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On the uniqueness of continuous solutions
of functional equations

by Boles law Gawe l (Katowice)

Abstract. We consider the problem of the vanishing of non-negative continuous so-
lutions ψ of the functional inequalities

(1) ψ(f(x)) ≤ β(x, ψ(x))

and

(2) α(x, ψ(x)) ≤ ψ(f(x)) ≤ β(x, ψ(x)),

where x varies in a fixed real interval I. As a consequence we obtain some results on the
uniqueness of continuous solutions ϕ : I → Y of the equation

(3) ϕ(f(x)) = g(x, ϕ(x)),

where Y denotes an arbitrary metric space.

It is well known that the iterative properties of the given function f
occurring in (3) play a fundamental role in the theory of continuous solutions
of this equation. For the most part, the assumptions imposed on f in the
literature imply very simple dynamics of f ; it is usually assumed that f has
exactly one fixed point which is, moreover, attractive (cf. [5] or [6]). Papers
in which the dynamical behaviour of f plays a role and this assumption is
not imposed appear quite seldom. (The author can only quote [1]–[4].)

In [2] one can find results on the vanishing of non-negative continuous
solutions of

α(x, ψ(x)) ≤ ψ(f(x))

as well as on the uniqueness of continuous solutions of (3). Now we want
to investigate (1), (2) and (3) in the spirit of [2] but under complementary
assumptions on the given functions α and g.
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We use the following notations. If f : I → I and n ∈ N then the set of
all periodic points of f with period n is denoted by Per(f, n), i.e.,

Per(f, n) = {x ∈ I : fn(x) = x, f i(x) 6= x for i = 1, . . . , n− 1}.

The trajectory {fk(x) : k ∈ N0} of any point x ∈
⋃∞

n=1 Per (f, n) is called
a cycle. Of course any cycle is a finite set. Its cardinality will be called
the order of the cycle. Clearly, if C is a cycle of order n and x ∈ C then
x ∈ Per(f, n) and C = {x, f(x), . . . , fn−1(x)}. Furthermore, we put

Per f =
∞⋃

n=1

Per(f, n)

and (if Per f 6= ∅)
Zf = [inf Per f, sup Per f ].

Given a real interval I (not necessarily compact) consider the following
hypotheses concerning the functions α and β.

(H1) β maps I × [0,∞) into [0,∞) and

β(x, 0) = 0 for x ∈ I,
β(x, y) < y for x ∈ I, y ∈ (0,∞).

(H2) α maps I × [0,∞) into [0,∞) and

α(x, 0) = 0 for x ∈ I,
α(x, y) > 0 for x ∈ I, y ∈ (0,∞).

Below we list some immediate observations.

R e m a r k 1. Assume f : I → I. If (H1) is satisfied and ψ : I → [0,∞)
is a solution of (1) then

(4) ψ(f(x)) ≤ ψ(x) for x ∈ I,

and , for every x ∈ I,

(5) if ψ(x) > 0 then ψ(f(x)) < ψ(x).

In particular, we have the following simple statement.

R e m a r k 2. Assume (H1) and let f : I → I. If ψ : I → [0,∞) is a
solution of (1) then

(6) ψ(x) = 0 for x ∈ Per f.

In a sense, a converse of Remark 1 holds true:
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R e m a r k 3. Assume f : I → I. If ψ : I → [0,∞) satisfies (4) and (5)
then β : I × [0,∞)→ [0,∞) defined by

β(x, y) =
{
ψ(f(x)) if y = ψ(x),
0 if y 6= ψ(x),

satisfies (H1) and ψ is a solution of (1).

R e m a r k 4. Assume (H1) and (H2) and let f : I → I. If ψ : I → [0,∞)
is a solution of (2) then, for every x ∈ I,

(7) ψ(x) = 0 if and only if ψ(f(x)) = 0.

Our first aim is to prove the following result:

Theorem 1. Assume (H1) and let f : I → I be continuous. If ψ : I →
[0,∞) is a continuous solution of (1) then

ψ(x) = 0 for x ∈ I ∩ Zf .

The proof will easily follow from the following lemma. I owe this proof
to the referee (the original proof was much longer). In the lemma below we
do not need the assumption that I is an interval. It can be an arbitrary
topological space.

Lemma 1. Assume (H1), let f : I → I and let A be a compact subset of
I such that A ⊂ f(A). If ψ : I → [0,∞) is a continuous solution of (1) then
ψ(x) = 0 for x ∈ A.

P r o o f. Let x0∈A be such that ψ(x0) = supψ(A), and choose an x1 ∈ A
with f(x1) = x0. If ψ(x0) > 0 then, by (5), ψ(x0) = ψ(f(x1)) < ψ(x1),
which contradicts the choice of x0.

P r o o f o f T h e o r e m 1. Let a and b, a ≤ b, be periodic points of f
with periods k and l, respectively. To complete the proof it is enough to
apply Lemma 1 to fkl (in place of f ; cf. also Remark 1) and A = [a, b].

Now we apply Theorem 1 to the problem of uniqueness of continuous so-
lutions of (3). To this end fix a metric space (Y, σ) and consider the following
hypothesis:

(H3) g maps a subset Ω of I × Y into Y and there exists a function β
satisfying (H1) and such that

σ(g(x, y1), g(x, y2)) ≤ β(x, σ(y1, y2))

for every (x, y1), (x, y2) ∈ Ω.

Corollary 1. Assume (H3) and let f : I → I be continuous. If ϕ1, ϕ2 :
I → Y are continuous solutions of equation (3) then ϕ1(x) = ϕ2(x) for
x ∈ I ∩ Zf .
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P r o o f. It is enough to observe that the function ψ : I → [0,∞) given
by

(8) ψ(x) = σ(ϕ1(x), ϕ2(x))

is a continuous solution of (1), and use Theorem 1.

Now we pass to the study of non-negative continuous solutions of (2).
Let us start with the following lemma, important in the proof of Theorem 2.

Lemma 2. Assume (H1) and (H2), let f : I → I be continuous and
let J ⊂ I be an interval containing a fixed point of f . Then there exists
a subinterval K of I containing J and such that any continuous solution
ψ : I → [0,∞) of (2) vanishing on J vanishes also on K and , moreover ,
either

• {inf K, supK} contains a fixed point of f , or
• {inf K, supK} is a cycle of f of order 2, or
• K = I.

P r o o f. Clearly we can assume that J is not a singleton. Put

K0 =
∞⋃

n=0

fn(J).

By Remark 1, any continuous solution ψ : I → [0,∞) of (2) vanishing on J
vanishes also on K0. Since J contains a fixed point of f , the set K0 is an
interval. Moreover, J ⊂ K0 ⊂ f−1(K0).

By induction we construct a sequence (Kn : n ∈ N) of intervals such that
each Kn is a component of clI f−1(Kn−1) containing Kn−1. Making use of
Remark 4 it is easy to observe that any continuous solution ψ : I → [0,∞)
of (2) vanishing on J vanishes also on each Kn, i.e. on

⋃∞
n=0Kn. Let

K =
∞⋃

n=0

Kn, an = inf Kn, bn = supKn, n ∈ N0.

Clearly K is an interval containing J and Kn = [an, bn] ∩ I for n ∈ N0.
We now prove that for every n ∈ N0,

• either an+1 = inf I or f(an+1) ∈ {an, bn}, and
• either bn+1 = sup I or f(bn+1) ∈ {an, bn}.
For suppose that one of the above conditions is not satisfied, say an+1 >

inf I and f(an+1) ∈ (an, bn) for some n ∈ N0. By the continuity of f there
exists a δ > 0 such that (an+1 − δ, an+1] ⊂ I and

f((an+1 − δ, an+1]) ⊂ (an, bn).

Therefore (an+1 − δ, an+1] ∪ Kn+1 is a connected set containing Kn and
contained in clI f−1(Kn), which contradicts the definition of Kn+1.
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Now, since (an : n ∈ N) decreases and (bn : n ∈ N) increases, we infer
that

(9) either an = inf I for n sufficiently large or f(an+1) ∈ {an, bn} for
every n ∈ N, and

(10) either bn = sup I for n sufficiently large or f(bn+1) ∈ {an, bn} for
every n ∈ N.

Let a = limn→∞ an and b = limn→∞ bn. Then a = inf K, b = supK and,
by (9) and (10),

• either a = inf I or f(a) ∈ {a, b}, and
• either b = sup I or f(b) ∈ {a, b}.
Assume that {a, b} does not contain any fixed point of f and is not a

cycle of f of order 2. To finish the proof it is enough to prove that neither

• inf I = a = f(b) and b < sup I, nor
• sup I = b = f(a) and a > inf I.

Suppose, for instance, that the first alternative holds true. (In the second
case we proceed analogously.) Since a = f(b) we have a ∈ I. If inf I < an

for n ∈ N then, by (9), f(a) ∈ {a, b}, whence either a = f(a) or {a, b} is
a cycle of f of order 2. Consequently, we may assume that there exists an
n0 ∈ N such that an = inf I for n ≥ n0. Then, according to (10) and the
fact that f(b) = a, we can find an n ≥ n0 for which f(bn+1) = an = inf I.
Since bn+1 ≤ b < sup I, from the continuity of f we deduce that there exists
a δ > 0 such that [bn+1, bn+1 − δ] ⊂ I and

an = inf I ≤ f(x) < bn for x ∈ [bn+1, bn+1 + δ).

Therefore Kn+1∪ [bn+1, bn+1 +δ) is a connected set containing Kn and con-
tained in clI f−1(Kn), which contradicts the definition of Kn+1 and finishes
the proof of the lemma.

Theorem 2. Assume (H1) and (H2), let f : I → I be continuous and let
J ⊂ I be an interval containing a fixed point of f and such that clI(I \ J)
contains no cycle of f of order not greater than two. If ψ : I → [0,∞) is a
continuous solution of (2) vanishing on J then ψ is the zero function.

P r o o f. Clearly we can assume that J = clI J . If inf I < inf J and
sup J < sup I then the assertion follows from Lemma 2. Thus let inf J =
inf I or supJ = sup I. Assume, for instance, the first possibility and fix a
continuous solution ψ : I → [0,∞) of (2) vanishing on J . We now prove that
ψ(x0) = 0 for each x0 ∈ I. Of course, we can consider the case x0 > sup J
only.

First assume that x0 < f(x0). Then, by our assumptions,

f(x) > x for x ∈ I ∩ [sup J,∞),
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whence we can construct a sequence (xn : n ∈ N) of points of I converging to
sup Per(f, 1) such that f(xn+1) = xn for n ∈ N0. Since sup Per(f, 1) < sup J
it follows that xn ∈ J for an n ∈ N. Thus ψ(xn) = 0, which means (cf.
Remark 4) that ψ(x0) = ψ(fn(xn)) = 0.

In the case f(x0) < x0 we proceed similarly. Then f(x) < x for x ∈
I ∩ [sup J,∞), whence we deduce that if fn(x0) > sup J then fn+1(x0) <
fn(x0), for every n ∈ N0. Therefore either

• fn(x0) ∈ J for some n ∈ N, or
• sup J ≤ fn+1(x0) < fn(x0) for every n ∈ N.

But in the latter case we would have

lim
n→∞

fn(x0) ∈ Per(f, 1) ∩ clI(I \ J),

which is impossible. Therefore fn(x0) ∈ J for some n ∈ N. Consequently,
ψ(fn(x0)) = 0, which means (cf. (7)) that ψ(x0) = 0.

As a consequence of Theorems 1 and 2 we get the following fact:

Corollary 2. Assume (H1), (H2) and let f : I → I be continuous. If
Per f 6= ∅ and clI(I \ Zf ) contains no cycle of f of order not greater than
2 then the zero function is the unique continuous solution ψ : I → [0,∞)
of (2).

In order to apply Theorem 2 and Corollary 2 to the problem of unique-
ness of continuous solutions of (3) fix a metric space (Y, σ) and consider the
following hypothesis:

(H4) g maps a subset Ω of I×Y into Y and there exist β and α satisfying
(H1) and (H2) respectively, and such that

α(x, σ(y1, y2)) ≤ σ(g(x, y1), g(x, y2)) ≤ β(x, σ(y1, y2)),

for every (x, y1), (x, y2) ∈ Ω.

Corollary 3. Assume (H4), let f : I → I be continuous and let J ⊂ I
be an interval containing a fixed point of f such that clI(I \ J) contains no
cycle of f of order not greater than 2. If ϕ1, ϕ2 : I → Y are continuous
solutions of equation (3) and ϕ1(x) = ϕ2(x) for x ∈ J , then ϕ1 = ϕ2.

P r o o f. Since ψ : I → [0,∞) defined by (8) is a continuous solution of
(2) it suffices to use Theorem 2.

Corollary 4. Assume (H4) and let f : I → I be continuous. If Per f
6= ∅ and clI(I \ Zf ) contains no cycle of f of order not greater than 2 then
(3) has at most one continuous solution ϕ : I → Y .

Modifying a little a classical reasoning from [5] we show in the next two
examples that inequalities (2) can allow a lot of non-negative continuous



Continuous solutions of functional equations 237

solutions when clI(I \ Zf ) contains a cycle of f of order 2 as well as when
it contains a fixed point of f .

Example 1. Fix an s ∈ (0, 1) and let f : R → R be an arbitrary
continuous function satisfying the following conditions:

• f([0, 1]) ⊂ [0, 1],
• f |(−∞,0] is strictly decreasing,
• f |[1,∞) is decreasing,
• 1 < f(x) < −x+ 1 for x < 0,
• −x+ 1 < f(x) < 0 for x > 1.

Then
x < f2(x) < 0 for x ∈ (−∞, 0),

1 < f2(x) < x for x ∈ (1,∞).
Consequently, Per f ⊂ [0, 1], inf Per f = 0, sup Per f = 1 and these points
form a cycle of f of order 2. (They belong to cl(R \ Zf ).)

We now show that for each x0 ∈ (−∞, 0) and for every continuous func-
tion ψ0 : [x0, f

2(x0)]→ [0,∞) with

(11) ψ0(f2(x0)) = s2ψ0(x0)

there exists a continuous solution ψ : R→ [0,∞) of the equation

(12) ψ(f(x)) = sψ(x)

such that

(13) ψ|[x0,f2(x0)] = ψ0.

To this end define g : (−∞, 0]→ (−∞, 0] by g(x) = f2(x). Observe that
g is strictly increasing and

(14) x < g(x) < 0 for x ∈ (−∞, 0).

Fix an x0 ∈ (−∞, 0) and let ψ0 : [x0, f
2(x0)]→ [0,∞) be a continuous func-

tion satisfying (11). According to [5, Theorem 2.10] there exists a (unique)
continuous function ψ1 : (−∞, 0]→ R such that

(15) ψ1(g(x)) = s2ψ1(x) for x ∈ (−∞, 0]

and

(16) ψ1|[x0,f2(x0)] = ψ0.

We show that ψ1 is non-negative. Notice that, iterating (15), we obtain

(17) ψ1(gn(x)) = s2nψ1(x) for x ∈ (−∞, 0]

and for every n ∈ N0. Fix an x ∈ (−∞, 0]. Taking into account (14) we see
that there exists a y ∈ [x0, g(x0)] = [x0, f

2(x0)] and an n ∈ N0 such that
either gn(x) = y or gn(y) = x. From (16) and (17) we infer that ψ1(x) ≥ 0.
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Since ψ1(0) = 0, the function ψ : R→ [0,∞) defined by

ψ(x) =


ψ1(x), x ∈ (−∞, 0),
0, x ∈ [0, 1],
1
sψ1(f(x)), x ∈ (1,∞),

is continuous. Moreover (cf. (16)), it satisfies (13). We prove that ψ is a
solution of (12). Fix an x ∈ R. If x ∈ (−∞, 0) then, by the definitions of ψ
and g and property (15), we have

ψ(f(x)) =
1
s
ψ1(f2(x)) =

1
s
ψ1(g(x)) =

1
s
s2ψ1(x) = sψ(x).

For x ∈ [0, 1] equality (12) is evident. Finally, assume that x ∈ (1,∞). Then
ψ(f(x)) = ψ1(f(x)) = sψ(x).

Example 2. Fix an s ∈ (0, 1) and let f : R→ R be a continuous function
satisfying

• f([0, 1]) ⊂ [0, 1],
• f |(−∞,0]∪[1,∞) is strictly increasing,
• x < f(x) < 0 for x < 0,
• 1 < f(x) < x for x > 1.

Then clearly inf Perf = 0, sup Per f = 1 and these points are both fixed
points of f . (They belong to cl(R \ Zf ).) Moreover, reasoning as in the
previous example we infer that for all x0 ∈ (−∞, 0), y0 ∈ (1,∞) and for
every non-negative continuous function ψ0 : [x0, f(x0)] ∪ [f(y0), y0] → R
such that

ψ0(f(x0)) = sψ0(x0), ψ0(f(y0)) = sψ0(y0),
there exists a non-negative continuous solution ψ : R→ R of (12) such that
ψ|[x0,f(x0)]∪[f(y0),y0] = ψ0.

We end this paper by another two corollaries concerning solutions of (2)
and (3).

Corollary 5. Assume (H1), (H2) and let f : I → I be continuous. If
Per f 6= ∅ and

I ∩ Zf ⊂ intI f(I ∩ Zf )
then the zero function is the unique continuous solution ψ : I → [0,∞)
of (2).

P r o o f. Fix a continuous solution ψ : I → [0,∞) of (2). By Theorem 1,
ψ vanishes on I ∩ Zf . By Remark 4, ψ vanishes on f(I ∩ Zf ). Moreover,
f(I ∩ Zf ) contains a fixed point of f and

clI(I \ f(I ∩ Zf )) = I \ intI f(I ∩ Zf ) ⊂ I \ Zf .

Now use Theorem 2.
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Corollary 6. Assume (H4) and let f : I → I be continuous. If Per f
6= ∅ and

I ∩ Zf ⊂ intI f(I ∩ Zf )
then (3) has at most one continuous solution ϕ : I → Y .

P r o o f. Use Corollary 5 for ψ : I → [0,∞) defined by (8).
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