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An equivalence theorem for submanifolds
of higher codimensions

by Pawe lWitowicz (Rzeszów)

Abstract. For a submanifold of Rn of any codimension the notion of type number is
introduced. Under the assumption that the type number is greater than 1 an equivalence
theorem is proved.

Introduction. The paper deals with submanifolds of Rn of codimension
greater than one, equipped with affine connections. Problems concerning
higher codimensions have been studied in Riemannian geometry since the
1930-ties, for example by Allendoerfer (see [1]). He formulated and proved
a few theorems about the existence and equivalence of submanifolds iso-
metrically immersed in Euclidean spaces of high dimension ([1], [6]). A key
notion used in his papers was the type number of an immersion, which is a
generalization of the rank of the second fundamental form.

In affine geometry there are very few results dealing with submanifolds
of any codimension (see [2], [4]).

In this paper the type number of an immersion of any codimension is
defined in the affine case. Using this notion we prove an equivalence theorem.
More precisely, we show that two submanifolds of type number greater than
one having the same affine connections and second fundamental forms are
affinely equivalent.

1. The type number of an immersion. Let f : Mn → Rn+p be an
immersion of an n-dimensional manifold Mn into Rn+p equipped with the
usual flat affine connection ∇̃. If N is a vector bundle over Mn such that

(1.1) ∀x ∈Mn Tf(x)Rn+p = f∗(TxMn)⊕Nx,
then for all X,Y ∈ X (Mn) we have a decomposition

(1.2) ∇̃Xf∗(Y ) = f∗(∇XY ) + h(X,Y ),
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Here ∇XY is a local section of TMn and h(X,Y ) is a local section of N .
Throughout the paper we write ∇XY ∈ TMn and h(X,Y ) ∈ N to mean
that (∇XY )(x) ∈ TxMn and hx(X,Y ) ∈ Nx for every x in the domain of
∇̃Xf∗(Y ). It is easy to prove that ∇ is an affine connection without torsion
on Mn and h, called the second fundamental form on Mn, is a bilinear
symmetric mapping from TxM

n × TxMn into Nx for each fixed x ∈Mn.
For a local section ξ of N and for any X ∈ X (Mn) we also have a

decomposition

(1.3) ∇̃Xξ = −f∗(AξX) +DXξ,

where Aξ and DXξ are defined by AξX ∈TM and DXξ∈N . Aξ is a (1,1)-
tensor field on Mn, called the shape operator , and DXξ defines a connection
in the vector bundle N , called the normal connection. We also remark that
the mapping ξ 7→ Aξ is linear over C∞(Mn). For fixed N we define the
subspace Ox of Nx by

Ox = span{h(X,Y ) | X,Y ∈ TxMn},
called the first affine normal space.

Lemma 1.1. The dimension of Ox does not depend on the choice of the
transversal bundle N .

P r o o f. Let N,N be two affine normal bundles, h, h the associated sec-
ond fundamental forms and Ox, Ox the first affine normal spaces induced
by h and h, respectively. For x ∈Mn let

πx : f∗(TxMn)⊕Nx → Nx

be the projection. Then πx = π|Nx
is an isomorphism. For every X,Y ∈

TxM
n we have

πx(h(X,Y )) = πx(∇̃Xf∗(Y )− f∗(∇XY )) = πx(∇̃Xf∗(Y )) = h(X,Y ).

This implies that π|Ox is an isomorphism between Ox and Ox, which com-
pletes the proof.

We now adapt the notion of the type number of an immersion used in
the Riemannian case to affine geometry. First we define the type number of
a set of bilinear forms.

Let V be an n-dimensional vector space and h1, . . . , hk be linearly in-
dependent bilinear forms on V × V . We define mappings Φi : V → V ∗ (for
i = 1, . . . , k) as follows:

Φi(v)(w) = hi(v, w).

The type number of the set {h1, . . . , hk} is the maximal integer r such that
there exist r vectors v1, . . . , vr ∈ V for which Φi(vj) are linearly independent
for i = 1, . . . , k and j = 1, . . . , r.
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Now we define the type number of an immersion f : Mn → Rn+p at
x ∈Mn (compare [1], [3], [6]). Choose a basis {ξ1, . . . , ξk} of Ox. Then

h(X,Y ) =
k∑
i=1

hi(X,Y )ξi

for every X,Y ∈ TxMn. It is clear that h1, . . . , hk : TxMn × TxMn → R
are symmetric bilinear forms.

Definition 1.2. The type number of an affine immersion f at x ∈Mn,
denoted by txf , is the type number of the set {h1, . . . , hk} of symmetric
bilinear forms defined above.

We prove that txf is a well defined notion.

Lemma 1.3. The forms h1, . . . , hk are linearly independent.

P r o o f. Assume for contradiction that there exist numbers α1, . . . , αk
such that

hj =
∑
i 6=j

αih
i

for some j ≤ k. Then

h =
k∑
i=1

hiξi =
∑
i 6=j

hiξi +
∑
i 6=j

αih
iξj =

∑
i6=j

hi(ξi + αiξj)

and now Ox is spanned by the k− 1 vectors ξi +αiξj for i ∈ {1, . . . , k}\{j}.

Lemma 1.4. txf is independent of the choice of N and {ξ1, . . . , ξk}.

P r o o f. Let Nx and Nx be two transversal spaces and let ξ1, . . . , ξk and
ξ1, . . . , ξk span Ox ⊂ Nx and Ox ⊂ Nx respectively. Let ξ1, . . . , ξk, ξk+1,

. . . , ξp span the whole space Nx. Then

ξj =
p∑
i=1

aijξi + Zj ,

where aij ∈ R and Zj ∈ TxM
n. If ∇ and ∇ are the connections on Mn

defined by N and N , then

f∗(∇XY ) +
k∑
j=1

hj(X,Y )ξj = f∗(∇XY ) +
k∑
i=1

hi(X,Y )ξi

and
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k∑
j=1

hj(X,Y )Zj + f∗(∇XY ) +
p∑
i=1

k∑
j=1

aijh
j(X,Y )ξi

= f∗(∇XY ) +
k∑
i=1

hi(X,Y )ξi

for every X,Y ∈ TxM
n. Hence hi =

∑k
j=1 aijh

j for i = 1, . . . , k and∑k
j=1 aijh

j = 0 for i = k + 1, . . . , p, which gives aij = 0 for i > k by
the previous lemma. Thus the matrix [aij ]i,j=1,...,k is non-singular. Now the
equation

Φi =
k∑
j=

aijΦ
j

implies that if Φj(Xs) are linearly independent for s = 1, . . . , r and j =
1, . . . , k then so are Φj(Xs). The proof is complete.

We now prove an algebraic lemma which will be useful later.

Lemma 1.5. Let V ,W be vector spaces, and h1, . . . , hk be bilinear forms
on V × V with type number greater than one. Let Bi : V → W be linear
maps for i = 1, . . . , k. If

(∗)
k∑
i=1

{hi(X,Z)Bi(Y )− hi(Y,Z)Bi(X)} = 0

for every X,Y, Z ∈ V , then Bi = 0 for i = 1, . . . , k.

P r o o f. It is sufficient to assume that W = R. The equation (∗) with
fixed X and Y but arbitrary Z means that

(∗∗)
k∑
i=1

{Bi(Y )Φi(X)−Bi(X)Φi(Y )} = 0,

where Φi : V → V ∗ is given by Φi(v)(w) = hi(v, w). Because the type
number of {h1, . . . , hk} is at least 2, we can take X,Y ∈ V such that the set
{Φi(X), Φi(Y )}i=1,...,k is linearly independent. But this immediately implies
Bi(X) = Bi(Y ) = 0. Now we substitute in (∗∗) an arbitrary vector Z ∈ V
in place of Y and obtain

k∑
i=1

Bi(Z)Φi(X) = 0,

whence Bi(Z) = 0 for every Z ∈ V and i = 1, . . . , k. The proof is complete.

R e m a r k 1.6. The definition of the type number of an immersion gener-
alizes the corresponding definitions in the Riemannian case and in the case
of hypersurfaces in affine geometry ([3], [6], [5]).
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Namely, if Rn+p is equipped with the standard scalar product 〈 , 〉 and
f : Mn → Rn+p is an immersion, we can take for N in (1.1) the normal
bundle and for h in (1.2) the Riemannian second fundamental form with
respect to 〈 , 〉. Then 〈AξX,Y 〉 = 〈h(X,Y ), ξ〉, where X,Y ∈ TxMn.

According to [6], the type number of f is equal to the maximal integer r
such that there exist r vectorsX1, . . . , Xr ∈ TxMn for which the set {AξiXj :
i = 1, . . . , k; j = 1, . . . , r} is linearly independent, where (ξ1, . . . , ξk) is a
local frame on N . Let X1, . . . , Xr ∈ TxMn, and let (ξ1, . . . , ξk) be a local
frame on N . Let Φi denote mappings as defined before Definition 1.2, and aji
real numbers. We have hi(X,Y ) = 〈h(X,Y ), ξi〉. Notice that the following
conditions are equivalent: ∑

i,j

ajiΦ
i(Xj) = 0,

∀Y ∈ TxMn
∑
i,j

ajih
i(Xj , Y ) = 0,

∀Y ∈ TxMn
∑
i,j

〈ajiAξiXj , Y 〉 = 0,

∑
i,j

ajiAξiXj = 0.

This means that the set {Aξi
Xj : i = 1, . . . , k; j = 1, . . . , r} is linearly

independent if and only if {Φi(Xj) : i = 1, . . . , k; j = 1, . . . , r} is. Thus the
remark is true in the Riemannian case.

In the case of hypersurfaces the type number of f is the rank of the
second fundamental form, but the latter is equal to the rank of Φ.

2. Basic equations. We recall the equations of affine geometry (see
for example [2]).

Let f : Mn → Rn+p be an immersion. If we have N and an affine
connection ∇ on Mn such that (1.1) and (1.2) are satisfied, we call such an
immersion an affine immersion and we write

f : (Mn,∇)→ (Rn+p, ∇̃).

Denoting the curvature tensors of ∇ and D by R and R⊥ respectively,
we have the following equations:

R(X,Y )Z = Ah(Y,Z)X −Ah(X,Z)Y (Gauss),

∇h(X,Y, Z) = ∇h(Y,X,Z) (Codazzi),

R⊥(X,Y )ξ = h(X,AξY )− h(AξX,Y ) (Ricci),

where∇h(X,Y, Z) = DXh(Y, Z)−h(∇XY,Z)−h(Y,∇XZ) for every X,Y, Z
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∈ X (Mn), and ξ ∈ X (N). Here X (N) denotes the module of local sections
of the transversal bundle N over Mn.

3. Reduction of codimension. We use a result from [4]:

Proposition 3.1. Let f : (Mn,∇)→ (Rn+p, ∇̃) be an affine immersion.
Suppose that N1 is a subbundle of the normal bundle N such that :

(1) N1 contains Ox for every x ∈Mn.
(2) N1 is parallel relative to the normal connection D.

Then f(Mn) is contained in an (n+q)-dimensional affine subspace of Rn+p,
where q = dimN1(x).

We now formulate a reduction lemma which involves the notion of the
type number of an affine immersion. It is actually a generalization of Lemma
28 from [6] to the case when the ambient manifold is the affine space
(Rn+p, ∇̃).

Proposition 3.2. Let f : (Mn,∇)→ (Rn+p, ∇̃) be an affine immersion
such that :

(1) txf ≥ 2 at every x ∈Mn.
(2) dimOx = k on Mn.

Then f(Mn) is contained in an (n+q)-dimensional affine subspace of Rn+p.

P r o o f. We prove that the subbundle O of N satisfies the assumptions
of the previous proposition. For every x ∈ Mn let Wx be a vector sub-
space of Nx such that Nx = Ox ⊕Wx. Let ξ be a section of O in an open
neighbourhood of x ∈ Mn. We now prove that (DXξ)(x) ∈ Ox for every
X ∈ X (Mn).

Let ξ1, . . . , ξk be sections ofN which span Ox and ξk+1, . . . , ξp be sections
which span Wx. Then there exists a neighbourhood Ux of x and functions
a1, . . . , ak in Ux such that ξ =

∑k
i=1 aiξi. We also have a decomposition

(DXξ)(y) = (D1
Xξ)(y) + (D2

Xξ)(y),

where (D1
Xξ)(y) ∈ Oy and (D2

Xξ)(y) ∈ Wy for y ∈ Ux. The mapping
X 7→ (DXξ)(x) is obviously R-linear and so is X 7→ (D2

Xξ)(x). Notice
that the second fundamental form is h =

∑k
i=1 h

iξi and consider the Co-
dazzi equation for arbitrary X,Y, Z ∈ X (Mn). Comparing its components
belonging to Wx gives

k∑
i=1

hi(Y,Z)D2
Xξi =

k∑
i=1

hi(X,Z)D2
Y ξi.
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By Lemma 1.5 we have (D2
Xξi)(x) = 0 and therefore (DXξi)(x) ∈ Ox for

i = 1, . . . , k. Hence (DXξi)(x) =
∑k
i=1 ai(x)(DXξi)(x) +

∑k
i=1X(ai)ξi(x)

∈ Ox. An application of the above proposition completes the proof.

4. An equivalence theorem. Dillen’s paper [2] contains a general
equivalence theorem for immersed manifolds of any codimension. Under an
assumption about the type number we can formulate a stronger result. First
we recall the result of Dillen.

Theorem 4.1. Let f, f : (Mn,∇)→ (Rn+p, ∇̃) be affine immersions with
corresponding affine normal spaces N and N , second fundamental forms h
and h, affine shape operators A and A, and normal connections D and D,
respectively. Suppose that there exists an isomorphism F : N → N of vector
bundles over Mn such that :

(1) F ◦ h = h.
(2) Aξ = AF (ξ).
(3) F (DXξ) = DXF (ξ), where X ∈ X (Mn) and ξ ∈ X (N).

Then there exists B ∈ A(n + p,R) such that f = B ◦ f , where A(n + p,R)
denotes the group of affine transformations of Rn+p.

The main result of this section is the following theorem.

Theorem 4.2. Let f, f : (Mn,∇) → (Rn+p, ∇̃) be affine immersions.
Suppose that :

(1) txf ≥ 2 at every point x in Mn.
(2) There exists an isomorphism F : N → N of vector bundles over Mn

such that F ◦ h = h.
(3) dimOx = k for every x ∈Mn.

Then there exists B ∈ A(n+ p,R) such that f = B ◦ f.
P r o o f. Proposition 3.2 allows us to consider only the case of p = k. By

(2), we have dimOx = dimOx. We take a set {ξ1, . . . , ξk} of sections of N
that span Ox in a certain neighbourhood of a fixed point of Mn.

Let {ξ1, . . . , ξk} be the sections given by F (ξi) = ξi for i = 1, . . . , k. Then
there exist two sets of symmetric bilinear forms on TxMn, {h1, . . . , hk} and
{h1, . . . , hk}, such that h =

∑
hiξi and h =

∑
hiξi.

By the assumptions we have∑
hiξi = F

(∑
hiξi

)
=
∑

hiξi.

Hence hi = hi for i = 1, . . . , k.
The Gauss equations for f and f imply that

Ah(Y,Z)(X)−Ah(X,Z)(Y ) = Ah̄(Y,Z)(X)−Ah̄(X,Z)(Y ),
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whence ∑
hi(Y,Z)(Aξi

−Aξ̄i
)(X) =

∑
hi(X,Z)(Aξi

−Aξ̄i
)(Y ).

Using Lemma 1.5 we obtain Aξi
= Aξ̄i

for i = 1, . . . , k. This also means
that Aξ=AF (ξ) for every section ξ of N . The condition (2) from the previous
theorem is satisfied.

Now we apply F to the Codazzi equation for f and use the equality
F ◦ h = h:

0 = F (∇h(X,Y, Z)−∇h(Y,X,Z))
= F (DXh(Y, Z)−DXh(X,Z))

− (h(∇XY,Z) + h(Y,∇XZ)− h(∇YX,Z)− h(X,∇Y Z)).

Next we compare the above equality with the Codazzi equation for f :

0 = DXh(Y, Z)−DY h(X,Z)

− (h(∇XY, Z) + h(Y,∇XZ)− h(∇YX,Z)− h(X,∇Y Z))

to obtain

DXh(Y,Z)−DY h(X,Z) = F
(
DXh(Y,Z)−DXh(X,Z)

)
.

Since hi = hi and F (ξi) = ξi, by straightforward computation we get∑
hi(Y,Z)

[
DXξi − F (DXξi)

]
=
∑

hi(X,Z)
[
DY ξi − F (DY ξi)

]
.

But the mappings X 7→ DXξi−F (DXξi) are linear for i = 1, . . . , k. There-
fore from Lemma 1.5 we have F (DXξi) = DXξi for i = 1, . . . , k, which
also implies F (DXξ) = DXξ for every section ξ of N . By Theorem 4.1, this
completes the proof.

R e m a r k 4.3. The affine transformation B obtained in Theorem 4.2 is
unique (comp. [6]). Since Ox = Nx, it is enough to prove that each vector
X ∈ Ox is of the form (f ◦ γ)′′(0) for a curve γ on Mn. It is clear that the
space Ox is spanned by vectors of the form h(X,X), where X ∈ TxMn. If
we take a geodesic γ on Mn such that γ′(0) = X, then

(f ◦ γ)′′(0) = ∇̃γ(f ◦ γ)′(0) = h(γ′(0), γ′(0)).
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