Corrections to "A quantitative version of Runge's theorem on diophantine equations"

(Acta Arith. 62 (1992), 157-172)
by
P. G. Walsh (Ottawa, Ont.)

Let $F(x, y) \in \mathbb{Z}[x, y]$ be a polynomial of degree m in x, n in y, and whose coefficients do not exceed h in absolute value. Runge's theorem asserts that if F satisfies certain conditions, which are outlined in [3], then the diophantine equation

$$
\begin{equation*}
F(x, y)=0 \tag{1}
\end{equation*}
$$

has only finitely many integer solutions in x and y, and furthermore that there is a computable number $C=C(m, n, h)$ such that all integer solutions (x, y) of (1) satisfy $\max (|x|,|y|)<C$.

In [3] it was shown more precisely that under the hypotheses of Runge's theorem, all integer solutions (x, y) of (1) satisfy

$$
\begin{aligned}
& |x| \leq B(h, n)^{2 m n^{3}(n+1)}(2 h(m+1)(n+1))^{12 m n^{4}} \\
& |y| \leq B(h, n)^{2 m^{2} n^{2}(n+1)}(2 h(m+1)(n+1))^{12 m^{2} n^{3}}
\end{aligned}
$$

where

$$
\begin{equation*}
B(h, n)=4.8\left(8 e^{-3} n^{4+2.74 \log n} e^{1.22 n} h^{2}\right)^{n} \tag{2}
\end{equation*}
$$

for $n, h \geq 1$.
The quantity in (2) comes from the main result of [1], which is a quantitative version of Eisenstein's theorem on the growth of the denominators of the coefficients of a power series representing an algebraic function. In [2] it was shown that the quantity in (2) appearing in [1] is incorrect, and that a correct value, which incorporates a dependency on $m=\operatorname{deg}_{x} F$, is

$$
B(h, m, n)=4.8\left(8 e^{-3} n^{4+2.74 \log n} e^{1.22 n} h^{2}(1+m)^{2}\right)^{n}
$$

Thus, the quantitative version of Runge's theorem in [3] becomes valid once the value $B(h, n)$ is replaced by $B(h, m, n)$.

References

[1] B. M. Dwork and A. J. van der Poorten, The Eisenstein constant, Duke Math. J. 65 (1992), 23-43.
[2] -, —, Corrections to "The Eisenstein constant", ibid. 76 (1994), 669-672.
[3] P. G. Walsh, A quantitative version of Runge's theorem on diophantine equations, Acta Arith. 62 (1992), 157-172.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OTTAWA
585 KING EDWARD
OTTAWA, ONTARIO, CANADA
K1N-6N5
E-mail: GWALSH@CASTOR.MATHSTAT.UOTTAWA.CA GWALSH@MANITOU.CSE.DND.CA

