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Convex-like inequality, homogeneity, subadditivity,
and a characterization of LP-norm

by JANUSZ MATKOWSKI and MAREK Pycia (Bielsko-Biala)

Abstract. Let a and b be fixed real numbers such that 0 < min{a,b} <1 < a + b.
We prove that every function f : (0,00) — R satisfying f(as + bt) < af(s) + bf(t),
s,t > 0, and such that limsup, .o, f(¢t) < 0 must be of the form f(t) = f(1)t, t > 0.
This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative.
Some generalizations for functions defined on cones in linear spaces are given. We apply
these results to give a new characterization of the L”-norm.

Introduction. We deal with the functional inequality
flas+bt) < af(s) +bf(),

where a,b € R are fixed real numbers such that
(1) 0 < min{a,b} <1<a-+b

and f is a real function defined on R4 := [0, 00) or (0,00). Our Theorem 2
says that if f(0) = 0, f is bounded above in a neighbourhood of 0, and
satisfies this inequality for all s, > 0, then f must be a linear function. This
improves a result of [6] where f is assumed to be nonnegative. Theorem 1,
the main result of the first section, reads as follows: If f : (0,00) — R
satisfies the above inequality for all s,t > 0, and limsup,_,o, f(t) <0, then
f&) = f()t, t>0.

In Section 2, using Theorems 1 and 2, we obtain their counterparts for
functions defined on convex cones of a linear space. Namely, under some
weak regularity conditions an analogue of the above inequality characterizes
the Banach functionals.
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Applying these results we give a new characterization of the LP-norm

(cf. Theorem 3).

1. Functions satisfying a convex-like inequality on (0,00) and
R;. The main theorem of this section is a refinement of a relevant result of
[6] and reads as follows:

THEOREM 1. Let a,b € R be fixred and such that condition (1) holds. If
f:(0,00) — R satisfies

(2) flas+bt) <af(s)+bf(t), s,t>0,
and
(3) limsup f(£) <0,

t—0+

then f(t) = f(1)t, t > 0.

Proof. There is no loss of generality in assuming that « = min{a, b} <1.
Moreover, by (2),

flas+bla+0b)"t) <af(s)+bla+b)"f(t), s,t>0, neN.
Consequently, we may also assume b > 1. Now we prove the following

CrAm. Under the conditions of Theorem 1 and a < 1 < b there exists
an M > 0 such that

(4) ka™b™ f(t) + M6 > f(ka"b™t + 6),
forallt,6 >0; n,meN, n+m > 0; kZOu--w(n;m).

To show it, take ¢> max{a + b,a™'}. By (3) there exists a tq > 0 such
that f is bounded above on the interval I := (%o, ctp). Thus, for some M > 0,

(5) ft)y<Mt, tel.
From (2), f((a+b)"t) < (a+b)"f(t) for all n € N and ¢ > 0. Hence

fy<mt, te | Ja+b)rr
n=0

(For I C R and A € R we denote by Al the set {A\z : x € I'}.) Since ¢ > a+b,
the intervals (a + b)"I and (a + b)"*!I have a nonempty intersection, and,
consequently, J,~,(a + b)"I = (ty,00). This proves that f(t) < Mt for all
t e (to, OO)

Assume that for some n € N,

f(t) < Mt, teal,
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and take s € a"T'I. There exists an increasing sequence (t;) such that
tr € a"I (k € N), and aty, — s. From (2) we have

f(s) = f(aty +bb (s — aty)) < af(ty) +bf (b~ (s — aty))
< Maty, +bf (b~ (s — aty,)).
According to (3),
f(s) < Ma(lim t) = Ms, se€a""'1I.

k—o0
Hence, by induction,
o
f(s) < Ms, sce€ Ua”[.
n=0

Since the inequality ¢ > a~* implies that (7, a"I = (0, cto), it follows that
f(t) < Mt, t € (0,ctg). Thus we have proved

(6) f(t) < Mt, t>0.

We now show (4) by induction on N :=n +m. For N = 1, (4) follows
immediately from (2) and (6), for £ = 0 it reduces to (6). Take N > 1,
k > 0, choose ki, ko such that

btk =k, < (”*m_l), ka < <”+m_1>,
m m—1
and suppose that
Era" 0™ f(t) + (2a) 716 > f(kya™ o™t 4+ (2a)719),
koa™b™ L F (1) + (2a) 716 > f(koa™b™ Mt + (2a)710).
Hence, in view of (2), we get
ka™b™ f(s) + Mo
= a(k1a™ 0™ f(s) + M(2a)"18) + b(kaa™d™ " f () + M(2a)16)
> af(kia™ 'b™s 4 (2a)710) + bf (kaa"b™ s 4+ (2a)716)
> f(akia™ '0™s 4+ 2716 4+ bkoa"b™ s + 2716) = f(ka"b™s 4 6),
and the induction completes the proof of our claim.

Now note that the set

D:= {ka"bm:m,neN, m+n >0, kzO,...,(n;m)}

is dense in (0,00). Indeed, if logb/loga is irrational, then, in view of Kro-
necker’s Theorem, its subset {a" ™6™ : m,n € N} is dense in (0,00). In the
other case there exist n,m € N such that logb/loga = —n/m, which means
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that @™ = 1. Since for every k,j € N,
ka’b = kaF"tipkmtl e D,

the set D contains a dense subset {ka’b : k,j € N}.
By the definition of D we can write (4) in the following equivalent form:

(7) M)+ Ms> f(AXt+6), XeD, t,6>0.

Now, fix s,t > 0 and take a sequence ()\,,) such that A, € D, A,, < s (n € N),
lim,, 00 A, = s. From (7) we have

Mf (@) +M(s = M)t > fAut + (s = A\)t) = f(st), neN.

Letting n — oo we obtain sf(t) < f(st), which obviously implies that
sf(t) = f(st). Hence f(s) = f(1)s, s > 0, which completes the proof.

Remark 1. It is shown in [6] that every nonnegative function f satisfying
(2) with a,b such that (1) holds must be linear. Obviously, this result is a
consequence of Theorem 1.

ExaAMPLE 1. Take a,b > 0 such that a +b > 1, and ¢ > 0. Then every
function f : (0,00) — R such that ¢ < f(t) < c(a+b), t > 0, satisfies (2).
This shows that the condition (3) in Theorem 1 is essential.

Note that (3) can be considerably weakened if (2) is assumed to hold for
all nonnegative s and ¢t. Namely, we have the following

THEOREM 2. Let a,b € R satisfy (1). If f: Ry — R satisfies
flas+bt) <af(s)+bf(t), s,t>0,
and
(i) £(0) = 0;
(ii) f is bounded above in a right vicinity of 0,
then f(t) = f(1)t, t > 0.
This result is an immediate consequence of Theorem 1 and the following
LEMMA 1. Let a,b € R satisfy (1). Suppose that f : Ry — R satisfies
flas+bt) <af(s)+bf(t), s,t>0.
Then
(i) £(0) > 0.

(ii) If, moreover, f(0) = 0 and f is bounded above in a right vicinity
of 0, then condition (3) holds.

Proof. (i) is obvious. To prove (ii) suppose that, say, a = min{a, b} and
observe that, by the boundedness above of f to the right of 0, we have

¢ = limsup f(t) < 0.
t—0+
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Setting in the assumed inequality s = 0 and making use of the condition
f(0) =0, we get f(at) < af(t) for all ¢ > 0. It follows that ¢ < ac. Since
a < 1 we hence get ¢ < 0, which was to be shown.

EXAMPLE 2. The function f: Ry — R given by f(¢) =t"1, ¢ > 0, and
f(0) = 0 satisfies (2) for all a,b € R such that condition (1) holds. This
shows that, in Theorem 2, the assumption of f being bounded above in
a (right) neighbourhood of 0 is indispensable.

ExAMPLE 3. Let a,b > 0 be rational. Then every discontinuous additive
function f : R — R satisfies (2). It is well known that the graph of f is
a dense subset of the plane (cf. for instance Aczél-Dhombres [1], p. 14).
This also shows that the regularity assumptions in Theorems 1 and 2 are
necessary.

2. Some generalizations for functions defined on cones. In this
section, using Theorems 1 and 2, we prove their more general counterparts.

Let X be a real linear space. A set C C X is said to be a convex cone
in XifC4+C cC andtC C C forallt>0.

A functional p : C — R is called subadditive iff

px+y) <plx)+ply), =zyecC,
and positively homogeneous iff
p(te) =tp(x), t>0, xeC.

In the sequel the functionals satisfying both these conditions (the so-called
Banach functionals) will appear frequently.
Denote by o the zero vector of X. If C is a convex cone in X and o € C,

then tC C C for all ¢t > 0.

COROLLARY 1. Let X be a real linear space and C C X a convex cone
such that o € C. Suppose that a,b € R are fizred and 0 < min{a,b} < 1 <
a+b. Then a function p : C — R is subadditive and positively homogeneous
if and only if

(i) p(o) = 0;

(ii) for every x € C, the function (0,00) 3 t — p(tx) is bounded above
in a right vicinity of 0; and
(8) plaz +by) < ap(z) +bp(y), =z,ycC.

Proof. First suppose that p satisfies (i), (ii), and (8). Then for every
fixed x € C the function f : Ry — R defined by f(t) := p(tx), t > 0,
satisfies all the assumptions of Theorem 2. Consequently, p(tx) = f(t) =
f(1)t = tp(x) for all ¢ > 0, which means that p is positively homogeneous.
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Now the subadditivity of p is a consequence of (8). Since the converse is
obvious, the proof is complete.

In a similar way, applying Theorem 1, we get

COROLLARY 2. Let X be a real linear space and C C X a convex cone.
Suppose that a,b € R are fized and 0 < min{a,b} < 1 < a+b. Then a
function p : C — R is subadditive and positively homogeneous if and only if
it satisfies (8) and

limsupp(tx) <0, xe€C.
t—0+

Let X be a real linear space, C C X a convex cone in X and ¢ : C — R.
We say that ¢ is a linear functional on C iff ¢p(x +y) = ¢(x) + ¢(y) for all
x,y € C, and ¢(tx) = to(x) for all t > 0, x € C. Note that if ¢ # 0, then
¢~ 1({1}) = {x € C : ¢(x) = 1} is a nonempty convex subset of C, and put
supp(¢) := {x € C : ¢(x) # 0}.

The term “linear functional” is legitimate in view of the following

Remark 2. Let ¢ : C — R be additive and positively homogeneous on
a cone C C X such that C N (—C) = {o}. Denote by Y the linear span of
C. It is easy to check that there exists a unique linear functional @ : Y — R
such that @|c = ¢.

PROPOSITION. Let X be a real linear space, C C X a cone in X such
that C N (—=C) = {0}, and ¢ : C — R a linear functional on C such that
¢ >0 on C. Suppose that a,b € R are fized and 0 < min{a,b} < 1 < a+b.
If H : supp(¢) — R satisfies

H(ax +by) < aH(x) +bH(y), =,y € supp(e),
and

limsup H(tx) <0, @ € supp(¢),
t—0+4

then H is positively homogeneous and subadditive.
Moreover, the function h: ¢~1(1) — R defined by

h(zx) := H(xz), xc¢ (1),

H(z) = d(@)h(z/o(x)), < supp(d),
and
©) et y)h((b;‘;iyy))

<olein( 555 ) +own(SL5). e eswn(o)
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Proof. It is easy to check that supp(¢) is a convex cone in X. Therefore
the first conclusion is a consequence of Corollary 2.

To prove the remaining assertion note that z € ¢~1(1) if and only if
there is an @ € supp(®) such that z = x/¢(x). Take any x € supp(¢). By
the positive homogeneity of H and the definition of h we have

H(z) = ¢o(x)H(x/p(x)) = ¢(x)h(x/d(x)).
Hence, the subadditivity of H gives (9). This inequality implies the convexity
of h, and the proof is complete.

Remark 3. Taking in the Proposition X = R*, C = R’i, k € N,
and the functional ¢ : C — Ry, ¢(x) = ¢(z1,...,2r) = z;, the projection
on the x;-axis, i € {1,...,k}, we get the result proved in [5] (cf. also [6]).
Moreover, it is shown in [5] that inequality (9) with ¢ being the projection
characterizes the convex functions h defined on (0,00)*~! and generalizes
Minkowski’s and Holder’s inequalities. Thus inequality (9) may also be in-
terpreted as a generalization of these two fundamental inequalities.

3. An application to a characterization of the LP-norm. For a
measure space (£2, X, ) denote by S = S(£2, X, u) the linear space of all
p-integrable step functions @ : 2 — R and by S = S, (£2, X, u) the set of
all nonnegative x € S. If p,1 : Ry — R are one-to-one, onto and ¢(0) = 0
then the functional P, : § — R given by the formula

Py () :Zw(wawIdu), zeS,
2

is well defined. The goal of this section is to prove the following

THEOREM 3. Let (§2, X, 1) be a measure space with at least two disjoint
sets of finite and positive measure. Suppose that a,b € R are fized numbers
such that

0 < min{a,b} <1< a+b,
and ¢, : Ry — Ry are one-to-one, onto, continuous at 0 and p(0) =
$(0) = 0. If
P, y(ax +by) < aPy y(x) + 0P, 4 (y), x,yeS,,
then o(t) = o()t? and ¥(t) = Y(1)tY? (t > 0) for some p > 1.

Proof. Take any € S;. Then there exist n pairwise disjoint sets
Aq,..., A, € X of finite measure, and z1,...,z, € Ry such that x =
> r—1 TkXA,- (xa stands for the characteristic function of the set A.) From
the definition of P, we have

n

Poy(te) = v [ ¢ oltaldu) =v( D eltz)u(4r), t>0.
2

k=1
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The continuity of ¢ and 1 at zero and ¢(0) = (0) = 0 imply that
lim; o4 Py y(te) = 0. By Corollary 2 the functional P, is positively
homogeneous, i.e.

(10) P, (tx) =tP,4(x), xe€S;, t>0,
and subadditive:
(11) Poy(@+y) <Pyy(x) +Pyy(y), = yesS,:.

By our assumption on the measure space, there are two disjoint sets A, B €
X of finite positive measure. Put o := pu(A) and g := p(B). Taking x :=
T1XA + xaxp With 21,29 > 0 in (10), we get

Y(ap(ter) + Bo(tes)) = th(ap(z1) + Be(a2)).

Since ¥ and ¢ are bijective we can write this equation in the following
equivalent form:

(12)  ap(te™ ! (z1)) + Bolty™ (22))
= Y tyY(axy + Brs)), t>0, x1,29 > 0.

Substituting here first 2o = 0, and next z; = 0 we get
(13) aplty ™ (m) = M (t(am)), £ 0, 2120,
(14) Bo(te™ (22)) = 7 (tp(Ba2)), >0, x2 > 0.
The relations (13) and (14) allow us to write (12) in the form
Ot (aw)) + T (tp(Br2)) = YT (s + Baz)),  t >0, 21,29 >0,
or, equivalently,

() + T (th(x0)) = T (21 + x2)),  t >0, z1,20 > 0.

Thus, for every t > 0, the function ¢! o (t1)) is additive. Since it is non-
negative, it follows that for every ¢ > 0 there is an m(¢) > 0 such that

(15) v Htp(u)) = mt)u,  u > 0.
Writing an analogous equation for every s > 0 we have
G () = m(s)u, > 0.

Composing separately the functions on the left- and the right-hand sides of
these equations we obtain

Y (st(u)) = m(s)m(t)u, u>0.
Replacing t by st in (15) we get
Y (st (u) = m(st)u, u>0.

The last two equations imply that m(st) = m(s)m(t), s,t > 0, i.e. m :
(0,00) — (0, 00) is a solution of the multiplicative Cauchy equation. Putting
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u=11n (15) we get m(t) =1 ~"1(ty)(1)), t > 0. It follows that m is a bijection
of (0,00), and, of course, the inverse function to m,

m=H(t) = v(t)/v(1),  t>0,
is multiplicative. The continuity of 1) at 0 implies that there exists a p € R,
p # 0, such that m=1(t) = t*/? for all t > 0. Hence

Y(t) =t t>0.
Inserting this into (13) we have ap(to~t(z1)) = az1t? for all t > 0 and
x1 > 0. Taking x1 := ¢~ !(1) we obtain
p(t) = p(L)t?,  ¢t>0.

Now, for the above power functions ¢ and 1, (11) reduces to the classical

Minkowski inequality. It follows that p > 1. This completes the proof.

Remark 4. To prove that (13) and (14) imply that ¢ and v are the
inverse power functions we could apply some results proved in [4].

A similar result holds if P, ,, satisfies the opposite inequality to that of
Theorem 3. One should emphasize that, in this case, the regularity assump-
tions on functions ¢ and 1 are superfluous. Namely, we have

THEOREM 4. Let (§2,X, 1) be a measure space with at least two disjoint
sets of finite positive measure. Suppose that a,b € R are fixed with 0 <
min{a,b} < 1 < a+0b, and ¢, : Ry — Ry are one-to-one, onto, and
v(0)=0. If
(16) P, y(ax + by) > aP, y(x) + 0P, 4 (y), x,y €S,
then () = @(1)t? and ¥ (t) = Y(1)t/P (t > 0) for some p, 0 < p < 1.

Proof. Since —P,, satisfies the opposite inequality to (16) and
(=P, y)(x) <0 for all x € S, Corollary 2 implies that P, , is positively
homogeneous, and superadditive on S, i.e.

(17) Poy(@+y) > Poy(x) +Pey(y), zyeS.
Arguing in the same way as in the proof of Theorem 3 we show that the
function m : (0,00) — (0, 00), m(t) = ¥~ tp(1)], ¢ > 0, is multiplicative on
(0, 00).

As in the proof of Theorem 3, take disjoint sets A, B € X of finite positive
measure, and put a := pu(A) and [ := p(B). Substituting, in (17), ,y € S+
such that

T:=T1XA+T2XB, Y:=Y1XA+Y2XBy, T1,%2,Y1,Y2 >0,
we get

Y(ap(r1 +y1) + (e +y2)) > (ap(zr) + Be(r2)) + P (ap(yr) + Be(ye))
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for all x1,x2,y1,y2 > 0. Take arbitrary s,t > 0. Putting

Z1 :(/0(5/0[)_17 T2 = Y1 :07 Y2 :sp(t//@)_17
and making use of the assumption that ¢(0) = 0, we get

P(s+1) = ¢(s) + (), s,t=0.
Hence 1) is increasing, and, consequently, a homeomorphism of R,. It follows
that the multiplicative function m is a homeomorphism of (0, c0).

Now, by an argument as in the proof of Theorem 3, we show that there
exists a p €R, p # 0, such that (t) = ¢(1)tY/? and o(t) = p(1)t?, t > 0.
Substituting these functions into (16) we obtain the “companion” of the
Minkowski inequality which is known to hold only for p € (0,1]. This con-
cludes the proof.

Remark 5. Theorems 3 and 4 can be interpreted to be converses of
the Minkowski inequalities (cf. [7] and [8] where converses of Minkowski’s
inequality other than Theorem 3 are given).
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