYY Lo
<Mm n n
ms v<mn<ev

by Corollary 1 of Theorem 2. We may now easily complete the proof (com-
pare [1], p. 210).

LEMMA 10. Let M < z3/872% 0 < a,, < 1, a,, = 0 unless Q(m) > x"
(m=1,...,M). Then

Y S, e = S amS(Bm,gc”)(l—l—O(G(%))) + O, (yz "),

Proof. We apply Lemma 8 of Baker, Harman and Rivat [2], with z,y
replaced by z", z°, taking £ = A,,, and Y = y/m. In the notation of [2], we
have o = ¢, hence 0°° log(z") > 1. We deduce that, whenever a,,, # 0,

S(Am,m"):%V(m")<1+O<G<%>>>+O< 3y ‘Amd|%‘>.

d<x®
pld=p<z”

(Note that £ = A,,,q because (m,d) = 1 here.)

By a divisor argument (compare [2]) there are numbers ¢; < 2" for
which

Z amS(Aman)

ey 5 = ofo(5) (5 o(41-)

j<ud/s—e
= yV (z") mZ:M %’“ <1 + o(a(%))) + 0. (ya—)

by Lemma 9.
Combining Lemma 8 with (5.1), we have

o))
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In view of the approximation
n e’ -1
V(z") = 77—L{1 +O-(L7)},
we obtain the desired result.

Let I be the interval defined at the beginning of Section 4.

LEMMA 11. For N € I, |a,,| < 1, |b,| < 1, we have

Yo amba=y Y Ul 10, (ya=)

mn
mnéeA mné€B
m~M,n~N m~M,n~N

Proof. As in Lemma 9, the left side is

Y r+y T
3 o) )

m~M,n~N

A by, _
=y > + O (yz ")

mn
mneB
m~M,n~N

from (4.1). This establishes Lemma 11.

LEMMA 12. Let h > 1 be given and suppose that D C {1,...,h} and
Mel, Mi <2M. Then

(53) > > FS(Apy s p1)
P1 Phn
— Z ce Z*S(Bpl...phapl) + Oa(ym74n)'
P1 Ph

Here * indicates that p1,...,pp satisfy

(5.4) 2" <pp <...<pp,
(5.5) M < Hpj < M,
JED

together with no more than €1 further conditions of the form

(5.6) R<]]pi<S
JEF

Proof. The left-hand side of (5.3) is

;...Z*iz...ZL

pr J=1 @1 qj
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where t < n71!

satisfying

, and the inner summation extends over primes q,...,q;

<@g <...<q; pi---ppq1---q; €A
This would be the type of sum estimated in Lemma 11, if we could dis-
entangle the interactions between the variables pq,...,pn,q1,...,q;. The
procedure for doing this via the truncated Perron formula in [1] (proof of
Lemma 11) may be applied here. Accordingly the left-hand side of (5.3) is

(5.7) Z S ZZ Z — + O, (ya—™).

prn j=1 @ PraL-- -4

Naturally we may also obtain the formula (5.7) for the sum
*
Z T Z S(BIH ---Ph,apl)
p1 Ph

and Lemma 12 follows.

LEMMA 13. Let M < a/2 and N < 23/872¢/(2a). Let M < M; < 2M
and N < Ny <2N. Let 2" < z < ba~!. Suppose that {1,...,h} partitions
into two sets C and D. Then

(58) ) D TSy 2) =) T S(Byy iy 2) (L +O(e)).

Here * indicates that pq,...,pp satisfy

(5.9) z2<p1 <...<Ph,
(5.10) M < Hpj <M;, NX< Hpj <N
jec Jj€ED

together with no more than €~ further conditions of the form (5.6).

We remark that the case h = 0, C and D empty is permitted.

Proof. Let us write p = (p1,...,ps) and m = [[;ccpj. n = [[;ep Py
Buchstab’s identity

5(5,21) = 5 22 Z S pap
22 <p<2z1
applies to both A,,,, and B,,, (2 < 25 < z1). In particular,
Z*S(Amnaz) :Z*S(-Amna Z Z S mnqlaql)
P P <1<z

The first term on the right has an asymptotic formula by Lemma 10.
The subsum of the other term on the right for which mgq; > a has an
asymptotic formula by Lemma 12, since mq; < 2Mz < b.
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To the residual sum in which mq; < a, we apply Buchstab once more.
If we continue in this fashion, the jth step is the identity

Z Z ZS mnai...q;» 45)

P (5.11)
= Z Z S(Amngy...q;: T Z* S(Amngi...qji104j+1)
P (5.11) P (5.12)
with summation conditions
(5.11) 2" <qgi<...<q1 <z mq...q; <a,
(5.12) 2" <giy1<¢ <...<q1 <z, mq...q; <a.

The first sum on the right has an asymptotic formula by Lemma 10, since
the variables satisfy

mngs . ..q; < a(z®/37% Ja) = 23/87%

The subsum of the second sum on the right, given by mq; ...qj41 > a,
has an asymptotic formula by Lemma 12, since

mqi ... qj+1 < agj41 < az < b.

The residual sum is ). ;. After O(n~1') steps the residual sum is clearly

empty, giving a decomposition of Z; S(Amn, 2z) into a main term and an
error term, say F.

A corresponding decomposition with the error term applies to
Z S(Bmn, 2z), and to complete the proof we must show that F is of ac-
ceptable size. Just as in [2], proof of Lemma 12, we have

E—()( 121/”G< )Z S(Amm: 2 )—O(aZ*S(.Amn,z)>

1 -1
n_121/”G(£) < exp (— — Elog (£>) < exp (—)
n non n n

This completes the proof of Lemma 13.
LEMMA 14. Let 2% P < max(b?/a,27/87%). Then

(5.13) > S(Ap,ba ) = 8(By,ba ) (14 O(e)).

p~P p~P

Remark. b2/a > 27/879 for < 29/48 = 0.60416.. ..

since

Proof of Lemma 14. In view of Lemma 13 we need only concern
ourselves with the case

27870 < 2% P < b?/a.
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We can begin the proof as in Lemma 13, but we cannot continue when we
reach a point where

(5.14) Pqgi...qn > 23872 q1...q, <a.
At such a stage we note that

(5.15) Y SApgrgar@n) = Y S(Argy.g.. (2P)?),

a;~Qj a;~Qj
p~P T

where r has no prime factors below ¢,,, and v/(2P) < rq;...q, < ev/P. In
view of (5.14) we thus obtain

(5.16) r & vp2ET3/8 = g0+26-3/8 o T/8=0-3c _ ;3/8-2¢ ),

since 29/48 < 5/8. We therefore can apply Buchstab to the right-hand side
of (5.15) to obtain

(5.17) > S (Argygrbat) — > S(Argy...qns:5);
q;,T

qj T
ba"t<s<(2P)!/?

where the first sum can be estimated by Lemma 13. The second sum counts
numbers 7q; . .. g,st € A, where P/(se) < t < 2eP/s. We note that (2P)'/?
< b, so we can apply Lemma 12 when s > a. If s < a then

P/(se) > P/(ae) >a and 2Pe/s <2Pea/b < b,

so t € [a,b] and thus Lemma 12 is applicable in this case also. We therefore
obtain a suitable formula for both sums in (5.17), which establishes (5.13)
as required.

LEMMA 15. Let %P < max(b?/a,z7/8 %), P > ev/b® and ba™' < Q
<b. Then

(5.18) Z S(Apg,q) = Z S(Bpg, q)(1 + O(e)).

p~P p~P
q~Q q~Q

Proof. If Q > a we can apply Lemma 12 so we henceforth suppose
@ < a. We first consider the case

27870 < 2% P < b?/a
(so 6 < 29/48). Here we work in a similar manner to Lemma 14 to obtain

(5:19) Y S(Apga) = Y S(Aq, (2P)1V?)

p~P q~Q
T

~Q
= 3" S(Agr,ba™t) ~ > S(Agrs 5)-

~Q q~Q
" rba~1<s<(2P)'/?
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Now

v va? /83 66+2:—27/8 7/8—6—3¢

r <K m < — z /8 < g7/ = o

since 29/48 < 17/28 (= 0.607...). As @ < a we may therefore apply

Lemma 13 to the first sum in (5.19). The second sum in (5.19) counts

numbers grst € A. As in the proof of Lemma 14 we discover that one of s, ¢
must belong to the interval [a, b].

We now assume that 2% P < 27/8-¢  We apply Buchstab directly to the
left-hand side of (5.18) to obtain

(5.20) > S(Apgba) = DT S(Apgri ).

3/8—2¢

p~P p~P
q~Q q~Q
ba"'<r<q

Lemma 13 can be applied to the first sum in (5.20). Now for the hypothesis
of Lemma 15 to hold we must have z7/8=% > v/b% so § < 39/64. Tt then
follows that (ba=')? > a. We can therefore apply Lemma 12 to those parts
of the second sum with gr < b. For the remaining portion of the sum we
note that it counts numbers pgrs € A where

ev ev

< < =b
° Pqr = (ev/b?)b 7

and

$1/8+BE

v v
> = .
s> 8PQ? = 857/8-0-3:42 g ¢

Hence Lemma 12 is again applicable and this completes the proof.

6. Implementing the alternative sieve. We would like to give an
upper bound for S(A, v'/2) of the form u(0)y/(0log x) where u(f) is as small
as possible. For § < 0.6 we have obtained the “correct” value 1. The method
we now present gives a continuous function u(f) starting with »(0.6) = 1.
Sadly, by the time 6 reaches 39/64 (= 0.609...), the value of u(6) is nearly
2. From this point onwards we are giving an upper bound for S(A,b).
Although this upper bound is very close to the expected value of S(A,b),
the substitution of b for v'/? causes the marked deterioration in the quality
of our bound. Nevertheless, our method here still produces a superior result
to that obtained from the Rosser Iwaniec sieve (see Lemma 17 below) up
to about § = 0.661. Theoretically the alternative sieve will be better up to
0@ = 0.7, but the calculations necessary become impractical. The values of
u(@) are plotted on Diagram 1 (see Section 7).
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We begin by using the Buchstab identity to write
(6.1) S(A?)=SAba ") = > S(Anp)— D S(Ap).
ba—1<p<b b<p<wv!/2

The contribution from the first two terms on the right-hand side of (6.1)
equals S(A,b). We will only be able to give a non-trivial estimate for the
final term when 6 < 39/64. We start by giving a lower bound for this term.
We write

y = 273 max(b?/a, z7/57%).
Then, for § < 39/64,
(62) Z S('Apap) 2 Z S('Apap)

b<p<uv!/2 ev/b2<p<y

= Z S(Ap,ba ') — Z S(Apg a)-

ev /b2 <p<y ev/b?<p<y
ba~ ' <g<min(p,(ev/p)'/?)

We obtain an asymptotic formula for the first term in (6.2) from Lemma 14,
and for the second term from Lemma 15, since p > ev/b? gives (ev/p)/? < b.
Thus

(6.3) Y. SAp = D SBp)(1+0().
b<p<vl/2 ev /b2 <p<y
Now we can apply Lemma 13 to S(A,ba"!) in (6.1), and Lemma 12 to
— > S(App).
a<p<b

This leaves a term

(6'4) - Z S(Apap): - Z S(Apaba_1)+ Z S(.qu,q)

ba—'<p<a ba~'<p<a ba~'<g<p<a
1 —1
= - g S(A,, ba™") + E S(Apg.ba™ )

ba—1<p<a ba—1<g<p<a

- Z S(Apgr:7)

ba"'<r<g<p<a
par?<ev

= —Zl+22—z3, say.

We can apply Lemma 13 to ), and ), to obtain asymptotic formulae. We
then want a lower bound for ) ;. Clearly, if any product of 2 or 3 of p,q,r
lies in the interval I we can apply Lemma 12. Otherwise it may be possible
to decompose the sums further. We require some notation to discuss these
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points. We write

_ aq Q2 as
(p,q,r)—(x s L y L )a
and similarly introduce oy, as, . .. when performing further decompositions
of >, as we bring in new prime variables s = £, = 2°%,... We put

E,={a=(a,...,ap) ER" 1 g<a, <ap_1<...<a;<0—1/2+¢,
a1+ ...+ ay_1+ 20, <O+1/L},
where g = g(0), as defined at the start of Section 4. The sum over p,q,r
in ), thus corresponds to a € E3. Given a set Z C R" we let Z¢ = {a €
R" :aa ¢ Z}. A point a of E,, is said to be bad if
no sum Zaj (Sc{l,....,n}) liesin [ —1/2 +¢,7(0) — ¢].
JES

The other points of E,, are called good. These correspond to parts of sums
for which Lemma, 12 can be applied. We write A,, for the set of bad points
of B,

o W ={(a1,as,a3) € Az : either ay + a3 > 7/8 — 0 — 4e or

(a1, a9, a3, aq) € Ay for at least one ay € [g, a3) for which
O[2+O£3+Ot4 2 7/8—9—46},

e U=A;NW" Z =FE3NAS,

e X1 ={(a1,00,a3,a4) € E4NAS : (1,9, a3) € U},

[ ] XQ = {((](1,(](2,(](3,(}’.4) S A4 : ((11,(](2,()’.3) S U}
(we note that as+asz+as < 7/8—60—4e in X, by the previous definitions),

L] V - {(a17a27a3a O547a5) € A5 : (ala a27a37a4) € X2}

We first observe that F3 partitions into W, U and 7. Since all the points
of Z are good, we obtain the desired asymptotic formula for the part of ),

with @ € Z using Lemma 12. In contrast, the part with a € W must be
discarded, that is, the trivial estimate

> S(Apgrr) >0
ffew

appears to be the only one accessible with the available tools.
To see this, apply a further decomposition to any subset W’ of W,

Z S(Apgr,7) = H'Z S(Apgr,ba™") — Z S(Apgrs, 5)

ffew’ ew’

:Z —Z , say.
1 2
In),, (p,g,rs) = (x°,...,2%),
(a1, a0, a3) € W', a4 € [g,a3).
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If W' overlaps the region
Qo + (3 >7/8*9*46,

we cannot always split pgr into two subproducts respectively less than a
and 23/872¢/(2a), so Lemma 13 will not handle }_,. Neither can we use
Lemma 12 to handle ), by definition of Az. If, on the other hand, W'
does not overlap this half-space, it overlaps the set of (v, as, ag) for which
(a1, a9, a3, 4) € Ay for at least one a4 € [g, a3), such that

(}{2+(}{3+(}{4>7/8*9*46.

We cannot split p, ¢, 7, s into two subproducts which Lemma 13 will handle,
so a further application of Buchstab to ), offers no way out; nor will
Lemma 12 help, by definition of Ajy.

We now turn our attention to the sum over a € U. Applying Buchstab’s
identity we obtain

(65) Y S(Apgr,7)
flev

=) S(Apgr,ba™") +ﬂz S(Apgrs; )+ > S(Apgrss 5)-

fiev €X, ffex,

The first term on the right side of (6.5) may be estimated by Lemma 13
since ag + a3 < 7/8 — 0 — 4e for all @« € U. The sum over & € X; may
be estimated by Lemma 12 since all a are good in X;. We apply Buchstab
once more to the sum over a € Xo:

(6.6) > S(Apgrs: )

flex,

= Z S(-quq"sa ba‘il) o Z S(APQTSt’ t)

ffex, ffe ks
(a1,00,03,004 ) E X
We can apply Lemma 13 to the first sum on the right side of (6.6) since
as + az+ay <7/8 60— 4e in X5, and we can apply Lemma 12 for all the
good « in the final sum. This leaves a final sum to consider:

(6.7) =Y S(Apgrat: ).
ffev

We are unable to give a formula for any part of this sum without further
applications of Buchstab’s identity. Discarding this sum would give rise to
a loss of

Y 00— a1 —ar —ag —ay —as \ day day das
(6.8) Evfw< )———

Qs a ay o’
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after using the standard procedure for replacing sums over primes by inte-
grals (cf. [1], p. 227).

To explain what is meant by a “loss” of the quantity (6.8), we illustrate
by a simpler example. From (6.1),

S(A0?) = S(Aba™") = D S(App) = > S(Ap,p),

a<p<b peEP

where P = [ba~',a) U (b,v'/?). Suppose we were to discard the last sum.
Since

S(B,v'/?) = S(B,ba™) = Y S(By,p) = Y _ S(By,p),
a<p<b peEP
and since we have asymptotic formulae for what we do not discard, we would
find that
S(A,v'?) < S(B.v'?) + Y " S(B,.p)
pEP

< S(B,v'/?) Uf (“1>d_”21
a1

Here P = [5/2 — 40,0 — 1/2] U [2 — 36,0/2]. Our “loss” by this crude
procedure would be the integral over P’. Using instead the approach above,
which results in discarding

— 1460 7-860\ 6
P"—[2—39,79—4]U[max(9 ,7 8 ),—]
2 8 2

in R, W in R® and V in R®, we are led by a similar argument to a loss of

[ w(e—m)@ + K(0) + R'(6),

pr Qi a1

(6.9) K@©)= [ w(e - 2 043) dagdasdag

2
(6] 1o (X
w 3 1725

Rl(e) _ f w(()al — Qg — (3 — Oy (15>d(11d(12d(13d(142d(15.
v (075 Q10203004 Oy
Since uw(u) =1 for 1 <u <2, and
vw(u) =1+1log(u—1) (2<u<3),

a straightforward calculation now leads to

(6.10) S(A,v1/?) < %(M(H) + K(0) + R'(9)).
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Here

704 1699) Y01 4 log(v — 1) )
f—dU

1
(6.11) M(())—5<l+log<239-9149 »

2

for 3/5 —e < 0 < 29/48;

B(6)
1 0 —4 160 -7 1 +log(v —1)
A2) MO)=-(1+1 . _
(6.12) M(®) 9<+Og<230 789>+2f v dv

for 29/48 < 6 < 39/64;

(6)
(6.13) M(9) = 1+log(v — 1) dv)

(1+10g2+ f .

<b|’—‘

for 6 > 39/64.
In (6.11) (6.13), B(6) = 0/7(6) — 1. In (6.13),

1 0 . 0
M(0) = %w<m> since 0 € [3,4].

We can improve on (6.10), although the improvement only becomes sig-
nificant for # € [0.64,0.661]. Let V5 be the subset of V' for which the sum
a1+ as+az+as+as+as decomposes into two subsums less than 6 —1/2—2¢
and 7/8 — 0 — 4e; for instance, a € V; whenever a € V and

041+042+043+Oé4+20£5<7/8—9—48.

For the subsum of (6.7) with @ € Vi, two more applications of Buchstab
may be handled in essentially the same way as (6.6). We do not extract
all the information this yields, owing to the large number of ways seven
variables might combine to give a value in [0 — 1/2 4 €, 7(0) — ¢]. However,

P —a .= dagda ° da do/
J () e <o | e

11
- 0.57< log <a5> 4 —)
g g g a5

for a € V, since one may verify that § — a; — ... — a7y > 3a7. (For the
bound w(u) < 0.57 for u > 3, see [4].)
Let V5 be that part of V; where

1 1 1 0—ay—...—
0.57( log <a5> - =+ —) < —w( il a5>
9 g g @5 as Qs

and V3 the complement of V5 in V. Our discussion shows that in (6.10),
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R'(0) may be replaced by

(6.14) R(g)_%(vfw<9—a1—...—a5>da1...dag

(075 aq...0405
1 1 1\d d
+0.57 [ <—1og%—+—>ﬂ...ﬂ>.
Vs g g g a5/ Qs

We record this conclusion in a lemma.

LEMMA 16. For 3/5 — e < 6 < 0.661 we have
S(A,v/?) < %(M(H) + K (0) + R(9)).

~

Here M(0), K(0), R(0) are defined by (6.11)—(6.13), (6.9) and (6.14).

We have tacitly assumed so far that it will always be to our advantage
to effect the first five decompositions when these are possible. For 6 > 0.65
this is not always the case. To allow for this, we define

0oy — ... a5\ doy do
Ii(ar, ag,a3) = f* w( e 015)&&

2
(a1 ..... a5)€V 5 4 5

where the * indicates that the integral is to be subdivided further as in
(6.14). Now let

IQ((J{l)
o . 1 H—al—ag—ag dOéQdOég
= f min [ —w Jh(or, a,a3) | ——=,

a3 Q3 Qg O3
(a1,2,03)EU

I3((J/,1) = f

(a1,02,03)EW

(0-&1 — Q9 —Oég> dOéQ dOég
w —_—

a3 (6] ag

and

14(0) = 0}1/2 min (iw<0 - al),fz(al) + 13(a1)> day

(6751 (65}

A very slight improvement in Lemma 16 is attained by replacing K (6)+ R(0)

We finish this section by revisiting the bounds obtained from the Rosser
Iwaniec sieve. We can combine Lemma 7 with Lemma 12 to obtain the
following result.

LEMMA 17. For 6 € (0.661,0.7], we have

(6)
B

0(0) 6—1/2 « a? Qo a0
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Here
B ={(a,a2) 1 0(0)/3 < a1 <0 —1/2, 0 —1/2 < g < 7(0)}.
Proof. We note that S(A,z) counts many numbers not counted by

S(#). For some of these we can apply Lemma 12 and so obtain an improved
bound by removing the “deductible” terms. To be precise, we have

(6.15) S(O) <S(Az)~ > 1 > 1.

pmeA p1pamEA
pel z<p1<a,p2€l
Q(m)>p Q(m)>p2

We note that for the values of § in the lemma we have z < a and so the
deductible sums are non-empty. Since Lemma 12 can be applied to both of
these sums we can replace sums by integrals in (6.15) and use Lemma 7 for
S(A, z) to complete the proof.

7. Completion of the proof. The graph of our upper bound for
9S(0) Ly~ is shown in Diagram 1 (as u(6)).

u(0)
4 4
Lemma 16 /
3 4
Lemma 17
2 4
1 . . } } } } } } } —
0.6 0.62 0.64 0.66 0.68 0.7 0
Diagram 1
From Lemma 17 we obtain
0.7
(7.1) [ 65(6)d6 < 0.1386yL~".
0.661

Using Lemma 16 we note that
0.661

(7.2) [ oM (0)do < 0.1256
0.6
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and
(7.3) [ omin(1,(6), K(6) + R(9)) do < 0.0125.

We remark that it is straightforward to obtain very accurate estimates for
the integrals in (7.1) and (7.2). The estimate for the integral in (7.3) is an
upper bound, but a more precise estimate is more difficult to achieve. We

thus obtain
0.7

[ 6S(0)d6 < 0.2767yL "
0.6

Since, by Lemma 7,
8
f 05(6) do < - f 0do = —(52 —0.49),

this indicates that our theorem holds for any exponent less than

3 1/2
(0.49 + §(0.4 — 0.2767)) > 0.732,

which establishes Theorem 1.

We finish by remarking that it appears to be very difficult to make
any further progress without new exponential sum estimates. To increase
the exponent just by 0.001 would require us to make a saving of nearly
0.004 between 0.6 and 0.7. The only room for improvement seems to be in
K (0)+ R(#) for 6 > 0.64. Even at # = 0.64, we have 0(K (0) + R(0)) < 0.42.
Assuming that we will have to switch to the method of Section 4 by 6 = 0.67,
it appears unlikely that we can make the necessary average saving of 0.13
between 0.64 and 0.67 without a new idea.
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