On Shioda's problem about Jacobi sums II

by

HIROO MIKI (Kyoto)

In the present paper, we will give a complete affirmative answer to the l-part of Shioda's problem ([5, Question 3.4]) on Jacobi sums $J_l^{(a)}(\mathfrak{p})$, and to the conjecture (F. Gouvêa and N. Yui [1, Conjecture (1.9)]) which comes from Shioda's problem and my congruences for Jacobi sums (see [3, Theorem 2]) (see Theorem 1 and its Corollary of the present paper).

We retain the notation of [4], but l is any odd prime number here. Furthermore, let n be any positive integer and let ζ_m be a primitive mth root of unity in \mathbb{C} for any positive integer m. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} in \mathbb{C} . We fix an algebraic closure $\overline{\mathbb{Q}}_l$ of \mathbb{Q}_l , and by a fixed imbedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_l$ we consider $\overline{\mathbb{Q}}$ as a subfield of $\overline{\mathbb{Q}}_l$. Let M be any finite unramified extension of \mathbb{Q}_l in $\overline{\mathbb{Q}}_l$, and put $M_n = M(\zeta_{l^n})$ and $\pi_n = \zeta_{l^n} - 1$. Then π_n is a prime element of M_n . Let $\sigma_{-1} \in G = \operatorname{Gal}(M_n/M)$ (the Galois group of M_n over M) be such that $\zeta_{l^n}^{\sigma_{-1}} = \zeta_{l^n}^{-1}$. Let ord_{M_n} denote the normalized additive valuation of M_n , and let $U_n = U(M_n)$ be the group of principal units in M_n :

$$U_n = U(M_n) = \{ x \in M_n \mid \operatorname{ord}_{M_n}(x-1) \ge 1 \}.$$

As is well known, U_n is a multiplicatively written \mathbb{Z}_l -module. In particular, $x^{1/2} \in U_n$ makes sense for $x \in U_n$.

LEMMA 1. Let the notation and assumptions be as above. Furthermore, let $J \in U_n$ be such that $J \notin M$. Put $q' = J^{1+\sigma_{-1}}$, and assume $q' \in M$. Then $\operatorname{ord}_{M_n}(1 - Jq'^{-1/2})$ is odd. In particular, $\operatorname{ord}_{M_n}(1 - J)$ is equal to $\operatorname{ord}_{M_n}(1 - q')$ or odd.

Proof. Put $e_- = (1 - \sigma_{-1})/2$ and $e_+ = (1 + \sigma_{-1})/2$. Note that $e_-, e_+ \in \mathbb{Z}_l[G]$ (the group ring of G over \mathbb{Z}_l), since $l \neq 2$ and $1/2 \in \mathbb{Z}_l$. Put $A = J^{e_-}$. Since $e_- + e_+ = 1$, we have

(1)
$$A = J^{1-e_+} = Jq'^{-1/2}.$$

On the other hand, the equality $e_{-}\sigma_{-1} = -e_{-}$ implies

(2)
$$A^{\sigma_{-1}} = A^{-1}.$$

If A = 1, then by (1) we have $J = q'^{1/2} \in M$; this contradicts the assumption. Hence $A \neq 1$, so we can write

$$A \equiv 1 + \lambda \pi_n^i \pmod{\pi_n^{i+1}}$$

with some unit λ in M and an integer $i \geq 1$. Since

$$\pi_n^{\sigma_{-1}} = \zeta_{l^n}^{-1} - 1 = (1 + \pi_n)^{-1} - 1 \equiv -\pi_n \pmod{\pi_n^2},$$

we have

$$(\pi_n^i)^{\sigma_{-1}} \equiv (-1)^i \pi_n^i \pmod{\pi_n^{i+1}}$$

Hence

(3)

$$A^{\sigma_{-1}} \equiv 1 + (-1)^i \lambda \pi_n^i \pmod{\pi_n^{i+1}}.$$

On the other hand,

(4)
$$A^{-1} \equiv 1 - \lambda \pi_n^i \pmod{\pi_n^{i+1}}.$$

Since λ is a unit, by (2)–(4) we have $(-1)^i = -1$, so *i* is odd.

For any positive integer m and any $a \in \mathbb{Z}$ and for any prime ideal \mathfrak{p} of $\mathbb{Q}(\zeta_m)$ which is prime to m, let

$$g_m(\mathfrak{p}, a) = g_m(\mathfrak{p}, a; \zeta_p) = -\sum_{x \in \mathbb{F}_q} \chi^a_{\mathfrak{p}}(x) \psi_{\mathfrak{p}}(x) \in \mathbb{Z}[\zeta_{mp}]$$

be the Gauss sum, where $\mathbb{F}_q = \mathbb{Z}[\zeta_m]/\mathfrak{p}$, $q = N\mathfrak{p} = \#(\mathbb{F}_q)$, $\chi_\mathfrak{p}(x) = \left(\frac{x}{\mathfrak{p}}\right)_m$ is the *m*th power residue symbol in $\mathbb{Q}(\zeta_m)$, i.e., $\chi_\mathfrak{p}(x \mod \mathfrak{p})$ is a unique *m*th root of unity in \mathbb{C} such that

$$\chi_{\mathfrak{p}}(x \bmod \mathfrak{p}) \equiv x^{(N\mathfrak{p}-1)/m} \pmod{\mathfrak{p}}$$

for $x \in \mathbb{Z}[\zeta_m]$, $x \notin \mathfrak{p}$, $\chi_{\mathfrak{p}}(0) = 0$, and $\psi_{\mathfrak{p}}(x) = \zeta_p^{T(x)}$ (*p* is a prime number in \mathfrak{p} and *T* is the trace from \mathbb{F}_q to $\mathbb{Z}/p\mathbb{Z}$).

For arbitrary positive integers m, r and any $a = (a_1, \ldots, a_r) \in \mathbb{Z}^r$ (the direct product of r copies of \mathbb{Z}) and for any \mathfrak{p} as above, let

$$J_m^{(a)}(\mathbf{p}) = (-1)^{r+1} \sum_{\substack{x_1 + \dots + x_r = -1 \\ x_1, \dots, x_r \in \mathbb{F}_q}} \chi_{\mathbf{p}}^{a_1}(x_1) \dots \chi_{\mathbf{p}}^{a_r}(x_r) \in \mathbb{Z}[\zeta_m]$$

be the Jacobi sum.

THEOREM 1. Let the above notation and assumptions hold. Then:

(i) Assume that $a \not\equiv 0 \pmod{l^n}$ and that

$$(*) g_{l^n}(\mathbf{p}, a) \neq q^{1/2}.$$

Then $\operatorname{ord}_{M_n}(1-g_{l^n}(\mathfrak{p},a)q^{-1/2})$ is odd, where $M = \mathbb{Q}_l(\zeta_p)$. In particular, $\operatorname{ord}_{M_n}(1-g_{l^n}(\mathfrak{p},a))$ is equal to $\operatorname{ord}_{M_n}(1-q)$ or odd.

(ii) Assume that $a = (a_1, \ldots, a_r) \not\equiv (0, \ldots, 0) \pmod{l^n}$ and that

(**)
$$J_{l^n}^{(a)}(\mathfrak{p}) \neq q^{(r'-2)/2}$$

where $r' = \#\{0 \le i \le r \mid a_i \equiv 0 \pmod{l^n}\}$ and $a_0 = -\sum_{i=1}^r a_i$. Then $\operatorname{ord}_{M_n}(1-J_{l^n}^{(a)}(\mathfrak{p})q^{-(r'-2)/2})$ is odd, where $M = \mathbb{Q}_l$. In particular, $\operatorname{ord}_{M_n}(1-J_{l^n}^{(a)}(\mathfrak{p}))$ is equal to $\operatorname{ord}_{M_n}(1-q^{r'-2})$ or odd.

Proof. (i) Put $J = g_{l^n}(\mathfrak{p}, a)$ and $\chi = \chi^a_{\mathfrak{p}}$. Since $a \not\equiv 0 \pmod{l^n}$, we have $\chi \neq 1$. Hence by [6, Lemma 6.1(b)], we have

(1)
$$J^{1+\sigma_{-1}} = \chi(-1)q = q,$$

since $(-1)^{l^n} = -1$ and $\chi(-1) = \chi(-1)^{l^n} = 1$. If $J \in M$, then by (1) we have $J^2 = q$, so $J = \pm q^{1/2}$. Since $J \equiv q \equiv 1 \pmod{\pi_n}$ and $l \neq 2$, this implies $J = q^{1/2}$; this contradicts our assumption (*). Hence $J \notin M$. Thus the assertion follows from Lemma 1 for q' = q.

(ii) Put $J = J_{l^n}^{(a)}(\mathfrak{p})$. It is well known that

$$J = q^{-1} \prod_{i=0}^{r} g_{l^n}(\mathfrak{p}, a_i)$$

if $a \not\equiv (0, \ldots, 0) \pmod{l^n}$. By this equality and (1), we have

$$J^{1+\sigma_{-1}} = q^{r'-2}.$$

If $J \in M$, then $J^2 = q^{r'-2}$, so $J = \pm q^{(r'-2)/2}$, hence $J = q^{(r'-2)/2}$, since $J \equiv q \equiv 1 \pmod{\pi_n}$ and $l \neq 2$. This contradicts the assumption (**). Hence $J \notin M$. Using Lemma 1 for $q' = q^{r'-2}$, we have directly the assertion.

If $r \geq 3$ is odd (r is as in the definition of Jacobi sums) and if $a_i \neq 0 \pmod{l}$ for all $i \ (0 \leq i \leq r) \ (a_0 = -\sum_{i=1}^r a_i)$, then by Shioda [5, Corollary 3.3], we can write

$$N_{\mathbb{Q}(\zeta_l)/\mathbb{Q}}(1 - J_l^{(a)}(\mathfrak{p})q^{-(r-1)/2}) = Bl^3/q^w,$$

where B and w are non-negative integers, and w is defined by (2.8) of [5].

SHIODA'S PROBLEM (see [5, Question 3.4]). Is B a square?

By (ii) of the above Theorem 1, we have directly the following affirmative answer to the l-part of Shioda's problem.

COROLLARY. Let the notation and assumptions be as above. Assume that $B \neq 0$. Then $\operatorname{ord}_{\mathbb{Q}_l}(B)$ is even.

In the following, we will show that the case where $J \neq q'^{1/2}$ and $\operatorname{ord}_{M_n}(1-J) = \operatorname{ord}_{M_n}(1-q')$ actually happens in the above Theorem 1

when n = 1, as an application of our congruences for Gauss sums and Jacobi sums previously obtained by the author ([3, Theorems 1 and 2]).

Assume l > 5. For any odd m (3 < m < l - 2), put

$$\varepsilon_m = \prod_{d=1}^{l-1} (1 - \zeta_l^d)^{m_d},$$

where $m_d \in \mathbb{Z}$ is such that $m_d \equiv d^{m-1} \pmod{l}$ and $\sum_{d=1}^{l-1} m_d = 0$. Put $k = \mathbb{Q}(\zeta_l)$ and $K = k(\sqrt[l]{\varepsilon_m} \mid m \text{ odd}, 3 \leq m \leq l-2)$.

THEOREM 2. Let l, k, and K be as above and put $K' = K(\sqrt[l]{l})$. Then:

(i) If $a \not\equiv 0 \pmod{l}$ and $\deg \mathfrak{p} = 1$, then the following (a)–(c) are equivalent:

(a) g_l(**p**, a; ζ_p) ≡ 1 (mod l) for a suitable choice of ζ_p.
(b) g_l(**p**, a; ζ_p) ≡ 1 + ^{p-1}/₂ (mod π^l₁) for a suitable choice of ζ_p.

(c) \mathfrak{p} is completely decomposed with respect to K'/k.

(ii) (cf. [4, Theorem 3]). The following (d)–(f) are equivalent:

(d) $J_l^{(a)}(\mathfrak{p}) \equiv 1 \pmod{l}$ for any $a \in \mathbb{Z}^r$.

(e) $J_l^{(a)}(\mathfrak{p}) \equiv 1 + \frac{r'-2}{2}(q-1) \pmod{\pi_1^l}$ for any $a \in \mathbb{Z}^r$, where r' is as in (ii) of Theorem 1.

(f) \mathfrak{p} is completely decomposed with respect to K/k.

Proof. (i) If $r \not\equiv 0 \pmod{p}$, then

$$g_l(\mathfrak{p}, a; \zeta_p^r) = \chi_{\mathfrak{p}}^{-a}(r)g_l(\mathfrak{p}, a; \zeta_p).$$

Note that $\chi_{\mathfrak{p}}^{-a}(r)$ is a primitive *l*th root of unity if $r \notin (\mathbb{F}_p^{\times})^l$. Hence by [3, Theorem 1] we see that $g_l(\mathfrak{p}, a) \equiv 1 \pmod{\pi_1^2}$ for a suitable choice of ζ_p if and only if $\alpha_1 \in \mathbb{F}_l$ (α_1 is as in [3, Theorem 1]). By [3, Theorem 7], this is equivalent to $\chi_{\mathfrak{p}}(l) = 1$, i.e., $l \mod p \in (\mathbb{F}_p^{\times})^l$. Hence by [3, Theorem 1] we have the assertion.

(ii) See [4, Theorem 3].

LEMMA 2. Let k and K' be as in Theorem 2. Then K' and $k(\sqrt[l]{\zeta_l})$ are linearly disjoint over k. In particular, there exist infinitely many prime ideals \mathfrak{p} of k of degree 1 satisfying the condition (c) in Theorem 2 and $p-1 \neq 0$ (mod l^2).

Proof. The proof of the first part is similar to that of [4, Lemma 2]. The last part follows from the first part and Chebotarev's density theorem.

Concerning condition $J \neq q^{1/2}$, the following theorem is known.

THEOREM 3. (i) ([2, (10)]). Assume that deg $\mathfrak{p} = 1$ and $a \not\equiv 0 \pmod{l}$. Then $\mathbb{Q}(\zeta_p)(g_l(\mathfrak{p}, a)) = \mathbb{Q}(\zeta_{pl})$. In particular, $g_l(\mathfrak{p}, a) \notin \mathbb{Q}_l(\zeta_p)$ and $g_l(\mathfrak{p}, a) \neq \mathcal{Q}_l(\zeta_p)$ $q^{1/2}$.

(ii) ([2, Theorem]). Assume that $l \nmid r, r \not\equiv 1 \pmod{p}$ and $\deg \mathfrak{p} = 1$. Put $a = (1, 1, \ldots, 1) \in \mathbb{Z}^r$. Then $\mathbb{Q}(J_l^{(a)}(\mathfrak{p})) = \mathbb{Q}(\zeta_l)$. In particular, $J_l^{(a)}(\mathfrak{p}) \notin \mathbb{Q}_l$ and $J_l^{(a)}(\mathfrak{p}) \neq q^{(r-1)/2}$.

(iii) ([5, Theorem 7.1]). Let $a = (a_1, a_2, a_3) \in \mathbb{Z}^3$ be such that $a_i \neq 0$ (mod l) for all i ($0 \leq i \leq 3$) and such that $a_i + a_j \neq 0 \pmod{l}$ if $i \neq j$, where $a_0 = -(a_1 + a_2 + a_3)$. Then $J_l^{(a)}(\mathfrak{p}) \neq q$ if deg $\mathfrak{p} = 1$.

By Theorems 2 and 3, Lemma 2, Lemma 2 of [4], and Chebotarev's density theorem, there exist infinitely many prime ideals \mathfrak{p} of k of degree 1 satisfying both $J \neq q'^{1/2}$ and $\operatorname{ord}_{M_n}(1-J) = \operatorname{ord}_{M_n}(1-q')$, where $J = g_l(\mathfrak{p}, a)$ or $J_l^{(a)}(\mathfrak{p})$ according to (i) or (ii) of Theorem 2.

I would like to thank Professors Don Zagier, Yuji Kida, and Masanobu Kaneko for supplying me further numerical data on Shioda's problem.

References

- F. Gouvêa and N. Yui, Arithmetic of Diagonal Hypersurfaces over Finite Fields, London Math. Soc. Lecture Note Ser. 200, Cambridge Univ. Press, 1995.
- [2] M. Kida and T. Ono, A note on Jacobi sums, Proc. Japan Acad. 69 (1993), 32–34.
 [3] H. Miki, On the l-adic expansion of certain Gauss sums and its applications, Adv. Stud. Pure Math. 12 (1987), 87–118.
- [4] —, On Shioda's problem about Jacobi sums, Acta Arith. 69 (1995), 107–112.
- [5] T. Shioda, Some observations on Jacobi sums, Adv. Stud. Pure Math. 12 (1987), 119–135.
- [6] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, New York, 1982.

DEPARTMENT OF LIBERAL ARTS AND SCIENCES FACULTY OF ENGINEERING AND DESIGN KYOTO INSTITUTE OF TECHNOLOGY SAKYO-KU, KYOTO 606, JAPAN

Received on 24.10.1994

(2684)