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1. Introduction. Let p be a prime. For fixed elements a and b of
the finite field GF(p) = Z/pZ (it can be identified with the set Z, =
{0,1,...,p— 1} together with the operations of addition and multiplication
modulo p), Eichenauer and Lehn [3] defined sequences X (xq; a,b) : zg, x1, ...
by choosing initial elements xy € GF(p) and using the recursion

Tpi1 :a:cgl—i—b if x, #0,

(1) i for all n > 0.
Tpe1=0b ifz,=0

They used this method as a nonlinear method to generate pseudorandom
numbers. Niederreiter [10] generalized it over arbitrary finite field GF(q)
when he studied pseudorandom vectors. See also Eichenauer-Herrmann [5]
and Niederreiter [11, Chapters 8 and 10] and [12] for more details on these
methods. Because the recursion (1) is used to construct pseudorandom
numbers and pseudorandom vectors, the problem of when the sequence
X (z0;a,b) has the maximal period length has been studied intensively: see,
for instance, Chou [1], Eichenauer and Lehn [3], Flahive and Niederreiter
[8], and Niederreiter [12].

For studying pseudorandom numbers with modulus a composite positive
integer m, the recursion (1) must be changed into the following: For all n > 0,

(2) Tpy1 = ax, ' +bmodm provided ged(z,,m) = 1.

So, every term of X (xo; a,b) must be relatively prime to m. If m = pi* ... p;*,
where t > 2 and pq,...,p: are distinct primes, is the prime factorization
of m, then the period length of X (z¢;a,b) with modulus m equals the least
common multiple of period lengths of X (z¢;a,b) with modulus p;*, 1 <1
< t. So, for studying the period length of X(z;a,b) with modulus m, it
suffices to consider X (z;a,b) with modulus a prime power p*. Eichenauer,
Lehn, and Topuzoglu [4] studied the maximal period length with modulus 2*.
Since the sequence X (xp;a,b) with modulus a prime divisor p of m instead
of m itself does not contain 0 modulo p, X (x; a,b) with modulus p does not
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have the maximal period length. It is necessary to study all possible period
lengths of the recursion (1) over GF(p). Eichenauer and Lehn [3] obtained
some results on the period length of X (z¢;a,b) with prime modulus. Chou
[2] generalized it over finite fields and got all possible period lengths of the
sequence X (zg;a,b). Also, Eichenauer-Herrmann [6], Eichenauer-Herrmann
and Topuzoglu [7] and Huber [9] studied the period length of X (z¢;a,b)
with modulus any prime power.

As we have mentioned above, if the sequence X (z¢;a,b) is generated by
the recursion (2), the sequence X (z; a, b) with modulus p does not have the
maximal period length. To make up for this deficiency, Huber [9] suggested
to consider the recursion

(3) Tnir = az? ™1 L bmodm  for all n > 0,

where ¢(m) is Euler’s totient function. This recursion is equivalent to the
recursion (1) when m is a prime number and equivalent to the recursion (2)
whenever each term of the sequence X (xg;a,b) with modulus m is relatively
prime to m. But the recursion (3) allows any term z,, of X (z;a,b) and m
to have a common divisor greater than 1. Huber [9] showed that if m is
square free, then X (z¢;a,b) has the maximal period length with modulus
m if and only if X (z¢;a,b) with modulus each prime divisor p of m has the
period length p.

In this paper, we are going to describe all possible period lengths of
sequences X (zo;a,b) generated by each of recursions (2) and (3). For this
purpose, we need the following results from Chou [2].

LEMMA 1. Let p be a prime and let xg, a and b be elements of the finite
field GF(p). Let X(xo;a,b) be the sequence obtained by taking the initial
element o € GF(p) and using the recursion (1). Let f(z) = 2®> — bz — a
and let o(my) be the order of the polynomial m¢(z) = z* + (b*/a + 2)x + 1
provided a # 0. Moreover, let L(xo; a,b;p) be the period length of X (xo; a,b).

(A) If a =0, then x,, = b for alln > 1 and so L(x;0,b;p) = 1.
(B) If a # 0 and b = 0 = =z, then z,, = 0 for all n > 0, and so
L(0;a,0;p) = 1.
(C) If axg # 0, a = % and b = 0, then z,, = x¢ for all n > 0, and so
L(xo;a,0;p) = 1.
(D) If axg # 0, a # 2% and b = 0, then Tpio = T, and T,y # Tp for
allm >0, and so L(xg;a,0;p) = 2.
(E) Let f(x) = (x—a)? for some a € GF(p) (or equivalently, b*+4a = 0).
Then
(1) Liasa,b;CF(p)) = 1,
(2) if xg # a then X (xo;a,b) contains 0 and L(xg;a,b;p) =p— 1.
(F) Let f(x) = (v — a)(z — B) for some a # 3 € GF(p?).
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(1) If f(x0) = 0, then L(xo;a,b;p) = 1.

(2) If p # 2 and o(my) is even, then X(b/2;a,b) contains 0 and
L(b/2;a,b;p) =o(my) — 1.

(3) If p # 2 and o(my) is odd, then X (b/2;a,b) does not contain 0
and L(b/2;a,b;p) = o(my).

(4) If f(zo) # 0, g # b/2 whenever p # 2, and the order o(My)
of the polynomial M¢(x) = 2% — (2 + (b + 4a)/ f(z0))x + 1 over
GF(p) divides o(my) (or equivalently, M (x) divides z°™s) —1),
then X (xo;a,b) contains 0 and L(zo;a,b;p) = o(my) — 1.

(5) If f(xo) # 0, g # b/2 for p # 2, and o(My) does not divide
o(my), then X(zo;a,b) does not contain 0 and L(xo;a,b;p) =
U(mf).

Using this lemma, we are going to study all possible period lengths of
sequences X (zo; a,b) with modulus m generated by the recursion (2) in Sec-
tion 2 and all possible period lengths of sequences X (xg;a,b) with modulus
m generated by the recursion (3) in Section 3.

2. Inversive congruential recursion. Let m > 4 be a fixed composite
integer and let m = pi* ...p;* be the prime factorization of m, where t > 2,
P1, ..., P are distinct primes, and rq, .. ., 74 are positive integers. For integers
a,b, and xg, let X (xo;a,b) be the sequence defined by the recursion (2) if
it can be defined. As we have mentioned, every term of X (xo;a,b) must
be relatively prime to m and the period length L(xg;a,b;m) of X (xo;a,b)
with modulus m equals the least common multiple of the period lengths
L(zo;a,b;p;*) of X(xo;a,b) with moduli p;*, 1 < i < t. We are going to
consider first the sequence X (x¢; a,b) with modulus a prime power p* with
k > 2. First, we have the following “well-defined” property.

LEMMA 2. Let p be a prime, and let k, a, b and xy be integers with k > 2.
Moreover, let f(z) = 2% — bz — a. Then a,b and o can be used to define
an infinite sequence X (zo; a,b) with modulus p* by the recursion (2) if and
only if one of the following conditions holds:

(A) a =0mod p and ged(bxo,p) = 1.
(B) ged(azg,p) =1 and b= 0 mod p.
(C) ged(abxg, p) =1, b = 229 mod p, and a = —x% mod p.
(D) ged(abzo(b? + 4a),p) =1 and 2% — zob — a = 0 mod p.
(E) p # 2, ged(ab(b® +4a),p) = 1, 2o = b/2 mod p, and the order o(my)
of the polynomial m¢(z) = 2% + (b*/a+ 2)x + 1 in GF(p)[z] is odd.

(F) ged(abxo(b? +4a) f(xo),p) = 1, 9 # b/2 mod p whenever p # 2, and
the order o(My) of My(x) = 22 — (2 + (b% + 4a)/ f(xo))x + 1 in GF(p)[x]
does not divide o(my).



328 W.-S. Chou

Proof. As we have mentioned, a, b, and zg can be used to define an infi-
nite sequence by the recursion (2) if and only if the sequence X (xq; a, b) with
modulus p defined by the recursion (1) does not contain 0. From Lemma 1,
the last statement holds if and only if X (z¢;a,b) with modulus p is one of
cases (A), (C), (D), (E)(1), and (F)(1), (3), and (5). In fact, with modulus p,
Lemma 1(A) is case (A), both Lemma 1(C) and (D) together are case (B),
Lemma 1(E)(1) is case (C), Lemma 1(F)(1) is case (D), Lemma 1(F)(3) is
case (E), and Lemma 1(F)(5) is case (F).

The following two lemmas were obtained by Eichenauer-Herrmann and
Topuzoglu [7]. They are useful in describing the period length of the sequence
X (x0;a,b) with modulus p* for k > 2.

LeEMMA 3 ([7], Lemma 6). Let p be a prime and let k, a, b, and xy be
integers with k > 2 and ged(a,p) = 1. Suppose that the sequence X (xo;a,b)
can be defined by the recursion (2). Let \i.—1 and N\ be the period length of
X (x0;a,b) with modulus p*~1 and p*, respectively. Then

(A) A\ = M\g_1 for zx,_, = mo mod p*.

(B) A\x = o(—axy®)\y_1 for xx,_, Z xo mod p*, N1 = 1 and ged(a +
x2,p) = 1, where o(—axy?) is the multiplicative order of —axgy? in GF(p).

(C) Ak = pAp_1 forzy, , # xo mod p*, and either \j,_1 > 2 or A\j_1 = 1

and a = —x% mod p.

The following lemma is a little bit different from the original lemmas
in [7].

LEMMA 4 ([7], Lemmas 7-9). Let p be a prime and let k, a, b and xo be
integers with k > 2 and ged(a, p) = 1. Suppose that the sequence X (x¢;a,b)
can be defined by the recursion (2). Let A\x—1 and M\, be the period lengths
of X (z0;a,b) with modulus p*=1 and p*, respectively.

(A) If k >3 and zy,_, # 1o mod p¥, then xy, # xo mod p*+1.

(B) If \1 > 2 and xx, Z xo mod p?, then x, # 1o mod p>.

(C) If \1 =1, a = —2z2 mod p, x1 # zo mod p? and p > 5, then x,, Z
2o mod p3.

Proof. (B) and (C) are the same as Lemmas 8 and 9, respectively, in
[7]. So, we prove (A) only. We follow the proof of Lemma 7 in [7] until we
get the congruential equation

(4)  mur, =0+ plap™t 4+ 8pF) + ( > j)’yap’“ mod p* !,
1<j<pu—1

where p is any positive integer, «, 3, and v are some fixed integers with
ged(a,p) = 1 and v = 0 if p = 2. If the conditions of Lemma 3(B) are



Period lengths of inversive congruential recursions 329

satisfied, we take = o(—axy?) and then the equation (4) becomes

Ty, = 20 + 0(—azy ?)ap" ! + (0(—6&52)[3 + ( Z j)va)pk
1<j<p—1
# 20 mod p*t1
since ged(o(—axy?)a, p) = 1. If the conditions of Lemma 3(C) are satisfied,
we take ;1 = p and then the equation (4) becomes zy, = x¢ + ap® #
xo mod p**1 since Zl<j<p—1j =0mod pifp >3, and vy =0 if p = 2. This
completes the proof.

We are now ready to prove our main theorem of this section, which will
describe all possible period lengths of the inversive congruential recursion
with modulus p*.

THEOREM 5. Let p be a prime and let k, a, b and x¢ be integers with
k > 1. Suppose that the sequence X (xo;a,b) with modulus p* can be defined
by the recursion (2). Let f(z) = 2? — bx — a.

(A) If a = Omodp and ged(bzg,p) = 1, then the period length
L(zo;a,b;p*) = 1.

(B) Let ged(azo,p) = 1, a = 23 mod p, and b= 0 mod p. Write b = dp’
with ged(d, p) = 1 whenever b # 0. Also write f(x¢) = cp® with ged(c,p) =1
when f(xq) # 0.

1) If either f(zo) =0 or k < e, then L(zo;a,b;pk) = 1.

2) Ifk =e+1, then L(zo;a,b;p*) = 2.

3) Ife+ 1<k and either b =0 or k < j, then L(xo;a, b; p¥) = 2.

4) If k> e+ 1 and k > j, then L(xo; a, b; p*) = 2pk—maxiieti}

(C) Let ged(azo(a — 22),p) = 1 and b= 0 mod p.

(1) If b= 0, then L(x¢;a,b; p*) = 2.
(2) Ifb = dp’ with ged(d,p) = 1, then L(zg;a,b;p*) =2 if 1 < k < 7,
and L(zo;a,b;p*) = 2077 if k > j.

(D) Let ged(ab, p) = 1, b = 229 mod p, and a = —z2 mod p. If f(zg) # 0,
write f(xo) = ep® with ged(e,p) = 1.

(1) If either f(xg) =0 or e > 2 and k < e, then L(zo;a,b;p*) = 1.
(2) If k > e > 2, then L(xg;a,b; p*) = pF—e.

(3) If p>5 and e = 1, then L(x¢;a,b;p*) = p*~1.

(4) Letp =3 and e = 1. Write a+b? = h3° for some integer h with
ged(h,3) = 1 whenever a + b*> # 0. Then L(wo;a,b;3%) = 3 if
either a +b%> = 0 or 2 < k < s, and L(zo;a,b;3%) = 3F=s+1 jf
k>s+1.

(E) Let ged(abzo(b? + 4a),p) = 1. Write f(xq) = cp® with ged(c,p) = 1
whenever f(xg) # 0.

(1) If either f(zg) =0 or k < e, then L(xo;a,b;p*) = 1.

N N N
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(2) If k > e > 2, then L(wo;a,b;p*) = o(—axy?)pF—e1.

(3) Let k > e = 1 and write u = o(—axy?). Then L(zo;a,b;p*) =
pif x, = xo mod p*, and L(xo;a,b;p*) = upt~t+L if t is the
smallest integer satisfying x, # xo mod p' and 3 <t < k.

(F) Let ged(abxo(b? + 4a) f(z0),p) = 1. Suppose that either p > 2, x¢ =
b/2 mod p and the order X = o(my) of my(z) = 2% + (b*/a +2)x + 1 in
GF(p)[x] is odd or the order o(My) of the polynomial My(z) = z* — (2 +
(b2 + 4a)/f(z0))x + 1 in GF(p)[z] does not divide X. Then p is odd and
L(zg;a,b;p%) = X if xx = 29 mod p*, and L(xo;a,b;p*) = \pF=t*1 if t is
the smallest positive integer satisfying xx # xo mod pt and 2 <t < k.

Proof. Since a,b and xy can be used to define the infinite sequence
X (x0; a,b) with modulus p* by the recursion (2), we are going to prove this
theorem according to all cases in Lemma 2.

(A) It is trivial for the case a = 0. So, consider a # 0 and write a = rp®
with ged(r,p) = 1. Let s be the nonnegative integer satisfying es < k <
e(s +1). We are going to prove this case by induction on s.

Since x, 11 = p°rx, ! + bmod p', we have L(zg;a,b;pt) = 1 whenever
1 <t < e. Suppose that for fixed integer 0 < s, L(zo;a,b;p') = 1 for each
es <t <e(s+ 1), or equivalently, there exists a positive integer w, so that
for any es <t < e(s+ 1), z,, = u mod p’ is a constant for all n > w;.

Now consider e(s+1) < k < e(s+2). For any n > ws+1, z,, = p°ra;, >+
b mod p*. Since n — 1 > wy, the term x,_; = « mod p*~¢ is a constant. So,
perx;il = p°ru~! mod p” is a constant. Therefore, x,, = pem:;il—l—b mod p*
is a constant for all n > w, + 1. Hence, L(x¢;a,b;p*) = 1.

From now on, we consider ged(a,p) = 1. So, X (z¢; a, b) with modulus p*
is purely periodic.

(B) From the definition, 2y = x¢ mod p* if and only if f(zo) = 22 —
brg — a = 0mod p¥. So, if f(x¢) = 0, then L(zg;a,b;p*) = 1. Now, we
consider f(xg) # 0.

If k < e, it is trivial that L(xo; a, b; p¥) = 1. So, suppose k > e. Then x; #
xo mod p*. If k = e41 and pis odd, then, by Lemma 3(B), L(zo; a, b; p* 1) =
2 since o(—azxy?) = 2. From Lemma 3(C), if p is even and k = e + 1, then
L(zo;a,b;p*t) = p=2.

Now, suppose k > e + 1. By the definition, zo = 5 mod p* if and only
if b2xg + ab + axg = z0(bxo + a) mod p*. Simplifying the last congruen-
tial equation, £p = 2 mod p* if and only if ab = 0 mod p*. So, if either
b=0ork < j, then L(xg;a,b;p*) = 2 by Lemma 3(A). If k& > j, then
L(zo; a, b; p*) = 2pF~max{imet1} from Lemmas 3(C) and 4(A).

(C) From Lemma 1(D), L(zo;a,b;p) = 2. By the definition, zo =
alazy’ +b)~1 + bmod p*. If b = 0, it is trivial that L(zo;a,b;p*) = 2.
Now suppose b # 0. After simplification, o = x¢ mod p”* if and only if
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(a —22)b = —x0b? mod p*. The last congruential equation holds if and only
if 1 <k < jsince b= dp’ and ged(a — z3,p) = 1. So, L(wo;a,b;p*) = 2
if 1 <k < j. Since (a — 23)b # —z0b® mod p’ !, L(zo;a,b;p’ ) = 2p by
Lemma 3(C). If k& > j, then L(wg;a,b;p*) = 2p*~7 by Lemmas 3(C) and
4(A) and (B).

(D) By Lemma 1(E)(1), L(xo;a,b;p) = 1. From the definition, z; =
xo mod p* if and only if f(zg) = 22 — bzo — a = 0 mod p*. So, if either
f(zo) =0 or k < e, then L(zo;a,b;p*) = 1. Suppose f(x) # 0 and k > e.
Since a = —z3 mod p, L(xo;a,b;p¢™) = p by Lemma 3(C). If e > 2, then
L(zo; a,b; p) = p*=¢ by Lemmas 3(C) and 4(A).

Suppose now e = 1. From Lemmas 3(C) and 4(A) and (C), L(xo; a, b; p*)
= p*~1if p > 5. So, suppose p = 3. It is trivial that L(zo;a,b;9) = 3. So,
let & > 3. By the definition and a short calculation, 3 = x¢ mod 3% if
and only if af(zg) = —b?f(x¢) mod 3. The last congruential equality is
equivalent to a = —b? mod 3*~! since f(zg) = 3¢ with ged(c,3) = 1. Since
b = 229 mod 3 and a = —x mod 3, we have a+b? = 0 mod 3. If a +b? = 0,
then L(zo;a,b;3%) = 3 by Lemmas 3(A). So, suppose a + b% # 0. If s = 1,
then L(xo;a,b;3F) = 3*~! by Lemmas 3(C) and 4(A). Suppose s > 2. If
k < s, then L(z;a,b;3F) = 3. If k > s + 1, then L(zo;a,b;3¥) = 3k=% by
Lemmas 3(C) and 4(A).

(E) From the definition, g = x1 mod p* if and only if f(x¢) = 0 mod p*.
If either f(zg) = 0 or k < e, then L(xg;a,b;p*) = 1. If K > e > 2, then
L(xo;a,b;p*) = o(—axy?)p*~¢~! from Lemmas 3(B), (C) and 4(A). Now
suppose ¢ = 1. By Lemma 3(B) again, L(zg;a,b;p?) = A\ = o(—az;?).
If £ > 2 and ) = zo mod p¥, then L(z;a,b;p*) = \. If k > 2 and if
3 <t < k is the smallest positive integer satisfying x) # 9 mod p?, then
L(wo;a,b;p*) = o(—axg ?)p*~ '+ by Lemmas 3(B), (C) and 4(A).

(F) Under the assumption gecd(ab,p) = 1, the only case for p = 2 is
that @ = 1 = bmod 2. In this case, o(my) is 3 and so L(z¢;a,b;2) =
2. This implies that the sequence X(xg;a,b) with modulus 2 contains 0;
a contradiction. So, p is odd.

From Lemma 1(F)(3) and (5), L(zo;a,b;p) = A = o(my). If ) = xo
mod p*, then L(wo;a,b;p*) = o(ms) by Lemma 3(A). If 2 < ¢t < k is
the smallest integer satisfying zy # z0 mod p°, then L(zo;a,b;p*) =
o(m)p*~t*1 by Lemmas 3(A), (C), 4(A) and (B). This completes the proof
of this theorem.

The case Theorem 5(B)(3) with j = 1 = e is consistent with the result
obtained by Eichenauer, Lehn, and Topuzoglu [4]. Also, cases (D)(4), (D)(5)
with s = 1, and (F) in Theorem 5 are consistent with results obtained by
Eichenauer-Herrmann and Topuzoglu [7]. Also, we have given conditions
xx = xo and ) # o modulo a prime power in both cases Theorem 5(E)(3)
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and (F), respectively. We are going to modify these two conditions. First,
we need the following

LEMMA 6. Let p be a prime and let k, a, b, and xy be integers with k > 2.
Suppose that the sequence X (xo;a,b) : xo, 21, T2, . .. with modulus p* can be
defined by the recursion (2). Let U(1,xzq;a,b) : ug,ui,us,... be the linear
recurrence sequence of integers defined by ug = 1, uy = xg, and Up4o =
b1 + auy, for alln > 0. Then ged(un,p) = 1 and 2, = Upy1 /U, mod pF
for alln > 0.

Proof. From the definition, x, is not congruent to 0 modulo p for all
n > 0. So, ged(un,p) = 1 by Lemma 1. Since 29 = u; = u;/ug mod p¥
and upyo = bun+1 + au, mod p”, the result z,, = Upt1/Upn mod p* can be
proved by induction on n.

The following theorem is a modification of the case Theorem 5(E)(3).

THEOREM 7. Let p be an odd prime and let k, a, b and xq be integers so
that k > 2, ged(abxo(b? +4a),p) = 1 and 23 — bxg —a = cp for some integer
¢ with ged(e,p) = 1. Write (azg )P~ —2b~" = vp mod p? for some integer
v, where 1‘61 is the multiplicative inverse of xo modulo p?.

(A) If ged(c+2 7 w(ad +a),p) = 1, then L(xo; a,b;p*) = o(—axy?)ph=2,
where 271 is the multiplicative inverse of 2 modulo p.

B) If c = —v(23 + a)/2 mod p, then L(zo;a,b;p?) = o(—axy?) and,
whenever k > 4, there is exactly one integer 0 < d < p*~2 so that L(xo; a, b+
dp?; p*) = o(—axg?).

Proof. We already know that L(xg;a,b;p) = 1 and L(xg;a,b;p?) =
o(—azy ?)=\ by Theorem 5(E)(3). Now, we consider the sequence X (z¢; a, b)
with modulus p3.

Since ged(azg, p) = 1, there is an integer 3 so that Bzo = —a mod p?.
Write xg = a. Let b, = 3+« and g(z) = 22 —b.x — a. So, g(x¢) = 0 mod p>.
Moreover, b — b, = a:o_lcp mod p? since f(z¢) = 22 — bzg — a = cp. Con-
sider two corresponding linear recurrence sequences U (1, zg; a, b) : ug, ug, . ..
and U(1,z0;a,bc) : Uco,Uc,1,... defined as in Lemma 6, respectively. By
Lemma 6, z, = up41/u, mod p? for all n > 0. Furthermore, it can be
shown by induction on n that u., = o™ mod p* for all n > 0. Now, let
W(0,1;a,b.) : weo,wen,--- be the linear recurrence sequence defined by
weo = 0, wer = 1, and wepy2 = bewent1 + awen for all n > 0. Since
a # 3 mod p from ged(b? + 4a,p) = 1, one can show by induction on n that
wen = (@™ — B")/(a — 3) mod p3 for all n > 0.

It is easy to see from the definition that ug = uc,0, U1 = ue,1, U2 = uc 2+
Wette 12 ep and g = e 4 (We1lle2 + We2le,1)Tg P + We,1te,1 (Tg ' cp)?
mod p3. Let o, = Zlgjgn_1wc,juc,n—j and 7, = Z1§jgn—2 We,jOpn—; for
all n > 3, and let 02 = w¢1Uc,1. One can show by induction on n that
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Up = Uep + Jn$0_10p + Tn($0_10p)2 mod p? for all n > 3. Since w,, =
(a"—p")/(a—pB) and u.,, = o™ mod p?, we have, after a short computation,

(5) on= Y westeny=( Y. a0l =) /(@)

1<j<n—1 0<j<n—1

=na"/(a - B) — ala" — ") /(a — B)? mod p?

and
(6) Tn — Z u}c’jO'n,j
=(@-87( X (@ =F)n-ja")
0<j<n-2
—ala-)7( Y (of - )@ -5
0<j<n—2
= (a=p)*((n+2)(n - 1)a"/2 = na*(a"~" = ") /(a — f)
+((n—2)a?B" — (n - D)a’f" " +a" ™1 §)/(a — §)?)
—afa =B ((n—1)a" = F(a"" = ") /(a = f)
—a®(@"t =" /(@ = B) + (n — 1)8") mod p.
Since Bro = —a mod p3, we have —ax&Q = af~! mod p. This implies

o(—azy?) = o(mys) = X. So, B* = o mod p. Hence, a?~! = 7~! mod p.
Write P71 = aP~! + vp mod p? for some integer v. Note that zo = )
mod p? if and only if g = x,_1 mod p? by Lemma 3(C). So, we consider
Zp—1 instead of x). By formula (5) and (6) and simplification,
(zg  ep)op—1

= - Ha—p3)" (x5 ep) + ((a = B)~" + av(a — ) %)z ep® mod p?,
(zg ' ep)ay

= —a(a — )" (w5 ep) + (ala = B)" + apv(a — f)"*)ag cp® mod p,

(azalcp)%p,l = 3a(a — B)3(2y  ep)? mod p?,
and
(25 tep)?7y = (@2 + 2a8) (o — B) 3 (25 L ep)? mod p?.

By Lemma 6 and a short computation, we have
Tp—1 = Up/up-1

= (Uep +0pry ep + op(ag " ep)?) [ (uep—1 + porag ep + op—i (25 p)?)

=a+ (—ve(a—B)"! —2c2aHa — B)7?)p? mod p°.
Since 29 = @, zp—1 = x¢ mod p? if and only if 0 = —vc(a — B)7! —
2c2a (o — 8)7? mod p. The last congruential equality is equivalent to
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c = —va(a — 3)/2 = —v(xd + a)/2 mod p. By Lemmas 3(C) and 4(A),
if ged(c + v(z? + a),p) = 1, then L(wg;a,b;p®) = o(—axy?)p, and so
L(xo; a,b;p*) = o(—axy ?)p"~2 for all k > 3.

Suppose ¢ = —v(x3 + a)/2 mod p. Then ged(v,p) = 1 since ged(c(x3 +
a),p) = 1. Note that L(zq;a,b;p?) = o(—axy?) from Lemma 3(A). Assume
k>3 and let 3 <t < k be any integer satisfying L(xo;a,b;p’) = o(—axy?)
for all 2 < i < t. Write z,—1 = xo+£p' mod p'*!. Take any integer 0 < d < p
and consider the sequence X (zo;a,b+ dp'™') : 40,2a1,... with modulus
p't1. Consider the corresponding linear recurrence sequence U (1, zo; a,b +
dp'™') : ugo0,ud1,... By Lemma 6, 24, = Udnt1/td,n mod ptt for all
n > 0. Let W(0,1;a,b) : wy, wy, ... be the linear recurrence sequence defined
by wg = 0, wy = 1, and wp4s = bwyy1 + aw, for all n > 0. By similar
arguments, one can show by induction on n that for all n > 2,

(7) Udn = Up + Z wjun,jalpt_1 mod pt*t.
1<j<n-1

It is easy to show by induction on n that wy = w.1 and w, = we, +
(Xi<jcn1 We jWen—j)Tp ep mod p? for all n > 2. Since u; = wu.; and
Uy = Uey + Unxalcp mod p? for all n > 2, (7) becomes, for all n > 3,

(8) ugn=u,+ Z wc,jun,jdpt_l

1<j<n-—1
—1 d t
+ Up—j We,iWe,j—i | Loy CAP
2<j<n—-1 1<i<j—1
_ t—1 —1 5t
= U, + E We,jUen—idp" ™" + g We,jOn—jTo cdp
1<j<n—-1 1<j<n-2
-1 .3t t+1
+ E un,j( E wcﬂwc,j,i)avo cdp’ mod p'tt.
2<j<n—1 1<i<j—1

Let x, = Z2§j§n71 “nfj(Zgigjq We,iwen—i) for all n > 3. From the
definitions of o, and 7, (8) can be rewritten as

Udm = Up + 0ndp"™ + (Tn + xn) x5 Ledp’ mod p'™  for all n > 3.
Since u,, = U, mod p for all n > 0, we have
Xn = Z Un—j( Z Wc,iwc,j—i>
2<j<n—1 1<i<j—1
(n+1)(n—2)a"2 (a— )2
(0= 1)af™ —na?" + 2075 — an"1 g% (a — B)~
— (n—2)a"(a+ B)(a—B)
+ (af" —a" %) (a + B)(e = B)"* mod p
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for all n > 3. Therefore,
Udp-1 = Uup_1 — P Ha—B)tdp"™ 4+ ((a— B) 7+ av(a — B)2)dp’

+ (802 + 4af + 26%)a " a — B) Pxy tedp' mod ptt

and

Ugp = up — P (a— B) " Hdp' ™t + (a(a — B) 7 + aBu(a — 3)~?)dp!

+ (202 + 606 + 26 (o — ﬁ)_sxalcdpt mod pttt.

Since 2,1 = xo + &pf mod p'* and u,— 1 = aP7P =1, 290 = o, and ¢ =

—va(a — £)/2 mod p, we have T4p,-1 = Uap/Udp—1 = To + (£ + 202v(a —

B)~2d)p’ mod p'*!. This implies that 24,1 = 40 = o mod p' ! if and

only if d = —¢(a — 3)?/(2av) mod p. Since (o — 3)? = b? + 4a mod p,

Tap-1 = wapo mod pttl if and only if d = —£(b? + 4a)/(223v) mod p. We

have shown that there is exactly one integer 0 < d < p so that L(xg;a,b+

dpt=1; pt*t1) = o(—axy?) whenever L(z¢;a,b;pt) = o(—axy?). Case (B) of

this theorem holds by taking such d repeatedly starting from ¢ = 2. This

completes the proof.

The following theorem modifies Theorem 5(F).

THEOREM 8. Let p > 2 and ged(ab(b? + 4a)(z? — bzg — a),p) = 1.
Suppose that either xo = b/2 mod p and the order A = o(my) of my(x) =
22 + (b?/a + 2)x + 1 in GF(p)[z] is odd or xog % b/2 mod p and the order
o(My) of My(x) = 2* — (2 + (b* + 4a)/f(z0))z + 1 in GF(p)[z] does not
divide o(my). Let k > 2.

(A) If L(zo;a,b;p*= 1) = o(my), then there exists exactly one integer
0 < d < p*=2 such that L(zo;a,b+ dp; p*) = o(my).

(B) If ) = 20 +vp mod p? for some integer 0 < v < p, then L(xo;a,b+
dp; p?) = o(my) if and only if d = v(b* + 4a)/2\(z3 — bxy — a) mod p.

Proof. Let d be any integer. As in the proof of the last theorem,
consider the sequences X(zo;a,b) : zo,21,... and X(xp;a,b + dp*~!) :
2d,0,%d,1,--- with modulus p* and their corresponding linear recurrence se-
quences U(1,xo;a,b) : ug,u1,... and U(1,z0;a,b + dp*~1) : ugo,ug1,---,
respectively. From Lemma 6, ,, = tp+1/upn and T4, = Ug n+1/Ud,n mod pF
for all n > 0. Moreover, let W(0,1;a,b) : wy,wi,ws,... be the same lin-
ear recurrence sequence as in the proof of Theorem 7. One can show by
induction on n that for all n > 2,

(9) Udp = U + Z wjun,jdpk_l mod pF.
1<j<n—1

Note that f(x) = 2% — bx — a is the characteristic polynomial for both
sequences U(1,xg;a,b) and W(0,1;a,b) with modulus p (or equivalently,
over GF(p)). Since ged(b? + 4a,p) = 1, f(z) is not a square in GF(p)[z].
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Let «, 3 € GF(p?) be the roots of f(x). It is easy to see that for all n > 0,
un = (w0 — B)a™ + (a — 20)B8") /(o — B) in GF(p?). In particular, uy = a*
in GF(p?) where A = o(my). It can also be shown by induction on n that
for all n > 0, w, = (a" — 8")/(a — () in GF(p?). So, in GF(p?),

Y witnj= > ((wo—B)a" + (a—x0)B"(ap")
1<j<n—1 0<j<n—1
— (z0 — B)a"™ (@' B)) — (v — 20) ") (x — B) 2
= (n(zo — B)a" + (a — ) B(a™ — ") (= )"
— (z0 = Ba(a™ — ") (a = B) 7 = n(a— x0) ") (o — )2

for all n > 2. In particular,

(10) Z wiur—j = Aa* 2z — B — a)(a— §)~?
1<5<A-1
and
(11) > wijur_jp1 = A (@oa + z0f — 2a8) (o — B) 2.
1<5<A

Note that both values in (10) and (11) are in GF(p), and so can be
viewed as an integer modulo p. Since xy = x¢ mod p*F~1, we can write z) =
xo +vph~1 mod p* for some integer 0 < v < p. So, ur11 = urzo + @ vpFTL
mod p*. Using this result and formulas (9)—(11), we have

Tax = ug 1 /uax =z + (v — 2d\(25 — (a + Bzo + 2a)(a — 5))p* !
=z + (v — 2d\(z2 — bxg — a)/(b* 4 4a))p" ! mod p*.

Therefore, 74\ = ¢ mod p* if and only if d = v(b? + 4a)/(2A(z2 — bzo —
a)) mod p. Since ged(2A\ (23 —bxg —a),p) = 1, such a d exists uniquely when
we consider 0 < d < p. This theorem is obtained by taking such d repeatedly
starting from k = 2.

Note that the result of Theorem 8(B) is consistent with the result ob-
tained by Eichenauer-Herrmann [6]. The following result is an easy applica-
tion of Theorem 5, which is consistent with results obtained by Huber [9].
We will use the usual notation p’ || m for p*|m but pt™t{m.

COROLLARY 9. Let m > 1 be a composite integer and let a, b and xg be in-
tegers so that the infinite sequence X (xo;a,b) with modulus m can be defined
by the recursion (2). Then X (zg;a,b) has the mazimal period length among
all inversive congruential pseudorandom number generators with modulus m
if and only if for any prime divisor of m one of the following conditions

holds:

(A) 2% ||m, ged(axo,2) = 1 and either b = 0mod 2 when t = 1 or
a=1mod4, b=2mod4, and ro =1 mod 2 when t > 2.
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(B) p! || m with p odd, ged(abzo(b* + 4a)(z3 — bxo — a),p) = 1, the order
A = o(my) of the polynomial m¢(x) = 2%+ (b*/a+2)z+1 in GF(p)[z] equals
(p+1)/2,xp41)/2 # To mod p* whenever t > 2, and either xo = b/2 mod p
and p = 1mod4 or xyp # b/2mod p and the order o(My) of Ms(x) =
22— (2+ (b +4a)/f(x0))z + 1 in GF(p)[z] does not divide (p +1)/2.

Proof. Note that the infinite sequence X (z;a,b) with modulus m has
the maximal period length among all inversive congruential pseudorandom
number generators with modulus m if and only if for any prime factor p of
m, X(zo;a,b) with modulus p’ has the maximal period length among all
inversive congruential pseudorandom number generators with modulus p?,
where p' || m.

Let 2" || m. Then ged(zg,2) = 1. From Theorem 5, the cases we have to
consider are either a = 0 or b = 0 mod 2, but not both. If t = 1, the sequence
X (z0;a,b) with modulus 2 having the maximal period length among all
inversive congruential pseudorandom number generators with modulus 2 if
and only if ged(azp,2) = 1 and b = Omod 2. If ¢ > 2, X(x;a,b) with
modulus 2! has the maximal period length among all inversive congruential
pseudorandom number generators with modulus 2! if and only if the case
Theorem 5(B)(4) holds. This proves (A).

Let p'||m with p odd. Note that if either L(zo;a,b;p) = p — 1 or
L(xg;a,b;p) = p+1, then X (z¢; a,b) with modulus p contains 0. So, the se-
quence X (zo; a,b) with modulus p having the maximal period length among
all inversive congruential pseudorandom number generators with modulus p
if and only if L(zo;a,b;p) = (p + 1)/2, because L(zo; a,b; p) divides either
p—1or p+ 1 by Theorem 5. The last statement holds if and only if it is
the case Theorem 5(F) together with xy #Z zo mod p? when ¢t > 2. This
completes the proof.

Let m be a composite positive integer and let m = pi'...p;* be the
prime factorization of m, where p1,...,p; are distinct primes and rq,...,r;
are positive integers. To get a sequence with modulus m having the maximal
period length, we can first take a sequence X (z; 0;a;,b;) with each modulus
p;t, 1 <i <t, satisfying conditions (A) or (B) of Corollary 9, and then use
the Chinese Remainder Theorem to get a sequence X (xq; a, b) with modulus
m. If p = 2 is a prime divisor of m, it is easy to use the condition (A) of
Corollary 9 to get the desired sequence with modulus a power of 2. If p is
an odd prime factor of m, we have to do much more work.

Let p be an odd prime and k be a positive integer. To get a sequence
X (x0;a,b) with modulus p* which satisfies the condition (B) of Corollary
9, we have first to find numbers a and b so that the order of the polynomial
mye(z) = 22 + (b*/a + 2)z + 1 in GF(p)[z] is (p + 1)/2. We can pick up
suitable a and b in the following way.
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Note that Chou [1] gave several methods to find polynomials over GF(p)
of order p+1. We can first use his methods to find a polynomial m(z) = 22—
cx+1,0 < ¢ < p,of order p+1 in GF(p)[x]. Consider the sequence vy, v1, ...
defined by vg = 2, v1 = ¢, and v,49 = cvp41 — v, for all n > 0. Then
vy = @™ +aP" for all n > 0, where « is a root of m(x) in GF(p?). So, ¢2—2 =
vy = &+ a? in GF(p?). Since m(z) is of order p+1, m¢(x) = 2% —vqz + 1
is of order (p + 1)/2 in GF(p)[z]. From the relation ¢ = —b*/a — 2 mod p,
we can get p — 1 desired pairs of numbers a and b which are not congruent
to 0 mod p.

Once we have suitable numbers a and b, we can choose a suitable num-
ber xg as follows. Note that the period length of the sequence vg,v1, ...
over GF(p) is p + 1. Any polynomial 2% — dx + 1 over GF(p) is of order
(p +1)/2 if and only if d = vq, for some positive integer n satisfying
ged(n, (p 4+ 1)/2) = 1. Take any integer w so that w # vy, mod p for any
integer 0 < n < (p + 1)/2. Then the order of Ms(z) = 2* —wz + 1 in
GF(p)[z] does not divide (p + 1)/2. Let t = (b*> + 4a)/(w — 2) mod p. If
the congruential equation 22 — bz 4+ a = t mod p does not have a solution,
we pick up another w and then find a new ¢ and solve this new congru-
ential equation. Suppose that the last congruential equation has a solu-
tion, say zo. If & = 1, the sequence X(xo;a,b) is as required. If k > 2,
we check the condition x(,41)/2 # o mod p?. If the condition is satisfied,
we are done; otherwise, the sequences X (xg + ¢p;a,b), 1 < ¢ < p, are as
desired.

3. Generalized inversive congruential recursion. Let p be a prime
and k be a positive integer again. In this section, we are going to study
the sequence X (zg;a,b) with modulus p* which is defined by the recur-
sion (3). Let Lg(zo; a, b; p*) be the period length of the sequence X (x¢; a, b)
with modulus p* which is defined by the recursion (3). As we have men-
tioned in Section 1, if X (xo;a,b) with modulus p does not contain 0, then
Lg(xo;a,b; p¥) = L(xg;a,b;p*). So, if X (x0;a,b) with modulus p does not
contain 0, then Lg(zo; a, b; p¥) must be one of the cases in Theorem 5. Hence,
we will concentrate on the case where X (xg;a,b) with modulus p contains
0. We need the following lemma.

LEMMA 10. Let p be a prime and k be a positive integer so that either
k>1ifpisodd ork > 3 if p = 2. Let a, b and zg be integers and
let the sequence X (xq;a,b) : xo,z1,... with modulus p* be defined by the
recursion (3). If there is a nonnegative integer t so that x; = 0 mod p, then
ZTir1 = bmod P

Proof Write p = ¢(p¥F) = (p — 1)p*~! and z; = rp mod p* for some
integer 7. Then we have z;,1 = a(rp)*~! + b mod p*. Note that p — 1 =
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(p— 1)p*~! —1 > k if either £ > 1 when p is odd or k > 3 when p = 2. So,
Tye1 = a(ep)? =1 + b = bmod p*.

Using this lemma, we can prove the following theorem which will list
all possible period lengths of sequences with modulus p* defined by the
recursion (3) and containing 0 with modulus p.

THEOREM 11. Let p be a prime and k > 2 be a positive integer. Let
a, b and o be integers, and let the sequence X (zo;a,b) : xg,x1,... with
modulus p* be defined by the recursion (3). Moreover, suppose the sequence
X (xo;a,b) with modulus p contains 0.

(A) If a = Omod p and either b = 0 mod p or xg = 0mod p, then
Lg(xo;a,b;pk) = 1.

(B) If ged(a,p) = 1 and b = 0 = x9 mod p, then Lg(zo;a,b;p*) = 1
except for the case p = 2 =k and b = 2 mod 4. For this exceptional case,
Lg(xo;a,b;4) = 2.

(C) If ged(ab(z3 — bzg + a),p) = 1 and b* + 4a = Omod p, then
Le(xo;a,b;p%) =p —1.

(D) If p is odd, ged(ab(b® + 4a),p) = 1, zg = b/2 mod p, and the order
o(my) of the polynomial my(z) = 2% + (b?/a+ 2)x + 1 in GF(p)[x] is even,
then La(zo;a,b;pF) = o(my) — 1.

(E) If ged(ab(b? + 4a)(x3 — bxg + a),p) = 1, zg Z b/2 mod p for p # 2,
and the order o(My) of the polynomial Ms(z) = 2* — (24 (b* + a) /(2% —
bro +a))x + 1 in GF(p)[z] divides o(my), then Lg(zo;a,b;p®) = o(my) — 1
except for the case p =2 =k and a = 1 mod 4. For this exceptional case,
La(zo;a,b;4) = 4.

Proof. (A) From Lemma 1(A), Lg(zo;a,b;p) = 1. Since the sequence
X (z0;a,b) with modulus p contains 0, ged(b,p) = 1 implies g = 0 mod p
and so, z; = b mod p* by Lemma 10 and the fact that azo = 0 mod 4 when
p = 2. In this case, it suffices to consider X (b;a,b) with modulus p*. Since
ged(b,p) = 1, Lg(b;a,b;p*) = 1 by Theorem 5(A) and so Lg(zo;a, b;p")
= 1. Now, suppose b = 0 mod p. From Lemma 1(A) again, z, = b = 0
mod p. Then this case follows from Lemma 10 except for the case p* = 4.
For this exception, ab?>~! +b = b mod 4 since ¢(4) = 2 and a = 0 = b mod 2.
So, x, = b mod 4 for all n > 1. Therefore, Lg(zo;a,b;4) = 1.

From now on, let ged(a,p) = 1. Then X (z¢;a,b) with modulus p* is
purely periodic.

(B) From Lemma 1(B), Lg(zo;a,b;p) = 1. Then the case follows from
Lemma 10 except for p* = 4. If b = 2mod 4, then z, = 0mod 2 and
Xy # Tpy1 mod 4 for all n > 0, because of 2o = 0 mod 2 and ged(a,2) = 1.
So, Lg(xp;a,b;4) = 2 if b = 2mod 4. If b = 0 mod 4, then z,, = o mod 4
for all n > 0. Hence, Lg(xo;a,b;4) =1 if b = 0 mod 4.
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(C) Note that p # 2 in this case. From Lemma 1(E)(2), the sequence
X (z0;a,b) with modulus p contains 0 and so Lg(zo;a,b;p) = p— 1. Then
this case follows from Lemma 10.

(D) This case follows from Lemma 1(F)(2) and Lemma 10 immediately.

(E) This case follows from Lemma 1(F)(4) and Lemma 10 except for
the case p = 2 = k. We now consider the exceptional case. Since ged(ab, 2)
=1, we have a = 1 = bmod 2. So, a = 1,3 mod 4, b = 1,3 mod 4, and
xo = 0,1,2,3 mod 4. By checking all possible cases, Lg(xo;a,b;4) = 2 if
a = 3mod 4, and Lg(zo;a,b;4) = 4 if a = 1 mod 4. Finally, note that
my(z) = 22 + x + 1 in GF(2)[z] has order 3. This completes the proof of
this theorem.

Let m, a, b and zy be integers with m > 0. Let the sequence X (z¢; a,b)
with modulus m be defined by the recursion (3). Huber [9] showed that if m is
square free, then X (z¢; a,b) with modulus m has the maximal period length
if and only if the polynomial f(z) = 2% — bx — a is an IMP (abbreviated for
inversive maximal period) polynomial in GF(p)[z] for every prime divisor
p of m. So, if m is square free and X (z¢;a,b) with modulus m has the
maximal period length, then its period length is m. This is no more true
if m is not square free. In fact, if m = py...ps_1pL...p;* is the prime
factorization of m, where p1,...,p; are distinct primes and rg,...,r; are
positive integers greater than 1, then the sequence X (z¢; a, b) with modulus
m has the maximal period length if and only if f(z) = 22 — bx — a is an
IMP polynomial in GF(p;)[z] for all 1 < i < s, and a, b, g and p;j satisfy
the conditions of Corollary 9 for all s < j < ¢.
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