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Let F (x, y) ∈ Z[x, y] be a polynomial of degree m in x, n in y, and whose
coefficients do not exceed h in absolute value. Runge’s theorem asserts that if
F satisfies certain conditions, which are outlined in [3], then the diophantine
equation

(1) F (x, y) = 0

has only finitely many integer solutions in x and y, and furthermore that
there is a computable number C = C(m,n, h) such that all integer solutions
(x, y) of (1) satisfy max(|x|, |y|) < C.

In [3] it was shown more precisely that under the hypotheses of Runge’s
theorem, all integer solutions (x, y) of (1) satisfy

|x| ≤ B(h, n)2mn3(n+1)(2h(m+ 1)(n+ 1))12mn4
,

|y| ≤ B(h, n)2m2n2(n+1)(2h(m+ 1)(n+ 1))12m2n3
,

where

(2) B(h, n) = 4.8(8e−3n4+2.74 log ne1.22nh2)n

for n, h ≥ 1.
The quantity in (2) comes from the main result of [1], which is a quan-

titative version of Eisenstein’s theorem on the growth of the denominators
of the coefficients of a power series representing an algebraic function. In [2]
it was shown that the quantity in (2) appearing in [1] is incorrect, and that
a correct value, which incorporates a dependency on m = degx F , is

B(h,m, n) = 4.8(8e−3n4+2.74 log ne1.22nh2(1 +m)2)n.

Thus, the quantitative version of Runge’s theorem in [3] becomes valid once
the value B(h, n) is replaced by B(h,m, n).
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