The value of the Estermann zeta functions at s = 0

by

MAKOTO ISHIBASHI (Kagoshima)

1. Introduction. The Estermann zeta function $E_u(s, a/q)$ is defined by the Dirichlet series

$$E_u\left(s,\frac{a}{q}\right) = \sum_{n=1}^{\infty} \sigma_u(n) e\left(\frac{an}{q}\right) n^{-s}, \quad \operatorname{Re}(s) > \operatorname{Re}(u) + 1,$$

where $e(\alpha) = e^{2\pi i \alpha}$, a, q are integers with $q \ge 1$, (a,q) = 1, and $\sigma_u(n) = \sum_{d|n} d^u$. It is known that $E_u(s, a/q)$ can be continued analytically to the whole complex plane up to a double pole at s = 1 ([1]). This function naturally occurs in the study of the exponential sums of the type

$$D_u\left(x,\frac{a}{q}\right) = \sum_{n \le x}' \sigma_u(n) e\left(\frac{an}{q}\right) \quad ([4]-[6]),$$

where \sum' means that if x is an integer, then the term with n = x in the sum is to be halved. We can easily get the explicit formula for these sums by applying Perron's formula, i.e.

$$D_u\left(x,\frac{a}{q}\right) = \frac{1}{q}(\log x + 2\gamma - 1 - 2q\log x)x$$
$$+ E_u\left(0,\frac{a}{q}\right) + \frac{1}{2\pi i}\int_{(-\varepsilon)} E_u\left(s,\frac{a}{q}\right)x^s s^{-1} ds$$

where γ is Euler's constant, and the integral is taken along the vertical line with $\operatorname{Re}(s) = -\varepsilon, \varepsilon > 0$.

In this paper we shall evaluate the constants $E_u(0, a/q)$ in terms of the cotangent function in the case u is an integer and determine the \mathbb{Q} -linear relations between $E_u(0, a/q)$, where \mathbb{Q} denotes the rational number field.

1991 Mathematics Subject Classification: Primary: 11M41; Secondary 11J99.

[357]

2. Constants $E_j(0, a/q)$. Let $B_j(x)$ be the *j*th Bernoulli polynomial. The next lemma shows a relation between the values of $B_j(x)$ and the *j*th derivative of $\cot \pi x$ at x = a/q.

LEMMA ([2]). Let
$$q \ge 2, 1 \le a \le q$$
, $(a,q) = 1$. Then

(1)
$$(j+1)\left(\frac{i}{2}\right)^{j+1}\cot^{(j)}\left(\frac{\pi a}{q}\right) = q^j \sum_{k=1}^{q-1} e\left(-\frac{\pi a}{q}\right) B_{j+1}\left(\frac{k}{q}\right)$$

for j = 0, 1, ...

Now this lemma implies

THEOREM 1. We have

(2)
$$E_j\left(0, \frac{a}{q}\right) = \begin{cases} \frac{B_{j+1}}{2(j+1)}, & j \text{ odd,} \\ \left(-\frac{i}{2}\right)^{j+1} \sum_{k=1}^{q-1} \frac{k}{q} \cot^{(j)}\left(\frac{\pi ak}{q}\right) + \frac{1}{4}\delta_{j,0}, & j \text{ even}, \end{cases}$$

for $q \ge 2$, where $\delta_{j,0} = 1$ for j = 0 and 0 otherwise. For q = 1,

$$E_j(0,1) = \frac{(-1)^{j+1}B_{j+1}}{2(j+1)}.$$

Proof. For $\operatorname{Re}(s) > j + 1$, substituting for $\sigma_j(n)$, we obtain

$$\begin{split} E_j \left(s, \frac{a}{q}\right) &= \sum_{n=1}^{\infty} \sigma_j(n) e\left(\frac{an}{q}\right) n^{-s} = \sum_{m,n=1}^{\infty} e\left(\frac{amn}{q}\right) m^{j-s} n^{-s} \\ &= \sum_{k,l=1}^{q} e\left(\frac{akl}{q}\right) \sum_{m \equiv k \ (q)} \sum_{n \equiv l \ (q)} m^{j-s} n^{-s} \\ &= q^{j-2s} \sum_{k,l=1}^{q} e\left(\frac{akl}{q}\right) \zeta(s-j,k/q) \zeta(s,l/q), \end{split}$$

where in the final step we have used the Hurwitz zeta function $\zeta(s, x) = \sum_{n=0}^{\infty} (n+x)^{-s}$ ($0 < x \leq 1$). Then it follows from the analytic continuation of $\zeta(s, x)$ that

$$E_{j}(0, a/q) = q^{j} \sum_{k,l=1}^{q} e\left(\frac{akl}{q}\right) \zeta(-j, k/q) \zeta(0, l/q)$$

= $q^{j} \sum_{k,l=1}^{q-1} e\left(\frac{akl}{q}\right) \zeta(-j, k/q) \zeta(0, l/q)$
+ $q^{j} \left(\sum_{k=1}^{q-1} \zeta(0, 1) \zeta(-j, k/q) + \sum_{l=1}^{q} \zeta(-j, 1) \zeta(0, l/q)\right)$

Value of the Estermann zeta functions

$$= \frac{q^{j}}{j+1} \sum_{l=1}^{q-1} B_{1}(l/q) \sum_{k=1}^{q-1} e\left(\frac{akl}{q}\right) B_{j+1}(k/q) + \begin{cases} 1/4, & j = 0, \\ \frac{B_{j+1}}{2(j+1)}, & j \ge 1, \end{cases}$$

after some computations using

$$\zeta(-j, k/q) = -\frac{1}{j+1} B_{j+1}(k/q), \quad j \ge 0$$

Changing the variable of summation k to q - k and using $B_{j+1}(1 - x) = (-1)^{j+1}B_{j+1}(x)$, $B_1(l/q) = l/q - 1/2$ and Lemma, we obtain our formula.

3. Q-linear relations. In [2], K. Girstmair gave a unified approach to the determination of all the Q-linear relations between conjugate numbers in a cyclotomic field. Summarizing, his method is as follows: Let $\mathbb{Q}_q = \mathbb{Q}(\zeta)$ be the *q*th cyclotomic field with $\zeta = e(1/q)$ and let $G = \operatorname{Gal}(\mathbb{Q}_q/\mathbb{Q})$ be its Galois group viewed as $(\mathbb{Z}/q\mathbb{Z})^{\times}$. We consider \mathbb{Q}_q as a $\mathbb{Q}G$ -module, where $\mathbb{Q}G$ denotes the group ring. For $b \in \mathbb{Q}_q$, the Q-linear relations of the numbers $\sigma(b), \sigma \in G$, are determined by the annihilator $W_q(b)$ of *b* in $\mathbb{Q}G$ defined by

$$W_q(b) = \{ \alpha \in \mathbb{Q}G : \alpha \circ b = 0 \},\$$

where $\alpha \circ b = \sum_{\sigma \in G} a_{\sigma} \sigma(b)$ for $\alpha = \sum_{\sigma \in G} a_{\sigma} \sigma \in \mathbb{Q}G$. It is known that any non-zero ideal I in $\mathbb{Q}G$ is generated by the unique idempotent element $\varepsilon_X = \sum_{\chi \in X} \varepsilon_{\chi}$, written $I = \langle \varepsilon_X \rangle$, where

$$\varepsilon_{\chi} = |G|^{-1} \sum_{\sigma \in G} \chi(\sigma^{-1})\sigma, \quad X = \{\chi \in \widehat{G} : \chi(I) \neq 0\}$$

 $(\widehat{G} \text{ denotes the character group of } G.)$ He proves

THEOREM A ([2]). The ideal $W_q(b)$ is generated by ε_X with

$$X = \{\chi \in \widehat{G} : y(\chi|b) = 0\},\$$

where $y(\chi|b)$ are Leopoldt's character coordinates defined by

(3)
$$y(\chi|b)\tau(\overline{\chi}_f|1) = \sum_{\sigma \in G} \chi(\sigma^{-1})\sigma(b) = \sum_{k=1}^q \overline{\chi}(k)\sigma_k(b),$$

where f means the conductor of χ , χ_f is the primitive character modulo f attached to χ and $\tau(\chi|k)$ is the k-th Gauss sum.

He also shows how to compute ε_X explicitly for a special choice of X and obtains, among over things,

THEOREM B ([2]). Let $j \ge 0$ and $q \ge 2$. Then

$$W_q[i^{j+1}\cot^{(j)}(\pi/q)] = \langle 1 + (-1)^j \sigma_{-1} \rangle$$

with $X = \{\chi \in \widehat{G} : \chi(\sigma_{-1}) = (-1)^j\}$, where $\sigma_k \in G$ are such that $\sigma_k(\zeta) = \zeta^k$ for (k, n) = 1, and $i = \sqrt{-1}$.

Similarly, in the case of the numbers $E_j(0, a/q), 1 \le a \le q$, with (a, q) = 1 which are conjugate in \mathbb{Q}_q , we can prove

THEOREM 2. Let $q \ge 2$ be a prime power and let j be an even integer. Then

$$W_q[E_j(0, 1/q)] = \langle 1 + \sigma_{-1} \rangle.$$

Proof. By virtue of Theorem A, we have only to compute the character coordinates of the numbers $E_j(0, 1/q)$. From the $\mathbb{Q}G$ -linearity of $y(\chi|-)$ and the character coordinates for $i^{j+1} \cot^{(j)}(\pi/q)$ ([2], Theorem 2), we have

$$y(\chi|E_j(0,1/q)) = \left(-\frac{1}{2}\right)^{j+1} \sum_{k=1}^{q-1} \frac{k}{q} \chi(k) y(\chi|i^{j+1} \cot^{(j)}(\pi/q))$$
$$= \frac{-1}{j+1} \left(\frac{q}{f}\right)^{j+1} \prod_{p|q} \left(1 - \frac{\overline{\chi}_f(p)}{p^{j+1}}\right) B_{1,\chi} B_{j+1,\chi_f}$$

where p runs through the prime factors of q.

Here $B_{n,\chi}$ denotes the generalized $n{\rm th}$ Bernoulli number, satisfying the relations

$$B_{n,\chi} = m^{n-1} \sum_{a=1}^{m} \chi(a) B_n(a/m),$$

where *m* is the modulus of χ . In the case of primitive character it is known [3] that for the principal character $\chi_0, B_{1,\chi_0} \neq 0$ and $B_{j+1,\chi_0} = 0$, for even $j \geq 2$, and for non-principal χ ,

$$\begin{cases} B_{j+1,\chi} \neq 0, & j \not\equiv \delta_{\chi} \pmod{2}, \\ B_{j+1,\chi} \equiv 0, & j \equiv \delta_{\chi} \pmod{2}, \end{cases}$$

where

$$\delta_{\chi} = \begin{cases} 0, & \chi \text{ even,} \\ 1, & \chi \text{ odd.} \end{cases}$$

Further, we see that $B_{1,\chi} \neq 0$ for odd χ if the modulus of χ is a prime power. Hence, we get $X = \{\chi \in \widehat{G} : \chi(\sigma_{-1}) = 1\}$, for $W_q[E_j(0, 1/q)]$, which is just the same as Theorem B. This completes the proof.

Theorem 2 implies

THEOREM 3. For the numbers $E_j(0, a/q), 1 \le a \le q$ (a, q) = 1, q a primepower and $c_a \in \mathbb{Q}$ we have

$$\sum_{(a,q)=1} c_a E_j(0, a/q) = 0 \quad if, and only if, \quad c_a = c_{q-a} and \sum c_a = 0.$$

We see easily that

COROLLARY 1. The numbers $E_j(0, a/q)$, $1 \le a \le q/2$, (a, q) = 1, q a prime power, j even, are linearly independent over \mathbb{Q} .

Acknowledgements. The author wishes to thank the referee for his careful reading of the manuscript and his helpful suggestions.

References

- T. Estermann, On the representation of a number as the sum of two products, Proc. London Math. Soc. (2) 31 (1930), 123–133.
- K. Girstmair, Character coordinates and annihilators of cyclotomic numbers, Manuscripta Math. 59 (1987), 375–389.
- [3] K. Iwasawa, Lectures on p-adic L-functions, Ann. of Math. Stud. 74, Princeton Univ. Press, Princeton, N.J., 1972.
- M. Jutila, On exponential sums involving the divisor function, J. Reine Angew. Math. 355 (1985), 173-190.
- [5] I. Kiuchi, On an exponential sum involving the arithmetic function $\sigma_a(n)$, Math. J. Okayama Univ. 29 (1987), 93–205.
- [6] Y. Motohashi, *Riemann-Siegel Formula*, Lecture Notes, University of Colorado, Boulder, 1987.

DEPARTMENT OF LIBERAL ARTS KAGOSHIMA NATIONAL COLLEGE OF TECHNOLOGY 1460-1 SHINKO, HAYATO-CHO, AIRA-GUN KAGOSHIMA 899-51, JAPAN

> Received on 21.5.1994 and in revised form on 29.12.1994

(2620)