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On a problem of Dvornicich and Zannier

by

Pierre Dèbes (Lille)

Let k be a number field and P (T, Y ) ∈ k[T, Y ] be an absolutely irre-
ducible polynomial such that degY P ≥ 2. For each integer N > 0 and
each t ∈ k, define D(t,N) to be the minimal degree over k of a field gen-
erated by N distinct elements y(t + 1), . . . , y(t + N) ∈ k which are roots
of P (t+ 1, Y ), . . . , P (t+N,Y ) respectively. Obviously D(t,N) ≤ degY P

N .
We wish to obtain lower bounds for D(t,N). This problem was studied by
Dvornicich and Zannier in the special case k = Q. In [DvZa1] they prove
the following asymptotic estimate for D(N) = D(0, N):

D(N)� cN/ logN ,

where c > 1 depends only on P (T, Y ). The exponent N/ logN is the best
possible. Indeed, they note that if P (T, Y ) = Y d−T for some integer d > 1,
then, for suitably large N ,

(1) D(t,N) ≤ dπ(N+t) ≤ d2(N+t)/ logN .

Then they raise this question: when does D(N) have exponential growth?
They also prove an interesting special case of a conjecture due to Schinzel
about this question (see also [DvZa2] for another result towards Schinzel’s
conjecture). Here we study how D(n,N) grows (instead of D(0, N)): we
obtain an exponential lower bound D(n,N) � cN , when the integer n is
large compared to N .

Theorem 1. For each integer N > 0, there exists an explicitly com-
putable constant n1 > 0 depending on P,N and [k : Q] such that for each
integer n > n1, we have

(2) D(n,N) ≥ 2N

[k : Q](degY P )degY P+3 .

The main term 2N is essentially the best possible in (2). Indeed, for all
but finitely many integers n, D(n,N) is less than the “functional” analogue
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D(T,N), i.e., the minimal degree over k(T ) of a field generated by N dis-
tinct elements y(T + 1), . . . , y(T + N) ∈ k(T ) which are roots of P (T +
1, Y ), . . . , P (T + N,Y ) respectively. Now examples are given in [DVZa1]
for which the functional degree D(T,N) is � 2N (and so much smaller
than the obvious upper bound degY P

N ). On the other hand, the other
term [k : Q] (degY P )degY P+3 in (2) can probably be improved but it is un-
clear what the right term should be. As for the constant n1, inequality (1)
shows that it has to depend on N in Theorem 1. More precisely, one needs
n� N logN .

Theorem 1 will be established as a special case of a more general result
which we call the Main Theorem in the sequel. Theorem 2 below, which
can be viewed as a multiplicative version of Theorem 1, is another spe-
cial case of the Main Theorem. The base field k can be any field with the
product formula, possibly of characteristic p > 0. For u ∈ K and n,N pos-
itive integers, define D×u (n,N) to be the minimal degree over K of a field
generated by N distinct elements y(un+1), . . . , y(un+N ) which are roots of
P (un+1, Y ), . . . , P (un+N , Y ) respectively.

Theorem 2. Let P (T, Y ) ∈ k(T )[Y ] be a polynomial , separable over
k(T ), tamely ramified above T = ∞ and ramified over some point T = b
different from 0 and ∞. Assume further that P (Tm, Y ) is absolutely irre-
ducible for all integers m > 0. Let u be an element of k of height h(u) > 0.
Then for each integer N > 0, there exists an explicitly computable constant
m1 depending on u, P and N such that , for each integer m > m1, we
have

(3) D×u (m,N) ≥ 2N

s(degY P )degY P+3

where s is an integer larger than the number of places v of k for which
|u|v > 1.

The tame ramification hypothesis above T = ∞ is automatically satis-
fied in characteristic 0. This hypothesis implies in general that there exists
an integer e such that P (T, Y ) is totally split in K(((1/T )1/e)) (this is
Puiseux’s theorem in characteristic 0). Then from Propositon 2.2 of [De2],
the assumption “P (Tm, Y ) absolutely irreducible for all integer m > 0” is
actually equivalent to the absolute irreducibility of the single polynomial
P (T e, Y ). Theorem 2 may be false if this irreducibility assumption is re-
moved. Take for example P (T, Y ) = Y d−T : we have D×u (m,N) ≤ d2 for all
u ∈ k and all integers m,N > 0. On the other hand, the exact significance of
the assumption “P (T, Y ) is ramified over some point T = b different from 0
and ∞” is unclear. Classical arguments show that this condition is actually
already contained in the irreducibility assumption if k is of characteristic 0.
But this is not the case in characteristic p > 0. For example, the polynomial
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P (T, Y ) = Y p − Y − 1/T has only 0 as branch point and has the property
that P (Tm, Y ) is absolutely irreducible for all integers m > 0.

1. THE MAIN THEOREM

1.1. Preliminaries

Height. We adhere to the notation of [La]. Let F be a field with a proper
set MF of absolute values satisfying the product formula with multiplici-
ties 1. For each finite extension K of F , the set of absolute values of K
extending those of MF is a proper set MK , satisfying the product formula
with multiplicities [Kv : Fv] for v ∈MK . For each integer n ≥ 1, the (abso-
lute logarithmic) height of a point x ∈ F is then defined by

(1) h(x) =
1

[K : F ]

∑

v∈MK

[Kv : Fv] log max(1, |x|v),

where K is any field containing x. In the sequel, a field with the product
formula is a finite extension K of a field F with the product formula with
multiplicities 1 and the associated height is the one defined above.

s-integral points. A classical result in diophantine geometry is Siegel’s
finiteness theorem for S-integral points on algebraic curves. In [De3] we
introduced the notion of s-integral points. Given an integer s ≥ 0, an element
t ∈ K is said to be s-integral if the set of places v ∈ MK for which |t|v > 1
is of cardinality ≤ s. That is, the condition “of cardinality ≤ s” replaces
the condition “contained in S” in the usual definition of “S-integral point”.
[De3] contains a general diophantine result for s-integral points. This result,
which we recall in §2.1, will be the main ingredient of the proof of the Main
Theorem stated below in §1.2.

Ramification. If P (T, Y ) ∈ K(T )[Y ] is separable over K(T ), we say that
a point t0 ∈ P1(K) is not a branch point of P (T, Y ), or that P (T, Y ) is
unramified above T = t0, if P (T, Y ) is totally split in K((T − t0)) (as a
polynomial in Y ), i.e., has d = degY P distinct roots y1, . . . , yd in K((T −
t0)). When t0 = ∞, T − t0 should be replaced by 1/T . The finite set of
all branch points of P (T, Y ) is denoted by Br(P ). The polynomial P (T, Y )
is said to be tamely ramified above T = t0 if K is of characteristic 0 or of
characteristic p > 0 with p dividing none of the degrees of the irreducible
factors of P (T, Y ) in K((T − t0)). Ramification above T = t0 is said to be
wild otherwise.

1.2. Statement of the Main Theorem. Let k be a field with the
product formula. Let P (T, Y ) ∈ k(T )[Y ] be an irreducible polynomial such
that degY P ≥ 2. Assume that P (T, Y ) is separable over k(T ) and tamely
ramified above T =∞.
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Let ϕ be an automorphism of P1
k fixing ∞, i.e., ϕ(z) = uz + v with

u, v ∈ k, u 6= 0. For each integer j ∈ Z, denote the automorphism of P1

obtained by composing ϕ with itself j times by ϕ[j].
Assume that

(2) There exists at least one branch point b ∈ Br(P ) of P (T, Y ) such that

(∗) ϕ[j1](b) 6= ϕ[j2](b) for all integers j1 6= j2

and that

(3) There exists an integer j0 such that for all integers j ≥ j0, the polyno-
mials P (ϕ[j](Tm), Y ) are absolutely irreducible for all integers m > 0.

For each b such that (∗) holds in (2), there can only be one integer jb
such that ϕ[−jb](b) = 0. Pick an integer J larger than all integers jb and
larger than j0. Fix an integer N > 0 and consider the family of polynomials

P (ϕ[J+1](T ), Y ), . . . , P (ϕ[J+N ](T ), Y ).

For each b ∈ k, define Dϕ(b,N) to be the minimal degree over k of a
field generated by N distinct elements y1, . . . , yN ∈ k which are roots of
P (ϕ[J+1](b), Y ), . . . , P (ϕ[J+N ](b), Y ) respectively.

Main Theorem. Let s > 0 be an integer. There exists a constant h2 > 0
depending only on the polynomial P (T, Y ) and on the integer N with the
following property. For each s-integral point b ∈ k such that h(b) > h2s

2,
we have

(4) Dϕ(b,N) ≥ 2N

s(degY P )degY P+3 .

1.3. Proof of Theorem 1. Consider the special case of the Main The-
orem for which k is a number field and ϕ(z) = z + 1. Thus the polyno-
mial P (T, Y ) is automatically separable and tamely ramified above T =∞.
Condition (2) is immediate since from the Riemann–Hurwitz formula, the
polynomial P (T, Y ) has at least two branch points and so at least one of
them is different from ∞.

From Proposition 2.2 of [De2], if a polynomial Q(T, Y ) ∈ k(T )[Y ] is
absolutely irreducible and has a root in k((T )) then Q(Tm, Y ) is absolutely
irreducible for all integers m. Pick an integer j0 larger than the largest root
in Z of the discriminant of P (T, Y ) with respect to Y . Then for j ≥ j0,
P (T + j, Y ) is unramified above T = 0, i.e., is totally split in k((T )). We
conclude that P (ϕ[j](Tm), Y ) = P (Tm + j, Y ) is absolutely irreducible for
each integer m > 0. This proves condition (3).

Take s = [k : Q]. Apply the Main Theorem to usual integers b, which
are s-integral in k. Inequality (4) then corresponds to inequality (2) of The-
orem 1. The constant n1 can be taken to be n1 = exp(h2[k : Q]2) + J .
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Using [De3], the constant n1 can be explicitly computed: it is of order
exp[(rDNH)O(1)], where D is the degree of P , H the logarithmic height
of P and r = [k : Q].

R e m a r k. The proof actually provides this more general conclusion.
Given an integer s > 0 we have

(5) D(b,N) ≥ 2N

s(degY P )degY P+3

for all s-integral point b ∈ k of height h(b) > h2s
2. Furthermore, this holds

more generally if k is a field with the product formula of characteristic 0.
We assumed that k is a number field in Theorem 1 to insure that there exist
integers n with arbitrarily large height. Assuming that k has at least one
archimedean place would have been sufficient. But from a result of Artin
and Whaples, this implies that k is a number field [ArWh]. On the other
hand, Theorem 1 is not true if integers are of bounded height in k. Indeed,
take k = C(X), where X is an indeterminate and P (T, Y ) ∈ C[T, Y ] an
irreducible polynomial such that degY P ≥ 2. Then P (T, Y ) is irreducible
in k[T, Y ] as well. But for all t ∈ C, the polynomial P (t, Y ) is totally split
in k[Y ].

1.4. Proof of Theorem 2. Let u be an element of k such that h(u) >
0. Consider the special case of the Main Theorem for which ϕ(z) = uz.
Condition (2) holds since it is assumed that P (T, Y ) has a branch point
different from 0 and∞. Condition (3) readily follows from the irreducibility
assumption of Theorem 2. Take for s an integer larger than the number of
places v ∈ Mk such that |u|v > 1. Then all powers um of u are s-integral
points of k. Apply the Main Theorem to b = um. For all suitably large
integers m, we will have h(um) = mh(u) > h2s

2. Inequality (4) in the Main
Theorem then corresponds to inequality (3) of Theorem 2.

2. PROOF OF THE MAIN THEOREM

2.1. Diophantine result for s-integral points [De3]. Theorem 3
below is one of the main results of [De3]: it is a general diophantine result
for s-integral points.

Let P = {P1(T, Y ), . . . , Pm(T, Y )} be a family of (not necessarily dis-
tinct) polynomials in K(T )[Y ]. Denote the union of the branch point sets
Br(Pi), i = 1, . . . ,m, by Br(P). For each point t ∈ P1 \ Br(P), the polyno-
mial Pi(T, Y ) has d = degY Pi distinct roots in K((T − t)), i = 1, . . . ,m.
For each i = 1, . . . ,m, each root y ∈ K((T − t)) of the polynomial Pi(T, Y )
corresponds to a point in the unramified fiber above T = t of the finite
morphism Ci → P1 induced by T on the smooth projective model Ci of the
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curve Pi(t, y) = 0. The field of definition of this point then corresponds to
the field generated by the coefficients of the power series y ∈ K((T − t)). We
denote this field by K(y(t)). When t =∞, T − t should be replaced by 1/T .
For convenience, we generalize these definitions to include the case where
t = T is the generic point of P1: in this case, “y ∈ K((T − t))” should be
understood as “y = y(T ) ∈ K(T )” and the field K(y(t)) as K(y(T )).

For each point t ∈ P1 \ Br(P), define then the parameters Dt(P) and
D+
t (P) by

(1)
Dt(P) = min

(y1,...,ym)
[K(t, y1(t), . . . , ym(t)) : K(t)],

D+
t (P) = max

(y1,...,ym)
[K(t, y1(t), . . . , ym(t)) : K(t)],

where in the “min” and “max”, (y1, . . . , ym) ranges over all m-tuples with
ith entry a root yi ∈ K((T − t)) of Pi(T, Y ) and with no two equal entries.
The field K(t, y1(t), . . . , ym(t)) should be understood as the compositum of
the fields K(t),K(y1(t)), . . . ,K(ym(t)). For the generic point of P1, we use
the subscript “gen” instead of “T”.

R e m a r k. In the special case the polynomial Pi(t, Y ) has degY Pi
simple roots in K, i = 1, . . . ,m, Dt(P) (resp. D+

t (P)) is the minimal
(resp. maximal) degree over K of a field generated by m distinct elements
y1(t), . . . , ym(t) ∈ K such that yi(t) is a root of Pi(t, Y ), i = 1, . . . ,m. This
holds in particular if t is not a root of the discriminant ∆i(T ) ∈ K(T ) of
Pi(T, Y ), i = 1, . . . ,m, and so for all but finitely many t.

Theorem 3 [De3; Th. 1.4]. Assume that the m polynomials P1(T, Y ), . . .
. . . , Pm(T, Y ) are separable over K(T ) and unramified above T = ∞. Let
s > 0 be an integer. There exists a constant h1 = h1(P) depending on
P = {P1, . . . , Pm} with the following property. If t is s-integral in K and if
h(t) > h1s

2, then t 6∈ Br(P) and

(2) sD+
∞(P)Dt(P) ≥ Dgen(P).

Furthermore, the constant h1 is an absolute constant , i.e., remains the same
if the polynomials in the family P are considered as polynomials with coef-
ficients in any finite extension of K.

The constant h1 is given explicitly in [De3] in the case where K is a
number field. It is clear then that it is an absolute constant. This remains
true in general but the constants have not been computed explicitly. The-
orem 3 uses a general result on algebraic functions due to Sprindžuk [Sp],
Bombieri [Bo] and the author [De1]. For the general case, only the most
general algebraic approach of Bombieri can be used. It is unclear whether
this method is effective in general. Still the constants that appear in the
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proof of Bombieri have the property not to depend on the base field. Essen-
tially these constants come from the use of Weil’s decomposition theorem
and a theorem of Néron based on the quadraticity of the canonical height
on abelian varieties [La].

2.2. Proof of the Main Theorem. Retain the notation and hypotheses
of §1.2. The polynomial P (T, Y ) is assumed to be separable over k(T ) and
tamely ramified above T = ∞. Consequently, there exists an integer e > 0
such that P (T, Y ) is totally split in k(((1/T )1/e)) and such that e is relatively
prime to the characteristic p of k if p > 0.

Let K be a finite extension of k. Consider the family of polynomials

PN = {P (ϕ[J+1](T e), Y ), . . . , P (ϕ[J+N ](T e), Y )},
regarded as polynomials with coefficients in K. We first generalize an argu-
ment of [DvZa1] to show that

Lemma 1. Under the conditions above we have

(3) Dgen(PN ) ≥ 2N .

P r o o f. For each integer i ≥ 0, let Bi be the branch point set of
P (ϕ[i](T e), Y ). We will show that if i > J then

(4) Bi 6⊂
J+N⋃

j=i+1

Bj .

Since ϕ is an isomorphism and z → ze is ramified only above 0 and ∞, we
have

(Bi \ {0,∞})e = ϕ[−i](Br(P )) \ {0,∞}.
Thus to establish (4) it suffices to prove that for all i > J ,

(5) ϕ[−i](Br(P )) \ {0,∞} 6⊂
J+N⋃

j=i+1

ϕ[−j](Br(P )) \ {0,∞}.

Assume the contrary holds for some integer i > J . Select an element b =
b1 ∈ Br(P ) satisfying (∗) in condition (2) of §1. Then, from the definition
of J , ϕ[−i](b1) 6= 0. Furthermore, it follows from (∗) and ϕ(∞) = ∞ that
ϕ[−i](b1) 6=∞. Thus we obtain

ϕ[−i](b1) = ϕ[−j1](b2) for some b2 ∈ Br(P ) and j1 > i.

The same argument can be repeated for the element b2 which also satis-
fies (∗). By induction we construct a sequence (bn)n>0 of elements of Br(P )
satisfying (∗) and such that

(6) ϕ[−i](bn) = ϕ[−jn](bn+1) for some integer jn > i.
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Since Br(P ) is finite, we will have bp = bp+q for some integers p, q 6= 0. The
equations (6) corresponding to p, . . . , p+ q − 1 yield

ϕ[−qi](bp) = ϕ[−(jp+...+jp+q−1)](bp).

We conclude from (∗) (applied to b = bp) that

qi = jp + . . .+ jp+q−1,

which contradicts jl > i, l = 1, . . . , p+ q, and completes the proof of (4).
For each integer j ≥ J , if yj is any root of P (ϕ[j](T e), Y ), then the branch

point set of the extension k(T, yj) is the set Bi (because P (ϕ[j](T e), Y )
is absolutely irreducible). Conclude from (4) that the splitting field of
P (ϕ[i](T e), Y ) over K(T ) is not contained in any of the function fields
K(T, yi+1, . . . , yJ+N ) where yj is any root of the polynomial P (ϕ[j](T e), Y ),
j = i+ 1, . . . , J +N . (3) follows by induction.

P r o o f o f t h e M a i n T h e o r e m. Let h1 be the constant of The-
orem 3 associated with the family of polynomials PN . Recall that h1 is
an absolute constant, i.e., is the same if the polynomials are regarded as
polynomials with coefficients in k or in any finite extension K of k. Then
take h2 = h1(degY P )3. Let s > 0 be an integer and b be an s-integral
point of k of height h(b) > h2s

2. Let t be an eth root of b in k. Then set
K = k(t).

The polynomials in the family PN are separable over k(T ). Observe next
that these polynomials are unramified above T = ∞. Indeed, by definition
of e, the polynomial P (T e, Y ) is totally split in k(((1/T ))). Then, since
ϕ(∞) =∞, for each root y(u) ∈ k(((1/u))) of P (ue, y(u)) = 0 and for each
j ∈ Z, the power series

(7)
1

ϕ[j](T e)1/e
=

1
T
· 1

(aj + bj/T e)1/e
∈ k(((1/T ))),

where ϕ[j](z) = ajz + bj (a 6= 0) can be substituted for 1/u in y(u) to yield
a power series yj(T ) ∈ k(((1/T ))) solution of P (ϕ[j](T e), yj(T )) = 0. We
conclude that the polynomial P (ϕ[j](T e), Y ) is totally split in k(((1/T ))),
i.e., is unramified above T =∞ for each integer j ∈ Z.

Since each place v ∈ Mk has at most [K : k] ≤ e extensions to MK ,
the element t is an se-integral point of K. Furthermore, it follows from
“e ≤ degY P” that

h(t) =
h(b)
e

>
h2s

2

e
> h1s

2(e)2 ≥ h1(se)2.

From Theorem 3, which we apply to the field K, the family of polyno-
mials PN and the se-integral point t ∈ K, we obtain

(se)D+
∞(PN )Dt(PN ) ≥ Dgen(PN ).
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We explained above how to obtain the roots in k(((1/T ))) of the polynomials
P (ϕ[j](T e), Y ) (j ∈ Z) from the roots of P (T e, Y ). This shows that

D+
∞(PN ) ≤ e2[D+

∞(P (T e, Y ))]degY P .

(The extra term e2 comes from the terms a1/e that possibly occur in the
power series expansion of 1/ϕ[j](T e)1/e (j ∈ Z) in (7) above.) Hence we
obtain

D+
∞(PN ) ≤ e2(degY P )degY P ,

which, together with Lemma 1, yields

Dt(PN ) ≥ 2N

se3(degY P )degY P
.

Note that the parameter Dϕ(b,N) of the Main Theorem coincides with the
parameter Dt(PN ), except that the former is defined with k as base field.
But this parameter Dϕ(b,N) can only get smaller when one extends the
scalars. Therefore

Dϕ(b,N) ≥ Dt(PN ) ≥ 2N

se3(degY P )degY P
.
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