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1. Introduction. Let p be a prime. For fixed elements a and b of
the finite field GF(p) = Z/pZ (it can be identified with the set Zp =
{0, 1, . . . , p− 1} together with the operations of addition and multiplication
modulo p), Eichenauer and Lehn [3] defined sequences X(x0; a, b) : x0, x1, . . .
by choosing initial elements x0 ∈ GF(p) and using the recursion

(1)
xn+1 = ax−1

n + b if xn 6= 0,

xn+1 = b if xn = 0
for all n ≥ 0.

They used this method as a nonlinear method to generate pseudorandom
numbers. Niederreiter [10] generalized it over arbitrary finite field GF(q)
when he studied pseudorandom vectors. See also Eichenauer-Herrmann [5]
and Niederreiter [11, Chapters 8 and 10] and [12] for more details on these
methods. Because the recursion (1) is used to construct pseudorandom
numbers and pseudorandom vectors, the problem of when the sequence
X(x0; a, b) has the maximal period length has been studied intensively: see,
for instance, Chou [1], Eichenauer and Lehn [3], Flahive and Niederreiter
[8], and Niederreiter [12].

For studying pseudorandom numbers with modulus a composite positive
integerm, the recursion (1) must be changed into the following: For all n ≥ 0,

(2) xn+1 ≡ ax−1
n + b mod m provided gcd(xn,m) = 1.

So, every term of X(x0; a, b) must be relatively prime to m. If m = pr11 . . . prtt ,
where t ≥ 2 and p1, . . . , pt are distinct primes, is the prime factorization
of m, then the period length of X(x0; a, b) with modulus m equals the least
common multiple of period lengths of X(x0; a, b) with modulus prii , 1 ≤ i
≤ t. So, for studying the period length of X(x0; a, b) with modulus m, it
suffices to consider X(x0; a, b) with modulus a prime power pk. Eichenauer,
Lehn, and Topuzoğlu [4] studied the maximal period length with modulus 2k.
Since the sequence X(x0; a, b) with modulus a prime divisor p of m instead
of m itself does not contain 0 modulo p, X(x0; a, b) with modulus p does not
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have the maximal period length. It is necessary to study all possible period
lengths of the recursion (1) over GF(p). Eichenauer and Lehn [3] obtained
some results on the period length of X(x0; a, b) with prime modulus. Chou
[2] generalized it over finite fields and got all possible period lengths of the
sequence X(x0; a, b). Also, Eichenauer-Herrmann [6], Eichenauer-Herrmann
and Topuzoğlu [7] and Huber [9] studied the period length of X(x0; a, b)
with modulus any prime power.

As we have mentioned above, if the sequence X(x0; a, b) is generated by
the recursion (2), the sequence X(x0; a, b) with modulus p does not have the
maximal period length. To make up for this deficiency, Huber [9] suggested
to consider the recursion

(3) xn+1 ≡ axφ(m)−1
n + b mod m for all n ≥ 0,

where φ(m) is Euler’s totient function. This recursion is equivalent to the
recursion (1) when m is a prime number and equivalent to the recursion (2)
whenever each term of the sequence X(x0; a, b) with modulus m is relatively
prime to m. But the recursion (3) allows any term xn of X(x0; a, b) and m
to have a common divisor greater than 1. Huber [9] showed that if m is
square free, then X(x0; a, b) has the maximal period length with modulus
m if and only if X(x0; a, b) with modulus each prime divisor p of m has the
period length p.

In this paper, we are going to describe all possible period lengths of
sequences X(x0; a, b) generated by each of recursions (2) and (3). For this
purpose, we need the following results from Chou [2].

Lemma 1. Let p be a prime and let x0, a and b be elements of the finite
field GF(p). Let X(x0; a, b) be the sequence obtained by taking the initial
element x0 ∈ GF(p) and using the recursion (1). Let f(x) = x2 − bx − a
and let o(mf ) be the order of the polynomial mf (x) = x2 + (b2/a+ 2)x+ 1
provided a 6= 0. Moreover , let L(x0; a, b; p) be the period length of X(x0; a, b).

(A) If a = 0, then xn = b for all n ≥ 1 and so L(x0; 0, b; p) = 1.
(B) If a 6= 0 and b = 0 = x0, then xn = 0 for all n ≥ 0, and so

L(0; a, 0; p) = 1.
(C) If ax0 6= 0, a = x2

0 and b = 0, then xn = x0 for all n ≥ 0, and so
L(x0; a, 0; p) = 1.

(D) If ax0 6= 0, a 6= x2
0 and b = 0, then xn+2 = xn and xn+1 6= xn for

all n ≥ 0, and so L(x0; a, 0; p) = 2.
(E) Let f(x) = (x−α)2 for some α ∈ GF(p) (or equivalently , b2+4a = 0).

Then
(1) L(α; a, b; GF(p)) = 1,
(2) if x0 6= α, then X(x0; a, b) contains 0 and L(x0; a, b; p) = p− 1.

(F) Let f(x) = (x− α)(x− β) for some α 6= β ∈ GF(p2).
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(1) If f(x0) = 0, then L(x0; a, b; p) = 1.
(2) If p 6= 2 and o(mf ) is even, then X(b/2; a, b) contains 0 and

L(b/2; a, b; p) = o(mf )− 1.
(3) If p 6= 2 and o(mf ) is odd , then X(b/2; a, b) does not contain 0

and L(b/2; a, b; p) = o(mf ).
(4) If f(x0) 6= 0, x0 6= b/2 whenever p 6= 2, and the order o(Mf )

of the polynomial Mf (x) = x2 − (2 + (b2 + 4a)/f(x0))x+ 1 over
GF(p) divides o(mf ) (or equivalently , Mf (x) divides xo(mf )−1),
then X(x0; a, b) contains 0 and L(x0; a, b; p) = o(mf )− 1.

(5) If f(x0) 6= 0, x0 6= b/2 for p 6= 2, and o(Mf ) does not divide
o(mf ), then X(x0; a, b) does not contain 0 and L(x0; a, b; p) =
o(mf ).

Using this lemma, we are going to study all possible period lengths of
sequences X(x0; a, b) with modulus m generated by the recursion (2) in Sec-
tion 2 and all possible period lengths of sequences X(x0; a, b) with modulus
m generated by the recursion (3) in Section 3.

2. Inversive congruential recursion. Let m ≥ 4 be a fixed composite
integer and let m = pr11 . . . prtt be the prime factorization of m, where t ≥ 2,
p1, . . . , pt are distinct primes, and r1, . . . , rt are positive integers. For integers
a, b, and x0, let X(x0; a, b) be the sequence defined by the recursion (2) if
it can be defined. As we have mentioned, every term of X(x0; a, b) must
be relatively prime to m and the period length L(x0; a, b;m) of X(x0; a, b)
with modulus m equals the least common multiple of the period lengths
L(x0; a, b; prii ) of X(x0; a, b) with moduli prii , 1 ≤ i ≤ t. We are going to
consider first the sequence X(x0; a, b) with modulus a prime power pk with
k ≥ 2. First, we have the following “well-defined” property.

Lemma 2. Let p be a prime, and let k , a, b and x0 be integers with k ≥ 2.
Moreover , let f(x) = x2 − bx − a. Then a, b and x0 can be used to define
an infinite sequence X(x0; a, b) with modulus pk by the recursion (2) if and
only if one of the following conditions holds:

(A) a ≡ 0 mod p and gcd(bx0, p) = 1.
(B) gcd(ax0, p) = 1 and b ≡ 0 mod p.
(C) gcd(abx0, p) = 1, b ≡ 2x0 mod p, and a ≡ −x2

0 mod p.
(D) gcd(abx0(b2 + 4a), p) = 1 and x2

0 − x0b− a ≡ 0 mod p.
(E) p 6= 2, gcd(ab(b2 + 4a), p) = 1, x0 ≡ b/2 mod p, and the order o(mf )

of the polynomial mf (x) = x2 + (b2/a+ 2)x+ 1 in GF(p)[x] is odd.
(F) gcd(abx0(b2 +4a)f(x0), p) = 1, x0 6≡ b/2 mod p whenever p 6= 2, and

the order o(Mf ) of Mf (x) = x2 − (2 + (b2 + 4a)/f(x0))x + 1 in GF(p)[x]
does not divide o(mf ).
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P r o o f. As we have mentioned, a, b, and x0 can be used to define an infi-
nite sequence by the recursion (2) if and only if the sequence X(x0; a, b) with
modulus p defined by the recursion (1) does not contain 0. From Lemma 1,
the last statement holds if and only if X(x0; a, b) with modulus p is one of
cases (A), (C), (D), (E)(1), and (F)(1), (3), and (5). In fact, with modulus p,
Lemma 1(A) is case (A), both Lemma 1(C) and (D) together are case (B),
Lemma 1(E)(1) is case (C), Lemma 1(F)(1) is case (D), Lemma 1(F)(3) is
case (E), and Lemma 1(F)(5) is case (F).

The following two lemmas were obtained by Eichenauer-Herrmann and
Topuzoğlu [7]. They are useful in describing the period length of the sequence
X(x0; a, b) with modulus pk for k ≥ 2.

Lemma 3 ([7], Lemma 6). Let p be a prime and let k , a, b, and x0 be
integers with k ≥ 2 and gcd(a, p) = 1. Suppose that the sequence X(x0; a, b)
can be defined by the recursion (2). Let λk−1 and λk be the period length of
X(x0; a, b) with modulus pk−1 and pk, respectively. Then

(A) λk = λk−1 for xλk−1 ≡ x0 mod pk.
(B) λk = o(−ax−2

0 )λk−1 for xλk−1 6≡ x0 mod pk, λk−1 = 1 and gcd(a +
x2

0, p) = 1, where o(−ax−2
0 ) is the multiplicative order of −ax−2

0 in GF(p).
(C) λk = pλk−1 for xλk−1 6≡ x0 mod pk, and either λk−1 ≥ 2 or λk−1 = 1

and a ≡ −x2
0 mod p.

The following lemma is a little bit different from the original lemmas
in [7].

Lemma 4 ([7], Lemmas 7–9). Let p be a prime and let k , a, b and x0 be
integers with k ≥ 2 and gcd(a, p) = 1. Suppose that the sequence X(x0; a, b)
can be defined by the recursion (2). Let λk−1 and λk be the period lengths
of X(x0; a, b) with modulus pk−1 and pk, respectively.

(A) If k ≥ 3 and xλk−1 6≡ x0 mod pk, then xλk 6≡ x0 mod pk+1.
(B) If λ1 ≥ 2 and xλ1 6≡ x0 mod p2, then xλ2 6≡ x0 mod p3.
(C) If λ1 = 1, a ≡ −x2

0 mod p, x1 6≡ x0 mod p2 and p ≥ 5, then xλ2 6≡
x0 mod p3.

P r o o f. (B) and (C) are the same as Lemmas 8 and 9, respectively, in
[7]. So, we prove (A) only. We follow the proof of Lemma 7 in [7] until we
get the congruential equation

(4) xµλk−1 ≡ x0 + µ(αpk−1 + βpk) +
( ∑

1≤j≤µ−1

j
)
γαpk mod pk+1,

where µ is any positive integer, α, β, and γ are some fixed integers with
gcd(α, p) = 1 and γ = 0 if p = 2. If the conditions of Lemma 3(B) are
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satisfied, we take µ = o(−ax−2
0 ) and then the equation (4) becomes

xλk ≡ x0 + o(−ax−2
0 )αpk−1 +

(
o(−ax−2

0 )β +
( ∑

1≤j≤µ−1

j
)
γα
)
pk

6≡ x0 mod pk+1

since gcd(o(−ax−2
0 )α, p) = 1. If the conditions of Lemma 3(C) are satisfied,

we take µ = p and then the equation (4) becomes xλk ≡ x0 + αpk 6≡
x0 mod pk+1 since

∑
1≤j≤p−1 j ≡ 0 mod p if p ≥ 3, and γ = 0 if p = 2. This

completes the proof.

We are now ready to prove our main theorem of this section, which will
describe all possible period lengths of the inversive congruential recursion
with modulus pk.

Theorem 5. Let p be a prime and let k , a, b and x0 be integers with
k ≥ 1. Suppose that the sequence X(x0; a, b) with modulus pk can be defined
by the recursion (2). Let f(x) = x2 − bx− a.

(A) If a ≡ 0 mod p and gcd(bx0, p) = 1, then the period length
L(x0; a, b; pk) = 1.

(B) Let gcd(ax0, p) = 1, a ≡ x2
0 mod p, and b ≡ 0 mod p. Write b = dpj

with gcd(d, p) = 1 whenever b 6= 0. Also write f(x0) = cpe with gcd(c, p) = 1
when f(x0) 6= 0.

(1) If either f(x0) = 0 or k ≤ e, then L(x0; a, b; pk) = 1.
(2) If k = e+ 1, then L(x0; a, b; pk) = 2.
(3) If e+ 1 < k and either b = 0 or k ≤ j, then L(x0; a, b; pk) = 2.
(4) If k > e+ 1 and k > j, then L(x0; a, b; pk) = 2pk−max{j,e+1}.

(C) Let gcd(ax0(a− x2
0), p) = 1 and b ≡ 0 mod p.

(1) If b = 0, then L(x0; a, b; pk) = 2.
(2) If b = dpj with gcd(d, p) = 1, then L(x0; a, b; pk) = 2 if 1 ≤ k ≤ j,

and L(x0; a, b; pk) = 2pk−j if k > j.
(D) Let gcd(ab, p) = 1, b ≡ 2x0 mod p, and a ≡ −x2

0 mod p. If f(x0) 6= 0,
write f(x0) = cpe with gcd(c, p) = 1.

(1) If either f(x0) = 0 or e ≥ 2 and k ≤ e, then L(x0; a, b; pk) = 1.
(2) If k > e ≥ 2, then L(x0; a, b; pk) = pk−e.
(3) If p ≥ 5 and e = 1, then L(x0; a, b; pk) = pk−1.
(4) Let p = 3 and e = 1. Write a+ b2 = h3s for some integer h with

gcd(h, 3) = 1 whenever a + b2 6= 0. Then L(x0; a, b; 3k) = 3 if
either a + b2 = 0 or 2 ≤ k ≤ s, and L(x0; a, b; 3k) = 3k−s+1 if
k ≥ s+ 1.

(E) Let gcd(abx0(b2 + 4a), p) = 1. Write f(x0) = cpe with gcd(c, p) = 1
whenever f(x0) 6= 0.

(1) If either f(x0) = 0 or k ≤ e, then L(x0; a, b; pk) = 1.
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(2) If k > e ≥ 2, then L(x0; a, b; pk) = o(−ax−2
0 )pk−e−1.

(3) Let k > e = 1 and write µ = o(−ax−2
0 ). Then L(x0; a, b; pk) =

µ if xµ ≡ x0 mod pk, and L(x0; a, b; pk) = µpk−t+1 if t is the
smallest integer satisfying xµ 6≡ x0 mod pt and 3 ≤ t ≤ k.

(F) Let gcd(abx0(b2 + 4a)f(x0), p) = 1. Suppose that either p > 2, x0 ≡
b/2 mod p and the order λ = o(mf ) of mf (x) = x2 + (b2/a + 2)x + 1 in
GF(p)[x] is odd or the order o(Mf ) of the polynomial Mf (x) = x2 − (2 +
(b2 + 4a)/f(x0))x + 1 in GF(p)[x] does not divide λ. Then p is odd and
L(x0; a, b; pk) = λ if xλ ≡ x0 mod pk, and L(x0; a, b; pk) = λpk−t+1 if t is
the smallest positive integer satisfying xλ 6≡ x0 mod pt and 2 ≤ t ≤ k.

P r o o f. Since a, b and x0 can be used to define the infinite sequence
X(x0; a, b) with modulus pk by the recursion (2), we are going to prove this
theorem according to all cases in Lemma 2.

(A) It is trivial for the case a = 0. So, consider a 6= 0 and write a = rpe

with gcd(r, p) = 1. Let s be the nonnegative integer satisfying es < k ≤
e(s+ 1). We are going to prove this case by induction on s.

Since xn+1 ≡ perx−1
n + b mod pt, we have L(x0; a, b; pt) = 1 whenever

1 ≤ t ≤ e. Suppose that for fixed integer 0 ≤ s, L(x0; a, b; pt) = 1 for each
es < t ≤ e(s+ 1), or equivalently, there exists a positive integer ws so that
for any es < t ≤ e(s+ 1), xn ≡ u mod pt is a constant for all n ≥ ws.

Now consider e(s+1) < k ≤ e(s+2). For any n ≥ ws+1, xn ≡ perx−1
n−1+

b mod pk. Since n− 1 ≥ ws, the term xn−1 ≡ u mod pk−e is a constant. So,
perx−1

n−1 ≡ peru−1 mod pk is a constant. Therefore, xn ≡ perx−1
n−1+b mod pk

is a constant for all n ≥ ws + 1. Hence, L(x0; a, b; pk) = 1.
From now on, we consider gcd(a, p) = 1. So, X(x0; a, b) with modulus pk

is purely periodic.
(B) From the definition, x1 ≡ x0 mod pk if and only if f(x0) = x2

0 −
bx0 − a ≡ 0 mod pk. So, if f(x0) = 0, then L(x0; a, b; pk) = 1. Now, we
consider f(x0) 6= 0.

If k ≤ e, it is trivial that L(x0; a, b; pk) = 1. So, suppose k > e. Then x1 6≡
x0 mod pk. If k = e+1 and p is odd, then, by Lemma 3(B), L(x0; a, b; pe+1) =
2 since o(−ax−2

0 ) = 2. From Lemma 3(C), if p is even and k = e + 1, then
L(x0; a, b; pe+1) = p = 2.

Now, suppose k > e + 1. By the definition, x0 ≡ x2 mod pk if and only
if b2x0 + ab + ax0 ≡ x0(bx0 + a) mod pk. Simplifying the last congruen-
tial equation, x0 ≡ x2 mod pk if and only if ab ≡ 0 mod pk. So, if either
b = 0 or k ≤ j, then L(x0; a, b; pk) = 2 by Lemma 3(A). If k > j, then
L(x0; a, b; pk) = 2pk−max{j,me+1} from Lemmas 3(C) and 4(A).

(C) From Lemma 1(D), L(x0; a, b; p) = 2. By the definition, x2 ≡
a(ax−1

0 + b)−1 + b mod pk. If b = 0, it is trivial that L(x0; a, b; pk) = 2.
Now suppose b 6= 0. After simplification, x2 ≡ x0 mod pk if and only if
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(a− x2
0)b ≡ −x0b

2 mod pk. The last congruential equation holds if and only
if 1 ≤ k ≤ j since b = dpj and gcd(a − x2

0, p) = 1. So, L(x0; a, b; pk) = 2
if 1 ≤ k ≤ j. Since (a − x2

0)b 6≡ −x0b
2 mod pj+1, L(x0; a, b; pj+1) = 2p by

Lemma 3(C). If k > j, then L(x0; a, b; pk) = 2pk−j by Lemmas 3(C) and
4(A) and (B).

(D) By Lemma 1(E)(1), L(x0; a, b; p) = 1. From the definition, x1 ≡
x0 mod pk if and only if f(x0) = x2

0 − bx0 − a ≡ 0 mod pk. So, if either
f(x0) = 0 or k ≤ e, then L(x0; a, b; pk) = 1. Suppose f(x0) 6= 0 and k > e.
Since a ≡ −x2

0 mod p, L(x0; a, b; pe+1) = p by Lemma 3(C). If e ≥ 2, then
L(x0; a, b; pk) = pk−e by Lemmas 3(C) and 4(A).

Suppose now e = 1. From Lemmas 3(C) and 4(A) and (C), L(x0; a, b; pk)
= pk−1 if p ≥ 5. So, suppose p = 3. It is trivial that L(x0; a, b; 9) = 3. So,
let k ≥ 3. By the definition and a short calculation, x3 ≡ x0 mod 3k if
and only if af(x0) ≡ −b2f(x0) mod 3k. The last congruential equality is
equivalent to a ≡ −b2 mod 3k−1 since f(x0) = 3c with gcd(c, 3) = 1. Since
b ≡ 2x0 mod 3 and a ≡ −x2

0 mod 3, we have a+ b2 ≡ 0 mod 3. If a+ b2 = 0,
then L(x0; a, b; 3k) = 3 by Lemmas 3(A). So, suppose a + b2 6= 0. If s = 1,
then L(x0; a, b; 3k) = 3k−1 by Lemmas 3(C) and 4(A). Suppose s ≥ 2. If
k ≤ s, then L(x0; a, b; 3k) = 3. If k ≥ s + 1, then L(x0; a, b; 3k) = 3k−s by
Lemmas 3(C) and 4(A).

(E) From the definition, x0 ≡ x1 mod pk if and only if f(x0) ≡ 0 mod pk.
If either f(x0) = 0 or k ≤ e, then L(x0; a, b; pk) = 1. If k > e ≥ 2, then
L(x0; a, b; pk) = o(−ax−2

0 )pk−e−1 from Lemmas 3(B), (C) and 4(A). Now
suppose e = 1. By Lemma 3(B) again, L(x0; a, b; p2) = λ = o(−ax−2

0 ).
If k > 2 and xλ ≡ x0 mod pk, then L(x0; a, b; pk) = λ. If k > 2 and if
3 ≤ t ≤ k is the smallest positive integer satisfying xλ 6≡ x0 mod pt, then
L(x0; a, b; pk) = o(−ax−2

0 )pk−t+1 by Lemmas 3(B), (C) and 4(A).
(F) Under the assumption gcd(ab, p) = 1, the only case for p = 2 is

that a ≡ 1 ≡ b mod 2. In this case, o(mf ) is 3 and so L(x0; a, b; 2) =
2. This implies that the sequence X(x0; a, b) with modulus 2 contains 0;
a contradiction. So, p is odd.

From Lemma 1(F)(3) and (5), L(x0; a, b; p) = λ = o(mf ). If xλ ≡ x0

mod pk, then L(x0; a, b; pk) = o(mf ) by Lemma 3(A). If 2 ≤ t ≤ k is
the smallest integer satisfying xλ 6≡ x0 mod pe, then L(x0; a, b; pk) =
o(mf )pk−t+1 by Lemmas 3(A), (C), 4(A) and (B). This completes the proof
of this theorem.

The case Theorem 5(B)(3) with j = 1 = e is consistent with the result
obtained by Eichenauer, Lehn, and Topuzoğlu [4]. Also, cases (D)(4), (D)(5)
with s = 1, and (F) in Theorem 5 are consistent with results obtained by
Eichenauer-Herrmann and Topuzoğlu [7]. Also, we have given conditions
xλ ≡ x0 and xλ 6≡ x0 modulo a prime power in both cases Theorem 5(E)(3)
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and (F), respectively. We are going to modify these two conditions. First,
we need the following

Lemma 6. Let p be a prime and let k , a, b, and x0 be integers with k ≥ 2.
Suppose that the sequence X(x0; a, b) : x0, x1, x2, . . . with modulus pk can be
defined by the recursion (2). Let U(1, x0; a, b) : u0, u1, u2, . . . be the linear
recurrence sequence of integers defined by u0 = 1, u1 = x0, and un+2 =
bun+1 + aun for all n ≥ 0. Then gcd(un, p) = 1 and xn ≡ un+1/un mod pk

for all n ≥ 0.

P r o o f. From the definition, xn is not congruent to 0 modulo p for all
n ≥ 0. So, gcd(un, p) = 1 by Lemma 1. Since x0 ≡ u1 ≡ u1/u0 mod pk

and un+2 ≡ bun+1 + aun mod pk, the result xn ≡ un+1/un mod pk can be
proved by induction on n.

The following theorem is a modification of the case Theorem 5(E)(3).

Theorem 7. Let p be an odd prime and let k , a, b and x0 be integers so
that k ≥ 2, gcd(abx0(b2 + 4a), p) = 1 and x2

0− bx0−a = cp for some integer
c with gcd(c, p) = 1. Write (ax−1

0 )p−1− xp−1
0 ≡ υp mod p2 for some integer

υ, where x−1
0 is the multiplicative inverse of x0 modulo p2.

(A) If gcd(c+ 2−1υ(x2
0 +a), p) = 1, then L(x0; a, b; pk) = o(−ax−2

0 )pk−2,
where 2−1 is the multiplicative inverse of 2 modulo p.

(B) If c ≡ −υ(x2
0 + a)/2 mod p, then L(x0; a, b; p3) = o(−ax−2

0 ) and ,
whenever k ≥ 4, there is exactly one integer 0 ≤ d < pk−3 so that L(x0; a, b+
dp2; pk) = o(−ax−2

0 ).

P r o o f. We already know that L(x0; a, b; p) = 1 and L(x0; a, b; p2) =
o(−ax−2

0 )=λ by Theorem 5(E)(3). Now, we consider the sequence X(x0; a, b)
with modulus p3.

Since gcd(ax0, p) = 1, there is an integer β so that βx0 ≡ −a mod p3.
Write x0 = α. Let bc = β+α and g(x) = x2−bcx−a. So, g(x0) ≡ 0 mod p3.
Moreover, b − bc ≡ x−1

0 cp mod p3 since f(x0) = x2
0 − bx0 − a = cp. Con-

sider two corresponding linear recurrence sequences U(1, x0; a, b) : u0, u1, . . .
and U(1, x0; a, bc) : uc,0, uc,1, . . . defined as in Lemma 6, respectively. By
Lemma 6, xn ≡ un+1/un mod p3 for all n ≥ 0. Furthermore, it can be
shown by induction on n that uc,n ≡ αn mod p3 for all n ≥ 0. Now, let
W (0, 1; a, bc) : ωc,0, ωc,1, . . . be the linear recurrence sequence defined by
ωc,0 = 0, ωc,1 = 1, and ωc,n+2 = bcωc,n+1 + aωc,n for all n ≥ 0. Since
α 6≡ β mod p from gcd(b2 + 4a, p) = 1, one can show by induction on n that
ωc,n ≡ (αn − βn)/(α− β) mod p3 for all n ≥ 0.

It is easy to see from the definition that u0 ≡ uc,0, u1 ≡ uc,1, u2 ≡ uc,2 +
ωc,1uc,1x

−1
0 cp and u3 ≡ uc,3 + (ωc,1uc,2 + ωc,2uc,1)x−1

0 cp+ ωc,1uc,1(x−1
0 cp)2

mod p3. Let σn =
∑

1≤j≤n−1 ωc,juc,n−j and τn =
∑

1≤j≤n−2 ωc,jσn−j for
all n ≥ 3, and let σ2 = ωc,1uc,1. One can show by induction on n that
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un ≡ uc,n + σnx
−1
0 cp + τn(x−1

0 cp)2 mod p3 for all n ≥ 3. Since ωc,n ≡
(αn−βn)/(α−β) and uc,n ≡ αn mod p3, we have, after a short computation,

σn =
∑

1≤j≤n−1

ωc,juc,n−j ≡
( ∑

0≤j≤n−1

αn−j(αj − βj)
)
/(α− β)(5)

≡ nαn/(α− β)− α(αn − βn)/(α− β)2 mod p3

and

τn =
∑

1≤j≤n−2

ωc,jσn−j(6)

≡ (α− β)−2
( ∑

0≤j≤n−2

(αj − βj)(n− j)αn−j
)

− α(α− β)−3
( ∑

0≤j≤n−2

(αj − βj)(αn−j − βn−j)
)

≡ (α− β)−2((n+ 2)(n− 1)αn/2− nα2(αn−1 − βn−1)/(α− β)

+ ((n− 2)α2βn − (n− 1)α3βn−1 + αn+1β)/(α− β)2)

− α(α− β)−3((n− 1)αn − β2(αn−1 − βn−1)/(α− β)

− α2(αn−1 − βn−1)/(α− β) + (n− 1)βn) mod p3.

Since βx0 ≡ −a mod p3, we have −ax−2
0 ≡ αβ−1 mod p. This implies

o(−ax−2
0 ) = o(mf ) = λ. So, βλ ≡ αλ mod p. Hence, αp−1 ≡ βp−1 mod p.

Write βp−1 ≡ αp−1 + υp mod p2 for some integer υ. Note that x0 ≡ xλ
mod p3 if and only if x0 ≡ xp−1 mod p3 by Lemma 3(C). So, we consider
xp−1 instead of xλ. By formula (5) and (6) and simplification,

(x−1
0 cp)σp−1

≡ −αp−1(α− β)−1(x−1
0 cp) + ((α− β)−1 + αυ(α− β)−2)x−1

0 cp2 mod p3,

(x−1
0 cp)σp
≡ −αp(α− β)−1(x−1

0 cp) + (α(α− β)−1 + αβυ(α− β)−2)x−1
0 cp2 mod p3,

(x−1
0 cp)2τp−1 ≡ 3α(α− β)−3(x−1

0 cp)2 mod p3,

and

(x−1
0 cp)2τp ≡ (α2 + 2αβ)(α− β)−3(x−1

0 cp)2 mod p3.

By Lemma 6 and a short computation, we have

xp−1 ≡ up/up−1

≡ (uc,p + σpx
−1
0 cp+ σp(x−1

0 cp)2)/(uc,p−1 + σp−1x
−1
0 cp+ σp−1(x−1

0 cp)2)

≡ α+ (−υc(α− β)−1 − 2c2α−1(α− β)−2)p2 mod p3.

Since x0 = α, xp−1 ≡ x0 mod p3 if and only if 0 ≡ −υc(α − β)−1 −
2c2α−1(α − β)−2 mod p. The last congruential equality is equivalent to
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c ≡ −υα(α − β)/2 ≡ −υ(x2
0 + a)/2 mod p. By Lemmas 3(C) and 4(A),

if gcd(c + υ(x2
0 + a), p) = 1, then L(x0; a, b; p3) = o(−ax−2

0 )p, and so
L(x0; a, b; pk) = o(−ax−2

0 )pk−2 for all k ≥ 3.
Suppose c ≡ −υ(x2

0 + a)/2 mod p. Then gcd(υ, p) = 1 since gcd(c(x2
0 +

a), p) = 1. Note that L(x0; a, b; p3) = o(−ax−2
0 ) from Lemma 3(A). Assume

k > 3 and let 3 ≤ t < k be any integer satisfying L(x0; a, b; pi) = o(−ax−2
0 )

for all 2 ≤ i ≤ t. Write xp−1 ≡ x0+ξpt mod pt+1. Take any integer 0 ≤ d < p
and consider the sequence X(x0; a, b + dpt−1) : xd,0, xd,1, . . . with modulus
pt+1. Consider the corresponding linear recurrence sequence U(1, x0; a, b +
dpt−1) : ud,0, ud,1, . . . By Lemma 6, xd,n ≡ ud,n+1/ud,n mod pt+1 for all
n ≥ 0. Let W (0, 1; a, b) : w0, w1, . . . be the linear recurrence sequence defined
by w0 = 0, w1 = 1, and wn+2 = bwn+1 + awn for all n ≥ 0. By similar
arguments, one can show by induction on n that for all n ≥ 2,

(7) ud,n ≡ un +
∑

1≤j≤n−1

wjun−jdpt−1 mod pt+1.

It is easy to show by induction on n that w1 ≡ ωc,1 and wn ≡ ωc,n +
(
∑

1≤j≤n−1 ωc,jωc,n−j)x
−1
0 cp mod p2 for all n ≥ 2. Since u1 ≡ uc,1 and

un ≡ uc,n + σnx
−1
0 cp mod p2 for all n ≥ 2, (7) becomes, for all n ≥ 3,

ud,n ≡ un +
∑

1≤j≤n−1

ωc,jun−jdpt−1(8)

+
∑

2≤j≤n−1

un−j
( ∑

1≤i≤j−1

ωc,iωc,j−i
)
x−1

0 cdpt

≡ un +
∑

1≤j≤n−1

ωc,juc,n−jdpt−1 +
∑

1≤j≤n−2

ωc,jσn−jx−1
0 cdpt

+
∑

2≤j≤n−1

un−j
( ∑

1≤i≤j−1

ωc,iωc,j−i
)
x−1

0 cdpt mod pt+1.

Let χn =
∑

2≤j≤n−1 un−j(
∑

1≤i≤j−1 ωc,iωc,n−i) for all n ≥ 3. From the
definitions of σn and τn, (8) can be rewritten as

ud,n ≡ un + σndp
t−1 + (τn + χn)x−1

0 cdpt mod pt+1 for all n ≥ 3.

Since un ≡ uc,n mod p for all n ≥ 0, we have

χn =
∑

2≤j≤n−1

un−j
( ∑

1≤i≤j−1

ωc,iωc,j−i
)

≡ (n+ 1)(n− 2)αn2−1(α− β)−2

+ ((n− 1)αβn+1 − nα2βn + 2αnβ2 − αn−1β3)(α− β)−4

− (n− 2)αn(α+ β)(α− β)−3

+ (αβn − αn−1β2)(α+ β)(α− β)−4 mod p
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for all n ≥ 3. Therefore,

ud,p−1 ≡ up−1 − αp−1(α− β)−1dpt−1 + ((α− β)−1 + αυ(α− β)−2)dpt

+ (8α2 + 4αβ + 2β2)α−1(α− β)−3x−1
0 cdpt mod pt+1,

and
ud,p ≡ up − αp(α− β)−1dpt−1 + (α(α− β)−1 + αβυ(α− β)−2)dpt

+ (2α2 + 6αβ + 2β2)(α− β)−3x−1
0 cdpt mod pt+1.

Since xp−1 ≡ x0 + ξpt mod pt+1 and up−1 ≡ αp−1 ≡ 1, x0 ≡ α, and c ≡
−υα(α − β)/2 mod p, we have xd,p−1 ≡ ud,p/ud,p−1 ≡ x0 + (ξ + 2α2υ(α −
β)−2d)pt mod pt+1. This implies that xd,p−1 ≡ xd,0 ≡ x0 mod pt+1 if and
only if d ≡ −ξ(α − β)2/(2α2υ) mod p. Since (α − β)2 ≡ b2 + 4a mod p,
xd,p−1 ≡ xd,0 mod pt+1 if and only if d ≡ −ξ(b2 + 4a)/(2x2

0υ) mod p. We
have shown that there is exactly one integer 0 ≤ d < p so that L(x0; a, b +
dpt−1; pt+1) = o(−ax−2

0 ) whenever L(x0; a, b; pt) = o(−ax−2
0 ). Case (B) of

this theorem holds by taking such d repeatedly starting from t = 2. This
completes the proof.

The following theorem modifies Theorem 5(F).

Theorem 8. Let p > 2 and gcd(ab(b2 + 4a)(x2
0 − bx0 − a), p) = 1.

Suppose that either x0 ≡ b/2 mod p and the order λ = o(mf ) of mf (x) =
x2 + (b2/a + 2)x + 1 in GF(p)[x] is odd or x0 6≡ b/2 mod p and the order
o(Mf ) of Mf (x) = x2 − (2 + (b2 + 4a)/f(x0))x + 1 in GF(p)[x] does not
divide o(mf ). Let k ≥ 2.

(A) If L(x0; a, b; pk−1) = o(mf ), then there exists exactly one integer
0 ≤ d < pk−2 such that L(x0; a, b+ dp; pk) = o(mf ).

(B) If xλ ≡ x0 +υp mod p2 for some integer 0 ≤ υ < p, then L(x0; a, b+
dp; p2) = o(mf ) if and only if d ≡ υ(b2 + 4a)/2λ(x2

0 − bx0 − a) mod p.

P r o o f. Let d be any integer. As in the proof of the last theorem,
consider the sequences X(x0; a, b) : x0, x1, . . . and X(x0; a, b + dpk−1) :
xd,0, xd,1, . . . with modulus pk and their corresponding linear recurrence se-
quences U(1, x0; a, b) : u0, u1, . . . and U(1, x0; a, b + dpk−1) : ud,0, ud,1, . . . ,
respectively. From Lemma 6, xn ≡ un+1/un and xd,n ≡ ud,n+1/ud,n mod pk

for all n ≥ 0. Moreover, let W (0, 1; a, b) : w0, w1, w2, . . . be the same lin-
ear recurrence sequence as in the proof of Theorem 7. One can show by
induction on n that for all n ≥ 2,

(9) ud,n ≡ un +
∑

1≤j≤n−1

wjun−jdpk−1 mod pk.

Note that f(x) = x2 − bx − a is the characteristic polynomial for both
sequences U(1, x0; a, b) and W (0, 1; a, b) with modulus p (or equivalently,
over GF(p)). Since gcd(b2 + 4a, p) = 1, f(x) is not a square in GF(p)[x].
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Let α, β ∈ GF(p2) be the roots of f(x). It is easy to see that for all n ≥ 0,
un = ((x0 − β)αn + (α− x0)βn)/(α− β) in GF(p2). In particular, uλ = αλ

in GF(p2) where λ = o(mf ). It can also be shown by induction on n that
for all n ≥ 0, wn = (αn − βn)/(α− β) in GF(p2). So, in GF(p2),
∑

1≤j≤n−1

wjun−j =
∑

0≤j≤n−1

((x0 − β)αn + (α− x0)βn(αβ−1)j

− (x0 − β)αn(α−1β)j − (α− x0)βn)(α− β)−2

= (n(x0 − β)αn + (α− x0)β(αn − βn)(α− β)−1

− (x0 − β)α(αn − βn)(α− β)−1 − n(α− x0)βn)(α− β)−2

for all n ≥ 2. In particular,

(10)
∑

1≤j≤λ−1

wjuλ−j = λαλ(2x0 − β − α)(α− β)−2

and

(11)
∑

1≤j≤λ
wjuλ−j+1 = λαλ(x0α+ x0β − 2αβ)(α− β)−2.

Note that both values in (10) and (11) are in GF(p), and so can be
viewed as an integer modulo p. Since xλ ≡ x0 mod pk−1, we can write xλ ≡
x0 + υpk−1 mod pk for some integer 0 ≤ υ < p. So, uλ+1 ≡ uλx0 +αλυpk−1

mod pk. Using this result and formulas (9)–(11), we have

xd,λ ≡ ud,λ+1/ud,λ ≡ x0 + (υ − 2dλ(x2
0 − (α+ β)x0 + 2αβ)(α− β)−2)pk−1

≡ x0 + (υ − 2dλ(x2
0 − bx0 − a)/(b2 + 4a))pk−1 mod pk.

Therefore, xd,λ ≡ x0 mod pk if and only if d ≡ υ(b2 + 4a)/(2λ(x2
0 − bx0 −

a)) mod p. Since gcd(2λ(x2
0− bx0−a), p) = 1, such a d exists uniquely when

we consider 0 ≤ d < p. This theorem is obtained by taking such d repeatedly
starting from k = 2.

Note that the result of Theorem 8(B) is consistent with the result ob-
tained by Eichenauer-Herrmann [6]. The following result is an easy applica-
tion of Theorem 5, which is consistent with results obtained by Huber [9].
We will use the usual notation pt ‖m for pt |m but pt+1 -m.

Corollary 9. Let m > 1 be a composite integer and let a, b and x0 be in-
tegers so that the infinite sequence X(x0; a, b) with modulus m can be defined
by the recursion (2). Then X(x0; a, b) has the maximal period length among
all inversive congruential pseudorandom number generators with modulus m
if and only if for any prime divisor of m one of the following conditions
holds:

(A) 2t ‖m, gcd(ax0, 2) = 1 and either b ≡ 0 mod 2 when t = 1 or
a ≡ 1 mod 4, b ≡ 2 mod 4, and x0 ≡ 1 mod 2 when t ≥ 2.
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(B) pt ‖m with p odd , gcd(abx0(b2 + 4a)(x2
0− bx0− a), p) = 1, the order

λ = o(mf ) of the polynomial mf (x) = x2+(b2/a+2)x+1 in GF(p)[x] equals
(p+ 1)/2, x(p+1)/2 6≡ x0 mod p2 whenever t ≥ 2, and either x0 ≡ b/2 mod p
and p ≡ 1 mod 4 or x0 6≡ b/2 mod p and the order o(Mf ) of Mf (x) =
x2 − (2 + (b2 + 4a)/f(x0))x+ 1 in GF(p)[x] does not divide (p+ 1)/2.

P r o o f. Note that the infinite sequence X(x0; a, b) with modulus m has
the maximal period length among all inversive congruential pseudorandom
number generators with modulus m if and only if for any prime factor p of
m, X(x0; a, b) with modulus pt has the maximal period length among all
inversive congruential pseudorandom number generators with modulus pt,
where pt ‖m.

Let 2t ‖m. Then gcd(x0, 2) = 1. From Theorem 5, the cases we have to
consider are either a ≡ 0 or b ≡ 0 mod 2, but not both. If t = 1, the sequence
X(x0; a, b) with modulus 2 having the maximal period length among all
inversive congruential pseudorandom number generators with modulus 2 if
and only if gcd(ax0, 2) = 1 and b ≡ 0 mod 2. If t ≥ 2, X(x0; a, b) with
modulus 2t has the maximal period length among all inversive congruential
pseudorandom number generators with modulus 2t if and only if the case
Theorem 5(B)(4) holds. This proves (A).

Let pt ‖m with p odd. Note that if either L(x0; a, b; p) = p − 1 or
L(x0; a, b; p) = p+ 1, then X(x0; a, b) with modulus p contains 0. So, the se-
quence X(x0; a, b) with modulus p having the maximal period length among
all inversive congruential pseudorandom number generators with modulus p
if and only if L(x0; a, b; p) = (p + 1)/2, because L(x0; a, b; p) divides either
p − 1 or p + 1 by Theorem 5. The last statement holds if and only if it is
the case Theorem 5(F) together with xλ 6≡ x0 mod p2 when t ≥ 2. This
completes the proof.

Let m be a composite positive integer and let m = pr11 . . . prtt be the
prime factorization of m, where p1, . . . , pt are distinct primes and r1, . . . , rt
are positive integers. To get a sequence with modulus m having the maximal
period length, we can first take a sequence X(xi,0; ai, bi) with each modulus
prii , 1 ≤ i ≤ t, satisfying conditions (A) or (B) of Corollary 9, and then use
the Chinese Remainder Theorem to get a sequence X(x0; a, b) with modulus
m. If p = 2 is a prime divisor of m, it is easy to use the condition (A) of
Corollary 9 to get the desired sequence with modulus a power of 2. If p is
an odd prime factor of m, we have to do much more work.

Let p be an odd prime and k be a positive integer. To get a sequence
X(x0; a, b) with modulus pk which satisfies the condition (B) of Corollary
9, we have first to find numbers a and b so that the order of the polynomial
mf (x) = x2 + (b2/a + 2)x + 1 in GF(p)[x] is (p + 1)/2. We can pick up
suitable a and b in the following way.
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Note that Chou [1] gave several methods to find polynomials over GF(p)
of order p+1. We can first use his methods to find a polynomial m(x) = x2−
cx+1, 0 ≤ c < p, of order p+1 in GF(p)[x]. Consider the sequence v0, v1, . . .
defined by v0 = 2, v1 = c, and vn+2 = cvn+1 − vn for all n ≥ 0. Then
vn = αn+αpn for all n ≥ 0, where α is a root of m(x) in GF(p2). So, c2−2 =
v2 = α2 +α2p in GF(p2). Since m(x) is of order p+ 1, mf (x) = x2− v2x+ 1
is of order (p + 1)/2 in GF(p)[x]. From the relation c ≡ −b2/a − 2 mod p,
we can get p− 1 desired pairs of numbers a and b which are not congruent
to 0 mod p.

Once we have suitable numbers a and b, we can choose a suitable num-
ber x0 as follows. Note that the period length of the sequence v0, v1, . . .
over GF(p) is p + 1. Any polynomial x2 − dx + 1 over GF(p) is of order
(p + 1)/2 if and only if d ≡ v2n for some positive integer n satisfying
gcd(n, (p + 1)/2) = 1. Take any integer w so that w 6≡ v2n mod p for any
integer 0 ≤ n < (p + 1)/2. Then the order of Mf (x) = x2 − wx + 1 in
GF(p)[x] does not divide (p + 1)/2. Let t ≡ (b2 + 4a)/(w − 2) mod p. If
the congruential equation x2 − bx + a ≡ t mod p does not have a solution,
we pick up another w and then find a new t and solve this new congru-
ential equation. Suppose that the last congruential equation has a solu-
tion, say x0. If k = 1, the sequence X(x0; a, b) is as required. If k ≥ 2,
we check the condition x(p+1)/2 6≡ x0 mod p2. If the condition is satisfied,
we are done; otherwise, the sequences X(x0 + cp; a, b), 1 ≤ c < p, are as
desired.

3. Generalized inversive congruential recursion. Let p be a prime
and k be a positive integer again. In this section, we are going to study
the sequence X(x0; a, b) with modulus pk which is defined by the recur-
sion (3). Let LG(x0; a, b; pk) be the period length of the sequence X(x0; a, b)
with modulus pk which is defined by the recursion (3). As we have men-
tioned in Section 1, if X(x0; a, b) with modulus p does not contain 0, then
LG(x0; a, b; pk) = L(x0; a, b; pk). So, if X(x0; a, b) with modulus p does not
contain 0, then LG(x0; a, b; pk) must be one of the cases in Theorem 5. Hence,
we will concentrate on the case where X(x0; a, b) with modulus p contains
0. We need the following lemma.

Lemma 10. Let p be a prime and k be a positive integer so that either
k ≥ 1 if p is odd or k ≥ 3 if p = 2. Let a, b and x0 be integers and
let the sequence X(x0; a, b) : x0, x1, . . . with modulus pk be defined by the
recursion (3). If there is a nonnegative integer t so that xt ≡ 0 mod p, then
xt+1 ≡ b mod pk.

P r o o f. Write µ = φ(pk) = (p − 1)pk−1 and xt ≡ rp mod pk for some
integer r. Then we have xt+1 ≡ a(rp)µ−1 + b mod pk. Note that µ − 1 =
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(p− 1)pk−1 − 1 ≥ k if either k ≥ 1 when p is odd or k ≥ 3 when p = 2. So,
xt+1 ≡ a(cp)µ−1 + b ≡ b mod pk.

Using this lemma, we can prove the following theorem which will list
all possible period lengths of sequences with modulus pk defined by the
recursion (3) and containing 0 with modulus p.

Theorem 11. Let p be a prime and k ≥ 2 be a positive integer. Let
a, b and x0 be integers, and let the sequence X(x0; a, b) : x0, x1, . . . with
modulus pk be defined by the recursion (3). Moreover , suppose the sequence
X(x0; a, b) with modulus p contains 0.

(A) If a ≡ 0 mod p and either b ≡ 0 mod p or x0 ≡ 0 mod p, then
LG(x0; a, b; pk) = 1.

(B) If gcd(a, p) = 1 and b ≡ 0 ≡ x0 mod p, then LG(x0; a, b; pk) = 1
except for the case p = 2 = k and b ≡ 2 mod 4. For this exceptional case,
LG(x0; a, b; 4) = 2.

(C) If gcd(ab(x2
0 − bx0 + a), p) = 1 and b2 + 4a ≡ 0 mod p, then

LG(x0; a, b; pk) = p− 1.
(D) If p is odd , gcd(ab(b2 + 4a), p) = 1, x0 ≡ b/2 mod p, and the order

o(mf ) of the polynomial mf (x) = x2 + (b2/a+ 2)x+ 1 in GF(p)[x] is even,
then LG(x0; a, b; pk) = o(mf )− 1.

(E) If gcd(ab(b2 + 4a)(x2
0 − bx0 + a), p) = 1, x0 6≡ b/2 mod p for p 6= 2,

and the order o(Mf ) of the polynomial Mf (x) = x2 − (2 + (b2 + a)/(x2
0 −

bx0 + a))x+ 1 in GF(p)[x] divides o(mf ), then LG(x0; a, b; pk) = o(mf )− 1
except for the case p = 2 = k and a ≡ 1 mod 4. For this exceptional case,
LG(x0; a, b; 4) = 4.

P r o o f. (A) From Lemma 1(A), LG(x0; a, b; p) = 1. Since the sequence
X(x0; a, b) with modulus p contains 0, gcd(b, p) = 1 implies x0 ≡ 0 mod p
and so, x1 ≡ b mod pk by Lemma 10 and the fact that ax0 ≡ 0 mod 4 when
p = 2. In this case, it suffices to consider X(b; a, b) with modulus pk. Since
gcd(b, p) = 1, LG(b; a, b; pk) = 1 by Theorem 5(A) and so LG(x0; a, b; pk)
= 1. Now, suppose b ≡ 0 mod p. From Lemma 1(A) again, xn ≡ b ≡ 0
mod p. Then this case follows from Lemma 10 except for the case pk = 4.
For this exception, ab2−1 +b ≡ b mod 4 since φ(4) = 2 and a ≡ 0 ≡ b mod 2.
So, xn ≡ b mod 4 for all n ≥ 1. Therefore, LG(x0; a, b; 4) = 1.

From now on, let gcd(a, p) = 1. Then X(x0; a, b) with modulus pk is
purely periodic.

(B) From Lemma 1(B), LG(x0; a, b; p) = 1. Then the case follows from
Lemma 10 except for pk = 4. If b ≡ 2 mod 4, then xn ≡ 0 mod 2 and
xn 6≡ xn+1 mod 4 for all n ≥ 0, because of x0 ≡ 0 mod 2 and gcd(a, 2) = 1.
So, LG(x0; a, b; 4) = 2 if b ≡ 2 mod 4. If b ≡ 0 mod 4, then xn ≡ x0 mod 4
for all n ≥ 0. Hence, LG(x0; a, b; 4) = 1 if b ≡ 0 mod 4.
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(C) Note that p 6= 2 in this case. From Lemma 1(E)(2), the sequence
X(x0; a, b) with modulus p contains 0 and so LG(x0; a, b; p) = p − 1. Then
this case follows from Lemma 10.

(D) This case follows from Lemma 1(F)(2) and Lemma 10 immediately.
(E) This case follows from Lemma 1(F)(4) and Lemma 10 except for

the case p = 2 = k. We now consider the exceptional case. Since gcd(ab, 2)
= 1, we have a ≡ 1 ≡ b mod 2. So, a ≡ 1, 3 mod 4, b ≡ 1, 3 mod 4, and
x0 ≡ 0, 1, 2, 3 mod 4. By checking all possible cases, LG(x0; a, b; 4) = 2 if
a ≡ 3 mod 4, and LG(x0; a, b; 4) = 4 if a ≡ 1 mod 4. Finally, note that
mf (x) = x2 + x + 1 in GF(2)[x] has order 3. This completes the proof of
this theorem.

Let m, a, b and x0 be integers with m > 0. Let the sequence X(x0; a, b)
with modulusm be defined by the recursion (3). Huber [9] showed that ifm is
square free, then X(x0; a, b) with modulus m has the maximal period length
if and only if the polynomial f(x) = x2− bx− a is an IMP (abbreviated for
inversive maximal period) polynomial in GF(p)[x] for every prime divisor
p of m. So, if m is square free and X(x0; a, b) with modulus m has the
maximal period length, then its period length is m. This is no more true
if m is not square free. In fact, if m = p1 . . . ps−1p

rs
s . . . prtt is the prime

factorization of m, where p1, . . . , pt are distinct primes and rs, . . . , rt are
positive integers greater than 1, then the sequence X(x0; a, b) with modulus
m has the maximal period length if and only if f(x) = x2 − bx − a is an
IMP polynomial in GF(pi)[x] for all 1 ≤ i < s, and a, b, x0 and p

rj
j satisfy

the conditions of Corollary 9 for all s ≤ j ≤ t.
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