Convex-like inequality, homogeneity, subadditivity, and a characterization of L^p -norm

by Janusz Matkowski and Marek Pycia (Bielsko-Biała)

Abstract. Let a and b be fixed real numbers such that $0 < \min\{a,b\} < 1 < a+b$. We prove that every function $f:(0,\infty) \to \mathbb{R}$ satisfying $f(as+bt) \le af(s)+bf(t)$, s,t>0, and such that $\limsup_{t\to 0+} f(t) \le 0$ must be of the form $f(t)=f(1)t,\ t>0$. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the L^p -norm.

Introduction. We deal with the functional inequality

$$f(as + bt) \le af(s) + bf(t),$$

where $a, b \in \mathbb{R}$ are fixed real numbers such that

(1)
$$0 < \min\{a, b\} < 1 < a + b$$

and f is a real function defined on $\mathbb{R}_+ := [0, \infty)$ or $(0, \infty)$. Our Theorem 2 says that if f(0) = 0, f is bounded above in a neighbourhood of 0, and satisfies this inequality for all $s, t \geq 0$, then f must be a linear function. This improves a result of [6] where f is assumed to be nonnegative. Theorem 1, the main result of the first section, reads as follows: If $f:(0,\infty)\to\mathbb{R}$ satisfies the above inequality for all s,t>0, and $\limsup_{t\to 0+} f(t) \leq 0$, then $f(t)=f(1)t,\ t>0$.

In Section 2, using Theorems 1 and 2, we obtain their counterparts for functions defined on convex cones of a linear space. Namely, under some weak regularity conditions an analogue of the above inequality characterizes the Banach functionals.

¹⁹⁹¹ Mathematics Subject Classification: Primary 26D15, 26A51, 39B72; Secondary 46E30.

Key words and phrases: functional inequality, subadditive functions, homogeneous functions, Banach functionals, convex functions, linear space, cones, measure space, integrable step functions, L^p -norm, Minkowski's inequality.

Research supported by the State Committee for Scientific Research (Poland), Grant No. 2 P301 053 03.

Applying these results we give a new characterization of the L^p -norm (cf. Theorem 3).

1. Functions satisfying a convex-like inequality on $(0, \infty)$ and \mathbb{R}_+ . The main theorem of this section is a refinement of a relevant result of [6] and reads as follows:

Theorem 1. Let $a,b \in \mathbb{R}$ be fixed and such that condition (1) holds. If $f:(0,\infty) \to \mathbb{R}$ satisfies

$$(2) f(as+bt) \le af(s) + bf(t), s, t > 0,$$

and

$$\limsup_{t \to 0+} f(t) \le 0,$$

then f(t) = f(1)t, t > 0.

Proof. There is no loss of generality in assuming that $a = \min\{a, b\} < 1$. Moreover, by (2),

$$f(as+b(a+b)^nt) \le af(s)+b(a+b)^nf(t), \quad s,t>0, \ n\in\mathbb{N}.$$

Consequently, we may also assume b > 1. Now we prove the following

Claim. Under the conditions of Theorem 1 and a < 1 < b there exists an M > 0 such that

(4)
$$ka^nb^m f(t) + M\delta \ge f(ka^nb^m t + \delta),$$

for all
$$t, \delta > 0$$
; $n, m \in \mathbb{N}$, $n + m > 0$; $k = 0, \dots, \binom{n+m}{m}$.

To show it, take $c > \max\{a + b, a^{-1}\}$. By (3) there exists a $t_0 > 0$ such that f is bounded above on the interval $I := (t_0, ct_0)$. Thus, for some M > 0,

$$(5) f(t) \le Mt, \quad t \in I.$$

From (2), $f((a+b)^n t) \leq (a+b)^n f(t)$ for all $n \in \mathbb{N}$ and t > 0. Hence

$$f(t) \le Mt, \quad t \in \bigcup_{n=0}^{\infty} (a+b)^n I.$$

(For $I \subset \mathbb{R}$ and $\lambda \in \mathbb{R}$ we denote by λI the set $\{\lambda x : x \in I\}$.) Since c > a+b, the intervals $(a+b)^n I$ and $(a+b)^{n+1} I$ have a nonempty intersection, and, consequently, $\bigcup_{n=0}^{\infty} (a+b)^n I = (t_0, \infty)$. This proves that $f(t) \leq Mt$ for all $t \in (t_0, \infty)$.

Assume that for some $n \in \mathbb{N}$,

$$f(t) \le Mt, \quad t \in a^n I,$$

and take $s \in a^{n+1}I$. There exists an increasing sequence (t_k) such that $t_k \in a^nI$ $(k \in \mathbb{N})$, and $at_k \to s$. From (2) we have

$$f(s) = f(at_k + bb^{-1}(s - at_k)) \le af(t_k) + bf(b^{-1}(s - at_k))$$

$$\le Mat_k + bf(b^{-1}(s - at_k)).$$

According to (3),

$$f(s) \le Ma(\lim_{k \to \infty} t_k) = Ms, \quad s \in a^{n+1}I.$$

Hence, by induction,

$$f(s) \le Ms, \quad s \in \bigcup_{n=0}^{\infty} a^n I.$$

Since the inequality $c > a^{-1}$ implies that $\bigcup_{n=0}^{\infty} a^n I = (0, ct_0)$, it follows that $f(t) \leq Mt$, $t \in (0, ct_0)$. Thus we have proved

$$(6) f(t) \le Mt, \quad t > 0$$

We now show (4) by induction on N := n + m. For N = 1, (4) follows immediately from (2) and (6), for k = 0 it reduces to (6). Take N > 1, k > 0, choose k_1, k_2 such that

$$k_1 + k_2 = k$$
, $k_1 \le \binom{n+m-1}{m}$, $k_2 \le \binom{n+m-1}{m-1}$,

and suppose that

$$k_1 a^{n-1} b^m f(t) + (2a)^{-1} \delta \ge f(k_1 a^{n-1} b^m t + (2a)^{-1} \delta),$$

 $k_2 a^n b^{m-1} f(t) + (2a)^{-1} \delta \ge f(k_2 a^n b^{m-1} t + (2a)^{-1} \delta).$

Hence, in view of (2), we get

$$ka^{n}b^{m}f(s) + M\delta$$

$$= a(k_{1}a^{n-1}b^{m}f(s) + M(2a)^{-1}\delta) + b(k_{2}a^{n}b^{m-1}f(s) + M(2a)^{-1}\delta)$$

$$\geq af(k_{1}a^{n-1}b^{m}s + (2a)^{-1}\delta) + bf(k_{2}a^{n}b^{m-1}s + (2a)^{-1}\delta)$$

$$\geq f(ak_{1}a^{n-1}b^{m}s + 2^{-1}\delta + bk_{2}a^{n}b^{m-1}s + 2^{-1}\delta) = f(ka^{n}b^{m}s + \delta).$$

and the induction completes the proof of our claim.

Now note that the set

$$\mathbb{D} := \left\{ ka^n b^m : m, n \in \mathbb{N}, \ m+n > 0, \ k = 0, \dots, \binom{n+m}{m} \right\}$$

is dense in $(0, \infty)$. Indeed, if $\log b/\log a$ is irrational, then, in view of Kronecker's Theorem, its subset $\{a^{n+1}b^m: m, n \in \mathbb{N}\}$ is dense in $(0, \infty)$. In the other case there exist $n, m \in \mathbb{N}$ such that $\log b/\log a = -n/m$, which means

that $a^n b^m = 1$. Since for every $k, j \in \mathbb{N}$,

$$ka^{j}b = ka^{kn+j}b^{km+1} \in \mathbb{D},$$

the set \mathbb{D} contains a dense subset $\{ka^jb: k, j \in \mathbb{N}\}.$

By the definition of \mathbb{D} we can write (4) in the following equivalent form:

(7)
$$\lambda f(t) + M\delta \ge f(\lambda t + \delta), \quad \lambda \in \mathbb{D}, \ t, \delta > 0.$$

Now, fix s, t > 0 and take a sequence (λ_n) such that $\lambda_n \in \mathbb{D}$, $\lambda_n < s$ $(n \in \mathbb{N})$, $\lim_{n \to \infty} \lambda_n = s$. From (7) we have

$$\lambda_n f(t) + M(s - \lambda_n)t \ge f(\lambda_n t + (s - \lambda_n)t) = f(st), \quad n \in \mathbb{N}.$$

Letting $n \to \infty$ we obtain $sf(t) \le f(st)$, which obviously implies that sf(t) = f(st). Hence f(s) = f(1)s, s > 0, which completes the proof.

Remark 1. It is shown in [6] that every nonnegative function f satisfying (2) with a, b such that (1) holds must be linear. Obviously, this result is a consequence of Theorem 1.

EXAMPLE 1. Take a, b > 0 such that a + b > 1, and c > 0. Then every function $f: (0, \infty) \to \mathbb{R}$ such that $c \le f(t) \le c(a+b)$, t > 0, satisfies (2). This shows that the condition (3) in Theorem 1 is essential.

Note that (3) can be considerably weakened if (2) is assumed to hold for all nonnegative s and t. Namely, we have the following

Theorem 2. Let
$$a, b \in \mathbb{R}$$
 satisfy (1). If $f : \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$f(as + bt) \le af(s) + bf(t), \quad s, t \ge 0,$$

and

- (i) f(0) = 0;
- (ii) f is bounded above in a right vicinity of 0,

then
$$f(t) = f(1)t, t > 0$$
.

This result is an immediate consequence of Theorem 1 and the following

LEMMA 1. Let $a, b \in \mathbb{R}$ satisfy (1). Suppose that $f : \mathbb{R}_+ \to \mathbb{R}$ satisfies

$$f(as+bt) < af(s) + bf(t), \quad s,t > 0.$$

Then

- (i) $f(0) \ge 0$.
- (ii) If, moreover, f(0) = 0 and f is bounded above in a right vicinity of 0, then condition (3) holds.

Proof. (i) is obvious. To prove (ii) suppose that, say, $a = \min\{a, b\}$ and observe that, by the boundedness above of f to the right of 0, we have

$$c := \limsup_{t \to 0+} f(t) < \infty.$$

Setting in the assumed inequality s=0 and making use of the condition f(0)=0, we get $f(at) \leq af(t)$ for all $t\geq 0$. It follows that $c\leq ac$. Since a<1 we hence get $c\leq 0$, which was to be shown.

EXAMPLE 2. The function $f: \mathbb{R}_+ \to \mathbb{R}$ given by $f(t) = t^{-1}$, t > 0, and f(0) = 0 satisfies (2) for all $a, b \in \mathbb{R}$ such that condition (1) holds. This shows that, in Theorem 2, the assumption of f being bounded above in a (right) neighbourhood of 0 is indispensable.

EXAMPLE 3. Let a,b>0 be rational. Then every discontinuous additive function $f:\mathbb{R}\to\mathbb{R}$ satisfies (2). It is well known that the graph of f is a dense subset of the plane (cf. for instance Aczél–Dhombres [1], p. 14). This also shows that the regularity assumptions in Theorems 1 and 2 are necessary.

2. Some generalizations for functions defined on cones. In this section, using Theorems 1 and 2, we prove their more general counterparts.

Let X be a real linear space. A set $C \subset X$ is said to be a *convex cone* in X iff $C + C \subset C$ and $tC \subset C$ for all t > 0.

A functional $p: C \to \mathbb{R}$ is called *subadditive* iff

$$p(x + y) \le p(x) + p(y), \quad x, y \in C,$$

and positively homogeneous iff

$$p(tx) = tp(x), \quad t > 0, x \in C.$$

In the sequel the functionals satisfying both these conditions (the so-called *Banach functionals*) will appear frequently.

Denote by o the zero vector of X. If C is a convex cone in X and $o \in C$, then $tC \subset C$ for all $t \geq 0$.

COROLLARY 1. Let X be a real linear space and $C \subset X$ a convex cone such that $o \in C$. Suppose that $a, b \in \mathbb{R}$ are fixed and $0 < \min\{a, b\} < 1 < a+b$. Then a function $p : C \to \mathbb{R}$ is subadditive and positively homogeneous if and only if

- (i) p(o) = 0;
- (ii) for every $\mathbf{x} \in \mathbf{C}$, the function $(0, \infty) \ni t \to \mathbf{p}(t\mathbf{x})$ is bounded above in a right vicinity of 0; and

(8)
$$p(ax + by) \le ap(x) + bp(y), \quad x, y \in C.$$

Proof. First suppose that p satisfies (i), (ii), and (8). Then for every fixed $x \in C$ the function $f : \mathbb{R}_+ \to \mathbb{R}$ defined by f(t) := p(tx), $t \geq 0$, satisfies all the assumptions of Theorem 2. Consequently, p(tx) = f(t) = f(1)t = tp(x) for all $t \geq 0$, which means that p is positively homogeneous.

Now the subadditivity of p is a consequence of (8). Since the converse is obvious, the proof is complete.

In a similar way, applying Theorem 1, we get

COROLLARY 2. Let X be a real linear space and $C \subset X$ a convex cone. Suppose that $a, b \in \mathbb{R}$ are fixed and $0 < \min\{a, b\} < 1 < a + b$. Then a function $p: C \to \mathbb{R}$ is subadditive and positively homogeneous if and only if it satisfies (8) and

$$\limsup_{t\to 0+} \boldsymbol{p}(t\boldsymbol{x}) \le 0, \quad \boldsymbol{x} \in \boldsymbol{C}.$$

Let X be a real linear space, $C \subset X$ a convex cone in X and $\phi : C \to \mathbb{R}$. We say that ϕ is a linear functional on C iff $\phi(x+y) = \phi(x) + \phi(y)$ for all $x, y \in C$, and $\phi(tx) = t\phi(x)$ for all t > 0, $x \in C$. Note that if $\phi \not\equiv 0$, then $\phi^{-1}(\{1\}) = \{x \in C : \phi(x) = 1\}$ is a nonempty convex subset of C, and put $\sup(\phi) := \{x \in C : \phi(x) \neq 0\}$.

The term "linear functional" is legitimate in view of the following

Remark 2. Let $\phi: C \to \mathbb{R}$ be additive and positively homogeneous on a cone $C \subset X$ such that $C \cap (-C) = \{o\}$. Denote by Y the linear span of C. It is easy to check that there exists a unique linear functional $\Phi: Y \to \mathbb{R}$ such that $\Phi|_{C} = \phi$.

PROPOSITION. Let X be a real linear space, $C \subset X$ a cone in X such that $C \cap (-C) = \{o\}$, and $\phi : C \to \mathbb{R}$ a linear functional on C such that $\phi \geq 0$ on C. Suppose that $a, b \in \mathbb{R}$ are fixed and $0 < \min\{a, b\} < 1 < a + b$. If $H : \operatorname{supp}(\phi) \to \mathbb{R}$ satisfies

$$H(a\mathbf{x} + b\mathbf{y}) \le aH(\mathbf{x}) + bH(\mathbf{y}), \quad \mathbf{x}, \mathbf{y} \in \text{supp}(\phi),$$

and

$$\limsup_{t \to 0+} H(t\boldsymbol{x}) \le 0, \quad \boldsymbol{x} \in \operatorname{supp}(\phi),$$

then H is positively homogeneous and subadditive.

Moreover, the function $h: \phi^{-1}(1) \to \mathbb{R}$ defined by

$$h(x) := H(x), \quad x \in \phi^{-1}(1),$$

is convex,

$$H(\mathbf{x}) = \phi(\mathbf{x})h(\mathbf{x}/\phi(\mathbf{x})), \quad \mathbf{x} \in \text{supp}(\phi),$$

and

(9)
$$\phi(x + y)h\left(\frac{x + y}{\phi(x + y)}\right)$$

 $\leq \phi(x)h\left(\frac{x}{\phi(x)}\right) + \phi(y)h\left(\frac{y}{\phi(y)}\right), \quad x, y \in \text{supp}(\phi).$

Proof. It is easy to check that $supp(\phi)$ is a convex cone in X. Therefore the first conclusion is a consequence of Corollary 2.

To prove the remaining assertion note that $z \in \phi^{-1}(1)$ if and only if there is an $x \in \text{supp}(\Phi)$ such that $z = x/\phi(x)$. Take any $x \in \text{supp}(\phi)$. By the positive homogeneity of H and the definition of h we have

$$H(\mathbf{x}) = \phi(\mathbf{x})H(\mathbf{x}/\phi(\mathbf{x})) = \phi(\mathbf{x})h(\mathbf{x}/\phi(\mathbf{x})).$$

Hence, the subadditivity of H gives (9). This inequality implies the convexity of h, and the proof is complete.

Remark 3. Taking in the Proposition $X = \mathbb{R}^k$, $C = \mathbb{R}^k_+$, $k \in \mathbb{N}$, and the functional $\phi : C \to \mathbb{R}_+$, $\phi(x) = \phi(x_1, \dots, x_k) = x_i$, the projection on the x_i -axis, $i \in \{1, \dots, k\}$, we get the result proved in [5] (cf. also [6]). Moreover, it is shown in [5] that inequality (9) with ϕ being the projection characterizes the convex functions h defined on $(0, \infty)^{k-1}$ and generalizes Minkowski's and Hölder's inequalities. Thus inequality (9) may also be interpreted as a generalization of these two fundamental inequalities.

3. An application to a characterization of the L^p -norm. For a measure space (Ω, Σ, μ) denote by $\mathbf{S} = \mathbf{S}(\Omega, \Sigma, \mu)$ the linear space of all μ -integrable step functions $\mathbf{x}: \Omega \to \mathbb{R}$ and by $\mathbf{S}_+ = \mathbf{S}_+(\Omega, \Sigma, \mu)$ the set of all nonnegative $\mathbf{x} \in \mathbf{S}$. If $\varphi, \psi: \mathbb{R}_+ \to \mathbb{R}_+$ are one-to-one, onto and $\varphi(0) = 0$ then the functional $\mathbf{P}_{\varphi,\psi}: \mathbf{S} \to \mathbb{R}$ given by the formula

$$\mathbf{P}_{arphi,\psi}(oldsymbol{x}) := \psi\Big(\int\limits_{\Omega} \, arphi \circ |oldsymbol{x}| \, d\mu\Big), \quad \, oldsymbol{x} \in oldsymbol{S},$$

is well defined. The goal of this section is to prove the following

THEOREM 3. Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite and positive measure. Suppose that $a, b \in \mathbb{R}$ are fixed numbers such that

$$0 < \min\{a, b\} < 1 < a + b$$

and $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ are one-to-one, onto, continuous at 0 and $\varphi(0) = \psi(0) = 0$. If

$$\mathbf{P}_{\varphi,\psi}(a\mathbf{x} + b\mathbf{y}) \le a\mathbf{P}_{\varphi,\psi}(\mathbf{x}) + b\mathbf{P}_{\varphi,\psi}(\mathbf{y}), \quad \mathbf{x}, \mathbf{y} \in \mathbf{S}_+,$$

then
$$\varphi(t) = \varphi(1)t^p$$
 and $\psi(t) = \psi(1)t^{1/p}$ $(t \ge 0)$ for some $p \ge 1$.

Proof. Take any $\boldsymbol{x} \in S_+$. Then there exist n pairwise disjoint sets $A_1, \ldots, A_n \in \Sigma$ of finite measure, and $x_1, \ldots, x_n \in \mathbb{R}_+$ such that $\boldsymbol{x} = \sum_{k=1}^n x_k \chi_{A_k}$. (χ_A stands for the characteristic function of the set A.) From the definition of $\mathbf{P}_{\varphi,\psi}$ we have

$$\mathbf{P}_{\varphi,\psi}(t\boldsymbol{x}) = \psi\Big(\int\limits_{\Omega} \varphi \circ |t\boldsymbol{x}| \, d\mu\Big) = \psi\Big(\sum_{k=1}^{n} \varphi(tx_k)\mu(A_k)\Big), \quad t > 0.$$

The continuity of φ and ψ at zero and $\varphi(0) = \psi(0) = 0$ imply that $\lim_{t\to 0+} \mathbf{P}_{\varphi,\psi}(t\mathbf{x}) = 0$. By Corollary 2 the functional $\mathbf{P}_{\varphi,\psi}$ is positively homogeneous, i.e.

(10)
$$\mathbf{P}_{\varphi,\psi}(t\mathbf{x}) = t\mathbf{P}_{\varphi,\psi}(\mathbf{x}), \quad \mathbf{x} \in \mathbf{S}_+, \ t > 0,$$

and subadditive:

(11)
$$\mathbf{P}_{\varphi,\psi}(x+y) \leq \mathbf{P}_{\varphi,\psi}(x) + \mathbf{P}_{\varphi,\psi}(y), \quad x, y \in S_+.$$

By our assumption on the measure space, there are two disjoint sets $A, B \in \Sigma$ of finite positive measure. Put $\alpha := \mu(A)$ and $\beta := \mu(B)$. Taking $\boldsymbol{x} := x_1 \chi_A + x_2 \chi_B$ with $x_1, x_2 \geq 0$ in (10), we get

$$\psi(\alpha\varphi(tx_1) + \beta\varphi(tx_2)) = t\psi(\alpha\varphi(x_1) + \beta\varphi(x_2)).$$

Since ψ and φ are bijective we can write this equation in the following equivalent form:

(12)
$$\alpha \varphi(t\varphi^{-1}(x_1)) + \beta \varphi(t\varphi^{-1}(x_2))$$

= $\psi^{-1}(t\psi(\alpha x_1 + \beta x_2)), \quad t > 0, \ x_1, x_2 \ge 0.$

Substituting here first $x_2 = 0$, and next $x_1 = 0$ we get

(13)
$$\alpha \varphi(t\varphi^{-1}(x_1)) = \psi^{-1}(t\psi(\alpha x_1)), \quad t > 0, \ x_1 \ge 0,$$

(14)
$$\beta \varphi(t\varphi^{-1}(x_2)) = \psi^{-1}(t\psi(\beta x_2)), \quad t > 0, \ x_2 \ge 0.$$

The relations (13) and (14) allow us to write (12) in the form

$$\psi^{-1}(t\psi(\alpha x_1)) + \psi^{-1}(t\psi(\beta x_2)) = \psi^{-1}(t\psi(\alpha x_1 + \beta x_2)), \quad t > 0, \ x_1, x_2 \ge 0,$$
 or, equivalently,

$$\psi^{-1}(t\psi(x_1)) + \psi^{-1}(t\psi(x_2)) = \psi^{-1}(t\psi(x_1 + x_2)), \quad t > 0, \ x_1, x_2 \ge 0.$$

Thus, for every t > 0, the function $\psi^{-1} \circ (t\psi)$ is additive. Since it is non-negative, it follows that for every t > 0 there is an m(t) > 0 such that

(15)
$$\psi^{-1}(t\psi(u)) = m(t)u, \quad u > 0.$$

Writing an analogous equation for every s>0 we have

$$\psi^{-1}(s\psi(u)) = m(s)u, \quad u > 0.$$

Composing separately the functions on the left- and the right-hand sides of these equations we obtain

$$\psi^{-1}(st\psi(u)) = m(s)m(t)u, \quad u > 0.$$

Replacing t by st in (15) we get

$$\psi^{-1}(st\psi(u)) = m(st)u, \quad u > 0.$$

The last two equations imply that m(st) = m(s)m(t), s, t > 0, i.e. $m: (0, \infty) \to (0, \infty)$ is a solution of the multiplicative Cauchy equation. Putting

u=1 in (15) we get $m(t)=\psi^{-1}(t\psi(1))$, t>0. It follows that m is a bijection of $(0,\infty)$, and, of course, the inverse function to m,

$$m^{-1}(t) = \psi(t)/\psi(1), \quad t > 0,$$

is multiplicative. The continuity of ψ at 0 implies that there exists a $p \in \mathbb{R}$, $p \neq 0$, such that $m^{-1}(t) = t^{1/p}$ for all t > 0. Hence

$$\psi(t) = \psi(1)t^{1/p}, \quad t > 0.$$

Inserting this into (13) we have $\alpha \varphi(t\varphi^{-1}(x_1)) = \alpha x_1 t^p$ for all t > 0 and $x_1 \ge 0$. Taking $x_1 := \varphi^{-1}(1)$ we obtain

$$\varphi(t) = \varphi(1)t^p, \quad t > 0.$$

Now, for the above power functions φ and ψ , (11) reduces to the classical Minkowski inequality. It follows that $p \geq 1$. This completes the proof.

Remark 4. To prove that (13) and (14) imply that φ and ψ are the inverse power functions we could apply some results proved in [4].

A similar result holds if $\mathbf{P}_{\varphi,\psi}$ satisfies the opposite inequality to that of Theorem 3. One should emphasize that, in this case, the regularity assumptions on functions φ and ψ are superfluous. Namely, we have

Theorem 4. Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite positive measure. Suppose that $a, b \in \mathbb{R}$ are fixed with $0 < \min\{a,b\} < 1 < a+b$, and $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ are one-to-one, onto, and $\varphi(0) = 0$. If

(16)
$$\mathbf{P}_{\varphi,\psi}(a\mathbf{x} + b\mathbf{y}) \ge a\mathbf{P}_{\varphi,\psi}(\mathbf{x}) + b\mathbf{P}_{\varphi,\psi}(\mathbf{y}), \quad \mathbf{x}, \mathbf{y} \in \mathbf{S}_+,$$

then $\varphi(t) = \varphi(1)t^p$ and $\psi(t) = \psi(1)t^{1/p}$ $(t \ge 0)$ for some $p, 0 .$

Proof. Since $-\mathbf{P}_{\varphi,\psi}$ satisfies the opposite inequality to (16) and $(-\mathbf{P}_{\varphi,\psi})(\mathbf{x}) \leq 0$ for all $\mathbf{x} \in \mathbf{S}_+$, Corollary 2 implies that $\mathbf{P}_{\varphi,\psi}$ is positively homogeneous, and superadditive on \mathbf{S}_+ , i.e.

(17)
$$\mathbf{P}_{\varphi,\psi}(x+y) \ge \mathbf{P}_{\varphi,\psi}(x) + \mathbf{P}_{\varphi,\psi}(y), \quad x, y \in S_+.$$

Arguing in the same way as in the proof of Theorem 3 we show that the function $m:(0,\infty)\to(0,\infty), m(t)=\psi^{-1}[t\psi(1)], t>0$, is multiplicative on $(0,\infty)$.

As in the proof of Theorem 3, take disjoint sets $A, B \in \Sigma$ of finite positive measure, and put $\alpha := \mu(A)$ and $\beta := \mu(B)$. Substituting, in (17), $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}_+$ such that

$$x := x_1 \chi_A + x_2 \chi_B, \quad y := y_1 \chi_A + y_2 \chi_B, \quad x_1, x_2, y_1, y_2 \ge 0,$$

we get

$$\psi(\alpha\varphi(x_1+y_1)+\beta\varphi(x_2+y_2)) \ge \psi(\alpha\varphi(x_1)+\beta\varphi(x_2))+\psi(\alpha\varphi(y_1)+\beta\varphi(y_2))$$

for all $x_1, x_2, y_1, y_2 \ge 0$. Take arbitrary $s, t \ge 0$. Putting

$$x_1 = \varphi(s/\alpha)^{-1}, \quad x_2 = y_1 = 0, \quad y_2 = \varphi(t/\beta)^{-1},$$

and making use of the assumption that $\varphi(0) = 0$, we get

$$\psi(s+t) \ge \psi(s) + \psi(t), \quad s, t \ge 0.$$

Hence ψ is increasing, and, consequently, a homeomorphism of \mathbb{R}_+ . It follows that the multiplicative function m is a homeomorphism of $(0, \infty)$.

Now, by an argument as in the proof of Theorem 3, we show that there exists a $p \in \mathbb{R}$, $p \neq 0$, such that $\psi(t) = \psi(1)t^{1/p}$ and $\varphi(t) = \varphi(1)t^p$, t > 0. Substituting these functions into (16) we obtain the "companion" of the Minkowski inequality which is known to hold only for $p \in (0,1]$. This concludes the proof.

Remark 5. Theorems 3 and 4 can be interpreted to be converses of the Minkowski inequalities (cf. [7] and [8] where converses of Minkowski's inequality other than Theorem 3 are given).

References

- J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge University Press, Cambridge, Sydney, 1989.
- [2] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1957.
- [3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's equation and Jensen's inequality, Prace Nauk. Uniw. Śl. 489, Polish Scientific Publishers, 1985.
- [4] J. Matkowski, On a characterization of L^p-norm, Ann. Polon. Math. 50 (1989), 137–144.
- [5] —, A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 168–180.
- [6] —, Functional inequality characterizing nonnegative concave functions in (0, ∞), ibid.
 43 (1992), 219–224.
- [7] —, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663–675.
- [8] —, L^p-like paranorms, in: Selected Topics in Functional Equations and Iteration Theory, Proc. Austrian-Polish Seminar, Graz, 1991, Grazer Math. Ber. 316 (1992), 103–135.

DEPARTMENT OF MATHEMATICS TECHNICAL UNIVERSITY WILLOWA 2 43-309 BIELSKO-BIAłA, POLAND RAFOWA 21 43-300 BIELSKO-BIAłA, POLAND

Reçu par la Rédaction le 4.10.1993 Révisé le 16.12.1993