On the uniqueness of continuous solutions of functional equations

by Bolestaw Gawee (Katowice)

Abstract

We consider the problem of the vanishing of non-negative continuous solutions ψ of the functional inequalities

$$
\begin{equation*}
\psi(f(x)) \leq \beta(x, \psi(x)) \tag{1}
\end{equation*}
$$

and
(2)

$$
\alpha(x, \psi(x)) \leq \psi(f(x)) \leq \beta(x, \psi(x))
$$

where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions $\varphi: I \rightarrow Y$ of the equation

$$
\begin{equation*}
\varphi(f(x))=g(x, \varphi(x)) \tag{3}
\end{equation*}
$$

where Y denotes an arbitrary metric space.
It is well known that the iterative properties of the given function f occurring in (3) play a fundamental role in the theory of continuous solutions of this equation. For the most part, the assumptions imposed on f in the literature imply very simple dynamics of f; it is usually assumed that f has exactly one fixed point which is, moreover, attractive (cf. [5] or [6]). Papers in which the dynamical behaviour of f plays a role and this assumption is not imposed appear quite seldom. (The author can only quote [1]-[4].)

In [2] one can find results on the vanishing of non-negative continuous solutions of

$$
\alpha(x, \psi(x)) \leq \psi(f(x))
$$

as well as on the uniqueness of continuous solutions of (3). Now we want to investigate (1), (2) and (3) in the spirit of [2] but under complementary assumptions on the given functions α and g.

[^0]We use the following notations. If $f: I \rightarrow I$ and $n \in \mathbb{N}$ then the set of all periodic points of f with period n is denoted by $\operatorname{Per}(f, n)$, i.e.,

$$
\operatorname{Per}(f, n)=\left\{x \in I: f^{n}(x)=x, f^{i}(x) \neq x \text { for } i=1, \ldots, n-1\right\}
$$

The trajectory $\left\{f^{k}(x): k \in \mathbb{N}_{0}\right\}$ of any point $x \in \bigcup_{n=1}^{\infty} \operatorname{Per}(f, n)$ is called a cycle. Of course any cycle is a finite set. Its cardinality will be called the order of the cycle. Clearly, if C is a cycle of order n and $x \in C$ then $x \in \operatorname{Per}(f, n)$ and $C=\left\{x, f(x), \ldots, f^{n-1}(x)\right\}$. Furthermore, we put

$$
\operatorname{Per} f=\bigcup_{n=1}^{\infty} \operatorname{Per}(f, n)
$$

and (if $\operatorname{Per} f \neq \emptyset$)

$$
Z_{f}=[\inf \operatorname{Per} f, \sup \operatorname{Per} f] .
$$

Given a real interval I (not necessarily compact) consider the following hypotheses concerning the functions α and β.
$\left(\mathrm{H}_{1}\right) \beta$ maps $I \times[0, \infty)$ into $[0, \infty)$ and

$$
\begin{array}{ll}
\beta(x, 0)=0 & \text { for } x \in I \\
\beta(x, y)<y & \text { for } x \in I, y \in(0, \infty) .
\end{array}
$$

$\left(\mathrm{H}_{2}\right) \alpha$ maps $I \times[0, \infty)$ into $[0, \infty)$ and

$$
\begin{array}{ll}
\alpha(x, 0)=0 & \text { for } x \in I \\
\alpha(x, y)>0 & \text { for } x \in I, y \in(0, \infty)
\end{array}
$$

Below we list some immediate observations.
Remark 1. Assume $f: I \rightarrow I$. If $\left(\mathrm{H}_{1}\right)$ is satisfied and $\psi: I \rightarrow[0, \infty)$ is a solution of (1) then

$$
\begin{equation*}
\psi(f(x)) \leq \psi(x) \quad \text { for } x \in I \tag{4}
\end{equation*}
$$

and, for every $x \in I$,

$$
\begin{equation*}
\text { if } \psi(x)>0 \text { then } \psi(f(x))<\psi(x) \text {. } \tag{5}
\end{equation*}
$$

In particular, we have the following simple statement.
Remark 2. Assume $\left(\mathrm{H}_{1}\right)$ and let $f: I \rightarrow I$. If $\psi: I \rightarrow[0, \infty)$ is a solution of (1) then

$$
\begin{equation*}
\psi(x)=0 \quad \text { for } x \in \operatorname{Per} f \tag{6}
\end{equation*}
$$

In a sense, a converse of Remark 1 holds true:

Remark 3. Assume $f: I \rightarrow I$. If $\psi: I \rightarrow[0, \infty)$ satisfies (4) and (5) then $\beta: I \times[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\beta(x, y)= \begin{cases}\psi(f(x)) & \text { if } y=\psi(x) \\ 0 & \text { if } y \neq \psi(x)\end{cases}
$$

satisfies $\left(\mathrm{H}_{1}\right)$ and ψ is a solution of (1).
Remark 4. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ and let $f: I \rightarrow I$. If $\psi: I \rightarrow[0, \infty)$ is a solution of (2) then, for every $x \in I$,

$$
\begin{equation*}
\psi(x)=0 \quad \text { if and only if } \quad \psi(f(x))=0 . \tag{7}
\end{equation*}
$$

Our first aim is to prove the following result:
Theorem 1. Assume $\left(\mathrm{H}_{1}\right)$ and let $f: I \rightarrow I$ be continuous. If $\psi: I \rightarrow$ $[0, \infty)$ is a continuous solution of (1) then

$$
\psi(x)=0 \quad \text { for } x \in I \cap Z_{f}
$$

The proof will easily follow from the following lemma. I owe this proof to the referee (the original proof was much longer). In the lemma below we do not need the assumption that I is an interval. It can be an arbitrary topological space.

Lemma 1. Assume $\left(\mathrm{H}_{1}\right)$, let $f: I \rightarrow I$ and let A be a compact subset of I such that $A \subset f(A)$. If $\psi: I \rightarrow[0, \infty)$ is a continuous solution of (1) then $\psi(x)=0$ for $x \in A$.

Proof. Let $x_{0} \in A$ be such that $\psi\left(x_{0}\right)=\sup \psi(A)$, and choose an $x_{1} \in A$ with $f\left(x_{1}\right)=x_{0}$. If $\psi\left(x_{0}\right)>0$ then, by (5), $\psi\left(x_{0}\right)=\psi\left(f\left(x_{1}\right)\right)<\psi\left(x_{1}\right)$, which contradicts the choice of x_{0}.

Proof of Theorem 1. Let a and $b, a \leq b$, be periodic points of f with periods k and l, respectively. To complete the proof it is enough to apply Lemma 1 to $f^{k l}$ (in place of f; cf. also Remark 1) and $A=[a, b]$.

Now we apply Theorem 1 to the problem of uniqueness of continuous solutions of (3). To this end fix a metric space (Y, σ) and consider the following hypothesis:
$\left(\mathrm{H}_{3}\right) g$ maps a subset Ω of $I \times Y$ into Y and there exists a function β satisfying $\left(\mathrm{H}_{1}\right)$ and such that

$$
\sigma\left(g\left(x, y_{1}\right), g\left(x, y_{2}\right)\right) \leq \beta\left(x, \sigma\left(y_{1}, y_{2}\right)\right)
$$

for every $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \Omega$.
Corollary 1. Assume $\left(\mathrm{H}_{3}\right)$ and let $f: I \rightarrow I$ be continuous. If φ_{1}, φ_{2} : $I \rightarrow Y$ are continuous solutions of equation (3) then $\varphi_{1}(x)=\varphi_{2}(x)$ for $x \in I \cap Z_{f}$.

Proof. It is enough to observe that the function $\psi: I \rightarrow[0, \infty)$ given by

$$
\begin{equation*}
\psi(x)=\sigma\left(\varphi_{1}(x), \varphi_{2}(x)\right) \tag{8}
\end{equation*}
$$

is a continuous solution of (1), and use Theorem 1 .
Now we pass to the study of non-negative continuous solutions of (2). Let us start with the following lemma, important in the proof of Theorem 2.

Lemma 2. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$, let $f: I \rightarrow I$ be continuous and let $J \subset I$ be an interval containing a fixed point of f. Then there exists a subinterval K of I containing J and such that any continuous solution $\psi: I \rightarrow[0, \infty)$ of (2) vanishing on J vanishes also on K and, moreover, either

- $\{\inf K, \sup K\}$ contains a fixed point of f, or
- $\{\inf K, \sup K\}$ is a cycle of f of order 2 , or
- $K=I$.

Proof. Clearly we can assume that J is not a singleton. Put

$$
K_{0}=\bigcup_{n=0}^{\infty} f^{n}(J)
$$

By Remark 1, any continuous solution $\psi: I \rightarrow[0, \infty)$ of (2) vanishing on J vanishes also on K_{0}. Since J contains a fixed point of f, the set K_{0} is an interval. Moreover, $J \subset K_{0} \subset f^{-1}\left(K_{0}\right)$.

By induction we construct a sequence ($K_{n}: n \in \mathbb{N}$) of intervals such that each K_{n} is a component of $\operatorname{cl}_{I} f^{-1}\left(K_{n-1}\right)$ containing K_{n-1}. Making use of Remark 4 it is easy to observe that any continuous solution $\psi: I \rightarrow[0, \infty)$ of (2) vanishing on J vanishes also on each K_{n}, i.e. on $\bigcup_{n=0}^{\infty} K_{n}$. Let

$$
K=\bigcup_{n=0}^{\infty} K_{n}, \quad a_{n}=\inf K_{n}, \quad b_{n}=\sup K_{n}, \quad n \in \mathbb{N}_{0} .
$$

Clearly K is an interval containing J and $K_{n}=\left[a_{n}, b_{n}\right] \cap I$ for $n \in \mathbb{N}_{0}$.
We now prove that for every $n \in \mathbb{N}_{0}$,

- either $a_{n+1}=\inf I$ or $f\left(a_{n+1}\right) \in\left\{a_{n}, b_{n}\right\}$, and
- either $b_{n+1}=\sup I$ or $f\left(b_{n+1}\right) \in\left\{a_{n}, b_{n}\right\}$.

For suppose that one of the above conditions is not satisfied, say $a_{n+1}>$ $\inf I$ and $f\left(a_{n+1}\right) \in\left(a_{n}, b_{n}\right)$ for some $n \in \mathbb{N}_{0}$. By the continuity of f there exists a $\delta>0$ such that $\left(a_{n+1}-\delta, a_{n+1}\right] \subset I$ and

$$
f\left(\left(a_{n+1}-\delta, a_{n+1}\right]\right) \subset\left(a_{n}, b_{n}\right)
$$

Therefore $\left(a_{n+1}-\delta, a_{n+1}\right] \cup K_{n+1}$ is a connected set containing K_{n} and contained in $\mathrm{cl}_{I} f^{-1}\left(K_{n}\right)$, which contradicts the definition of K_{n+1}.

Now, since $\left(a_{n}: n \in \mathbb{N}\right)$ decreases and $\left(b_{n}: n \in \mathbb{N}\right)$ increases, we infer that
either $a_{n}=\inf I$ for n sufficiently large or $f\left(a_{n+1}\right) \in\left\{a_{n}, b_{n}\right\}$ for every $n \in \mathbb{N}$, and
either $b_{n}=\sup I$ for n sufficiently large or $f\left(b_{n+1}\right) \in\left\{a_{n}, b_{n}\right\}$ for every $n \in \mathbb{N}$.
Let $a=\lim _{n \rightarrow \infty} a_{n}$ and $b=\lim _{n \rightarrow \infty} b_{n}$. Then $a=\inf K, b=\sup K$ and, by (9) and (10),

- either $a=\inf I$ or $f(a) \in\{a, b\}$, and
- either $b=\sup I$ or $f(b) \in\{a, b\}$.

Assume that $\{a, b\}$ does not contain any fixed point of f and is not a cycle of f of order 2. To finish the proof it is enough to prove that neither

- $\inf I=a=f(b)$ and $b<\sup I$, nor
- $\sup I=b=f(a)$ and $a>\inf I$.

Suppose, for instance, that the first alternative holds true. (In the second case we proceed analogously.) Since $a=f(b)$ we have $a \in I$. If $\inf I<a_{n}$ for $n \in \mathbb{N}$ then, by $(9), f(a) \in\{a, b\}$, whence either $a=f(a)$ or $\{a, b\}$ is a cycle of f of order 2 . Consequently, we may assume that there exists an $n_{0} \in \mathbb{N}$ such that $a_{n}=\inf I$ for $n \geq n_{0}$. Then, according to (10) and the fact that $f(b)=a$, we can find an $n \geq n_{0}$ for which $f\left(b_{n+1}\right)=a_{n}=\inf I$. Since $b_{n+1} \leq b<\sup I$, from the continuity of f we deduce that there exists a $\delta>0$ such that $\left[b_{n+1}, b_{n+1}-\delta\right] \subset I$ and

$$
a_{n}=\inf I \leq f(x)<b_{n} \quad \text { for } x \in\left[b_{n+1}, b_{n+1}+\delta\right)
$$

Therefore $K_{n+1} \cup\left[b_{n+1}, b_{n+1}+\delta\right)$ is a connected set containing K_{n} and contained in $\mathrm{cl}_{I} f^{-1}\left(K_{n}\right)$, which contradicts the definition of K_{n+1} and finishes the proof of the lemma.

Theorem 2. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$, let $f: I \rightarrow I$ be continuous and let $J \subset I$ be an interval containing a fixed point of f and such that $\operatorname{cl}_{I}(I \backslash J)$ contains no cycle of f of order not greater than two. If $\psi: I \rightarrow[0, \infty)$ is a continuous solution of (2) vanishing on J then ψ is the zero function.

Proof. Clearly we can assume that $J=\operatorname{cl}_{I} J$. If $\inf I<\inf J$ and $\sup J<\sup I$ then the assertion follows from Lemma 2. Thus let $\inf J=$ $\inf I$ or $\sup J=\sup I$. Assume, for instance, the first possibility and fix a continuous solution $\psi: I \rightarrow[0, \infty)$ of (2) vanishing on J. We now prove that $\psi\left(x_{0}\right)=0$ for each $x_{0} \in I$. Of course, we can consider the case $x_{0}>\sup J$ only.

First assume that $x_{0}<f\left(x_{0}\right)$. Then, by our assumptions,

$$
f(x)>x \quad \text { for } x \in I \cap[\sup J, \infty)
$$

whence we can construct a sequence ($x_{n}: n \in \mathbb{N}$) of points of I converging to $\sup \operatorname{Per}(f, 1)$ such that $f\left(x_{n+1}\right)=x_{n}$ for $n \in \mathbb{N}_{0}$. Since $\sup \operatorname{Per}(f, 1)<\sup J$ it follows that $x_{n} \in J$ for an $n \in \mathbb{N}$. Thus $\psi\left(x_{n}\right)=0$, which means (cf. Remark 4) that $\psi\left(x_{0}\right)=\psi\left(f^{n}\left(x_{n}\right)\right)=0$.

In the case $f\left(x_{0}\right)<x_{0}$ we proceed similarly. Then $f(x)<x$ for $x \in$ $I \cap[\sup J, \infty)$, whence we deduce that if $f^{n}\left(x_{0}\right)>\sup J$ then $f^{n+1}\left(x_{0}\right)<$ $f^{n}\left(x_{0}\right)$, for every $n \in \mathbb{N}_{0}$. Therefore either

- $f^{n}\left(x_{0}\right) \in J$ for some $n \in \mathbb{N}$, or
- $\sup J \leq f^{n+1}\left(x_{0}\right)<f^{n}\left(x_{0}\right)$ for every $n \in \mathbb{N}$.

But in the latter case we would have

$$
\lim _{n \rightarrow \infty} f^{n}\left(x_{0}\right) \in \operatorname{Per}(f, 1) \cap \operatorname{cl}_{I}(I \backslash J)
$$

which is impossible. Therefore $f^{n}\left(x_{0}\right) \in J$ for some $n \in \mathbb{N}$. Consequently, $\psi\left(f^{n}\left(x_{0}\right)\right)=0$, which means (cf. (7)) that $\psi\left(x_{0}\right)=0$.

As a consequence of Theorems 1 and 2 we get the following fact:
Corollary 2. Assume $\left(\mathrm{H}_{1}\right)$, $\left(\mathrm{H}_{2}\right)$ and let $f: I \rightarrow I$ be continuous. If Per $f \neq \emptyset$ and $\operatorname{cl}_{I}\left(I \backslash Z_{f}\right)$ contains no cycle of f of order not greater than 2 then the zero function is the unique continuous solution $\psi: I \rightarrow[0, \infty)$ of (2).

In order to apply Theorem 2 and Corollary 2 to the problem of uniqueness of continuous solutions of (3) fix a metric space (Y, σ) and consider the following hypothesis:
$\left(\mathrm{H}_{4}\right) g$ maps a subset Ω of $I \times Y$ into Y and there exist β and α satisfying $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ respectively, and such that

$$
\alpha\left(x, \sigma\left(y_{1}, y_{2}\right)\right) \leq \sigma\left(g\left(x, y_{1}\right), g\left(x, y_{2}\right)\right) \leq \beta\left(x, \sigma\left(y_{1}, y_{2}\right)\right)
$$

for every $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \Omega$.
Corollary 3. Assume $\left(\mathrm{H}_{4}\right)$, let $f: I \rightarrow I$ be continuous and let $J \subset I$ be an interval containing a fixed point of f such that $\mathrm{cl}_{I}(I \backslash J)$ contains no cycle of f of order not greater than 2. If $\varphi_{1}, \varphi_{2}: I \rightarrow Y$ are continuous solutions of equation (3) and $\varphi_{1}(x)=\varphi_{2}(x)$ for $x \in J$, then $\varphi_{1}=\varphi_{2}$.

Proof. Since $\psi: I \rightarrow[0, \infty)$ defined by (8) is a continuous solution of (2) it suffices to use Theorem 2.

Corollary 4. Assume $\left(\mathrm{H}_{4}\right)$ and let $f: I \rightarrow I$ be continuous. If Per f $\neq \emptyset$ and $\operatorname{cl}_{I}\left(I \backslash Z_{f}\right)$ contains no cycle of f of order not greater than 2 then (3) has at most one continuous solution $\varphi: I \rightarrow Y$.

Modifying a little a classical reasoning from [5] we show in the next two examples that inequalities (2) can allow a lot of non-negative continuous
solutions when $\operatorname{cl}_{I}\left(I \backslash Z_{f}\right)$ contains a cycle of f of order 2 as well as when it contains a fixed point of f.

Example 1. Fix an $s \in(0,1)$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary continuous function satisfying the following conditions:

- $f([0,1]) \subset[0,1]$,
- $\left.f\right|_{(-\infty, 0]}$ is strictly decreasing,
- $\left.f\right|_{[1, \infty)}$ is decreasing,
- $1<f(x)<-x+1$ for $x<0$,
- $-x+1<f(x)<0$ for $x>1$.

Then

$$
\begin{array}{ll}
x<f^{2}(x)<0 & \text { for } x \in(-\infty, 0) \\
1<f^{2}(x)<x & \text { for } x \in(1, \infty)
\end{array}
$$

Consequently, $\operatorname{Per} f \subset[0,1]$, $\inf \operatorname{Per} f=0, \sup \operatorname{Per} f=1$ and these points form a cycle of f of order 2 . (They belong to $\operatorname{cl}\left(\mathbb{R} \backslash Z_{f}\right)$.)

We now show that for each $x_{0} \in(-\infty, 0)$ and for every continuous function $\psi_{0}:\left[x_{0}, f^{2}\left(x_{0}\right)\right] \rightarrow[0, \infty)$ with

$$
\begin{equation*}
\psi_{0}\left(f^{2}\left(x_{0}\right)\right)=s^{2} \psi_{0}\left(x_{0}\right) \tag{11}
\end{equation*}
$$

there exists a continuous solution $\psi: \mathbb{R} \rightarrow[0, \infty)$ of the equation

$$
\begin{equation*}
\psi(f(x))=s \psi(x) \tag{12}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left.\psi\right|_{\left[x_{0}, f^{2}\left(x_{0}\right)\right]}=\psi_{0} \tag{13}
\end{equation*}
$$

To this end define $g:(-\infty, 0] \rightarrow(-\infty, 0]$ by $g(x)=f^{2}(x)$. Observe that g is strictly increasing and

$$
\begin{equation*}
x<g(x)<0 \quad \text { for } x \in(-\infty, 0) \tag{14}
\end{equation*}
$$

Fix an $x_{0} \in(-\infty, 0)$ and let $\psi_{0}:\left[x_{0}, f^{2}\left(x_{0}\right)\right] \rightarrow[0, \infty)$ be a continuous function satisfying (11). According to [5, Theorem 2.10] there exists a (unique) continuous function $\psi_{1}:(-\infty, 0] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\psi_{1}(g(x))=s^{2} \psi_{1}(x) \quad \text { for } x \in(-\infty, 0] \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\psi_{1}\right|_{\left[x_{0}, f^{2}\left(x_{0}\right)\right]}=\psi_{0} \tag{16}
\end{equation*}
$$

We show that ψ_{1} is non-negative. Notice that, iterating (15), we obtain

$$
\begin{equation*}
\psi_{1}\left(g^{n}(x)\right)=s^{2 n} \psi_{1}(x) \quad \text { for } x \in(-\infty, 0] \tag{17}
\end{equation*}
$$

and for every $n \in \mathbb{N}_{0}$. Fix an $x \in(-\infty, 0]$. Taking into account (14) we see that there exists a $y \in\left[x_{0}, g\left(x_{0}\right)\right]=\left[x_{0}, f^{2}\left(x_{0}\right)\right]$ and an $n \in \mathbb{N}_{0}$ such that either $g^{n}(x)=y$ or $g^{n}(y)=x$. From (16) and (17) we infer that $\psi_{1}(x) \geq 0$.

Since $\psi_{1}(0)=0$, the function $\psi: \mathbb{R} \rightarrow[0, \infty)$ defined by

$$
\psi(x)= \begin{cases}\psi_{1}(x), & x \in(-\infty, 0) \\ 0, & x \in[0,1] \\ \frac{1}{s} \psi_{1}(f(x)), & x \in(1, \infty)\end{cases}
$$

is continuous. Moreover (cf. (16)), it satisfies (13). We prove that ψ is a solution of (12). Fix an $x \in \mathbb{R}$. If $x \in(-\infty, 0)$ then, by the definitions of ψ and g and property (15), we have

$$
\psi(f(x))=\frac{1}{s} \psi_{1}\left(f^{2}(x)\right)=\frac{1}{s} \psi_{1}(g(x))=\frac{1}{s} s^{2} \psi_{1}(x)=s \psi(x)
$$

For $x \in[0,1]$ equality (12) is evident. Finally, assume that $x \in(1, \infty)$. Then $\psi(f(x))=\psi_{1}(f(x))=s \psi(x)$.

Example 2. Fix an $s \in(0,1)$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying

- $f([0,1]) \subset[0,1]$,
- $\left.f\right|_{(-\infty, 0] \cup[1, \infty)}$ is strictly increasing,
- $x<f(x)<0$ for $x<0$,
- $1<f(x)<x$ for $x>1$.

Then clearly $\inf \operatorname{Per} f=0, \sup \operatorname{Per} f=1$ and these points are both fixed points of f. (They belong to $\operatorname{cl}\left(\mathbb{R} \backslash Z_{f}\right)$.) Moreover, reasoning as in the previous example we infer that for all $x_{0} \in(-\infty, 0), y_{0} \in(1, \infty)$ and for every non-negative continuous function $\psi_{0}:\left[x_{0}, f\left(x_{0}\right)\right] \cup\left[f\left(y_{0}\right), y_{0}\right] \rightarrow \mathbb{R}$ such that

$$
\psi_{0}\left(f\left(x_{0}\right)\right)=s \psi_{0}\left(x_{0}\right), \quad \psi_{0}\left(f\left(y_{0}\right)\right)=s \psi_{0}\left(y_{0}\right)
$$

there exists a non-negative continuous solution $\psi: \mathbb{R} \rightarrow \mathbb{R}$ of (12) such that $\left.\psi\right|_{\left[x_{0}, f\left(x_{0}\right)\right] \cup\left[f\left(y_{0}\right), y_{0}\right]}=\psi_{0}$.

We end this paper by another two corollaries concerning solutions of (2) and (3).

Corollary 5. Assume $\left(\mathrm{H}_{1}\right),\left(\mathrm{H}_{2}\right)$ and let $f: I \rightarrow I$ be continuous. If Per $f \neq \emptyset$ and

$$
I \cap Z_{f} \subset \operatorname{int}_{I} f\left(I \cap Z_{f}\right)
$$

then the zero function is the unique continuous solution $\psi: I \rightarrow[0, \infty)$ of (2).

Proof. Fix a continuous solution $\psi: I \rightarrow[0, \infty)$ of (2). By Theorem 1, ψ vanishes on $I \cap Z_{f}$. By Remark 4, ψ vanishes on $f\left(I \cap Z_{f}\right)$. Moreover, $f\left(I \cap Z_{f}\right)$ contains a fixed point of f and

$$
\operatorname{cl}_{I}\left(I \backslash f\left(I \cap Z_{f}\right)\right)=I \backslash \operatorname{int}_{I} f\left(I \cap Z_{f}\right) \subset I \backslash Z_{f}
$$

Now use Theorem 2.

Corollary 6. Assume $\left(\mathrm{H}_{4}\right)$ and let $f: I \rightarrow I$ be continuous. If Per f $\neq \emptyset$ and

$$
I \cap Z_{f} \subset \operatorname{int}_{I} f\left(I \cap Z_{f}\right)
$$

then (3) has at most one continuous solution $\varphi: I \rightarrow Y$.
Proof. Use Corollary 5 for $\psi: I \rightarrow[0, \infty)$ defined by (8).
Acknowledgements. I would like to thank the referee for considerable simplification of the proof of Theorem 1.

This research was supported by the State Committee for Scientific Research Grant No. 210629101.

References

[1] B. Gaweł, A linear functional equation and its dynamics, in: European Conference on Iteration Theory, Batschuns, 1989, Ch. Mira et al. (eds.), World Scientific, 1991, 127-137.
[2] -, On the uniqueness of continuous solutions of an iterative functional inequality, in: European Conference on Iteration Theory, Lisbon, 1991, J. P. Lampreia et al. (eds.), World Sci., 1992, 126-135.
[3] W. Jarczyk, Nonlinear functional equations and their Baire category properties, Aequationes Math. 31 (1986), 81-100.
[4] M. Krüppel, Ein Eindeutigkeitssatz für stetige Lösungen von Funktionalgleichungen, Publ. Math. Debrecen 27 (1980), 201-205.
[5] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 46, PWNPolish Scientific Publishers, 1968.
[6] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge University Press, 1990.

INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
BANKOWA 14
40-007 KATOWICE, POLAND

[^0]: 1991 Mathematics Subject Classification: Primary 9B72, 9B12; Secondary 26A18.
 Key words and phrases: functional equation, functional inequality, periodic point, cycle.

