ANNALES POLONICI MATHEMATICI LX.3 (1995)

## On the uniqueness of continuous solutions of functional equations

## by BOLESŁAW GAWEŁ (Katowice)

Abstract. We consider the problem of the vanishing of non-negative continuous solutions  $\psi$  of the functional inequalities

- (1)  $\psi(f(x)) \le \beta(x, \psi(x))$
- and
- (2)  $\alpha(x,\psi(x)) \le \psi(f(x)) \le \beta(x,\psi(x)),$

where x varies in a fixed real interval I. As a consequence we obtain some results on the uniqueness of continuous solutions  $\varphi: I \to Y$  of the equation

(3) 
$$\varphi(f(x)) = g(x,\varphi(x)),$$

where Y denotes an arbitrary metric space.

It is well known that the iterative properties of the given function f occurring in (3) play a fundamental role in the theory of continuous solutions of this equation. For the most part, the assumptions imposed on f in the literature imply very simple dynamics of f; it is usually assumed that f has exactly one fixed point which is, moreover, attractive (cf. [5] or [6]). Papers in which the dynamical behaviour of f plays a role and this assumption is not imposed appear quite seldom. (The author can only quote [1]-[4].)

In [2] one can find results on the vanishing of non-negative continuous solutions of

$$\alpha(x,\psi(x)) \le \psi(f(x))$$

as well as on the uniqueness of continuous solutions of (3). Now we want to investigate (1), (2) and (3) in the spirit of [2] but under complementary assumptions on the given functions  $\alpha$  and g.

 $Key\ words\ and\ phrases:$  functional equation, functional inequality, periodic point, cycle.



<sup>1991</sup> Mathematics Subject Classification: Primary 9B72, 9B12; Secondary 26A18.

B. Gaweł

We use the following notations. If  $f: I \to I$  and  $n \in \mathbb{N}$  then the set of all *periodic* points of f with *period* n is denoted by  $\operatorname{Per}(f, n)$ , i.e.,

$$Per(f,n) = \{x \in I : f^n(x) = x, \ f^i(x) \neq x \text{ for } i = 1, \dots, n-1\}$$

The trajectory  $\{f^k(x) : k \in \mathbb{N}_0\}$  of any point  $x \in \bigcup_{n=1}^{\infty} \operatorname{Per}(f, n)$  is called a *cycle*. Of course any cycle is a finite set. Its cardinality will be called the *order* of the cycle. Clearly, if C is a cycle of order n and  $x \in C$  then  $x \in \operatorname{Per}(f, n)$  and  $C = \{x, f(x), \dots, f^{n-1}(x)\}$ . Furthermore, we put

$$\operatorname{Per} f = \bigcup_{n=1}^{\infty} \operatorname{Per}(f, n)$$

and (if  $\operatorname{Per} f \neq \emptyset$ )

$$Z_f = [\inf \operatorname{Per} f, \sup \operatorname{Per} f].$$

Given a real interval I (not necessarily compact) consider the following hypotheses concerning the functions  $\alpha$  and  $\beta$ .

(H<sub>1</sub>) 
$$\beta$$
 maps  $I \times [0, \infty)$  into  $[0, \infty)$  and  
 $\beta(x, 0) = 0$  for  $x \in I$ ,  
 $\beta(x, y) < y$  for  $x \in I$ ,  $y \in (0, \infty)$ .

(H<sub>2</sub>) 
$$\alpha$$
 maps  $I \times [0, \infty)$  into  $[0, \infty)$  and  
 $\alpha(x, 0) = 0$  for  $x \in I$ ,  
 $\alpha(x, y) > 0$  for  $x \in I$ ,  $y \in (0, \infty)$ .

Below we list some immediate observations.

Remark 1. Assume  $f: I \to I$ . If  $(H_1)$  is satisfied and  $\psi: I \to [0, \infty)$  is a solution of (1) then

(4) 
$$\psi(f(x)) \le \psi(x) \quad \text{for } x \in I$$

and, for every  $x \in I$ ,

(5) 
$$if \psi(x) > 0 then \psi(f(x)) < \psi(x).$$

In particular, we have the following simple statement.

Remark 2. Assume  $({\rm H}_1)$  and let  $f:I\to I.$  If  $\psi:I\to [0,\infty)$  is a solution of (1) then

(6) 
$$\psi(x) = 0 \quad \text{for } x \in \operatorname{Per} f.$$

In a sense, a converse of Remark 1 holds true:

232

Remark 3. Assume  $f: I \to I$ . If  $\psi: I \to [0, \infty)$  satisfies (4) and (5) then  $\beta: I \times [0, \infty) \to [0, \infty)$  defined by

$$\beta(x,y) = \begin{cases} \psi(f(x)) & \text{if } y = \psi(x) \\ 0 & \text{if } y \neq \psi(x) \end{cases}$$

satisfies (H<sub>1</sub>) and  $\psi$  is a solution of (1).

Remark 4. Assume (H<sub>1</sub>) and (H<sub>2</sub>) and let  $f: I \to I$ . If  $\psi: I \to [0, \infty)$  is a solution of (2) then, for every  $x \in I$ ,

(7) 
$$\psi(x) = 0$$
 if and only if  $\psi(f(x)) = 0$ .

Our first aim is to prove the following result:

THEOREM 1. Assume (H<sub>1</sub>) and let  $f : I \to I$  be continuous. If  $\psi : I \to [0, \infty)$  is a continuous solution of (1) then

$$\psi(x) = 0 \quad for \ x \in I \cap Z_f.$$

The proof will easily follow from the following lemma. I owe this proof to the referee (the original proof was much longer). In the lemma below we do not need the assumption that I is an interval. It can be an arbitrary topological space.

LEMMA 1. Assume (H<sub>1</sub>), let  $f : I \to I$  and let A be a compact subset of I such that  $A \subset f(A)$ . If  $\psi : I \to [0, \infty)$  is a continuous solution of (1) then  $\psi(x) = 0$  for  $x \in A$ .

Proof. Let  $x_0 \in A$  be such that  $\psi(x_0) = \sup \psi(A)$ , and choose an  $x_1 \in A$  with  $f(x_1) = x_0$ . If  $\psi(x_0) > 0$  then, by (5),  $\psi(x_0) = \psi(f(x_1)) < \psi(x_1)$ , which contradicts the choice of  $x_0$ .

Proof of Theorem 1. Let a and b,  $a \leq b$ , be periodic points of f with periods k and l, respectively. To complete the proof it is enough to apply Lemma 1 to  $f^{kl}$  (in place of f; cf. also Remark 1) and A = [a, b].

Now we apply Theorem 1 to the problem of uniqueness of continuous solutions of (3). To this end fix a metric space  $(Y, \sigma)$  and consider the following hypothesis:

(H<sub>3</sub>) g maps a subset  $\Omega$  of  $I \times Y$  into Y and there exists a function  $\beta$  satisfying (H<sub>1</sub>) and such that

$$\sigma(g(x, y_1), g(x, y_2)) \le \beta(x, \sigma(y_1, y_2))$$

for every  $(x, y_1), (x, y_2) \in \Omega$ .

COROLLARY 1. Assume (H<sub>3</sub>) and let  $f : I \to I$  be continuous. If  $\varphi_1, \varphi_2 : I \to Y$  are continuous solutions of equation (3) then  $\varphi_1(x) = \varphi_2(x)$  for  $x \in I \cap Z_f$ .

Proof. It is enough to observe that the function  $\psi: I \to [0,\infty)$  given by

(8) 
$$\psi(x) = \sigma(\varphi_1(x), \varphi_2(x))$$

is a continuous solution of (1), and use Theorem 1.

Now we pass to the study of non-negative continuous solutions of (2). Let us start with the following lemma, important in the proof of Theorem 2.

LEMMA 2. Assume  $(H_1)$  and  $(H_2)$ , let  $f : I \to I$  be continuous and let  $J \subset I$  be an interval containing a fixed point of f. Then there exists a subinterval K of I containing J and such that any continuous solution  $\psi : I \to [0, \infty)$  of (2) vanishing on J vanishes also on K and, moreover, either

- $\{\inf K, \sup K\}$  contains a fixed point of f, or
- $\{\inf K, \sup K\}$  is a cycle of f of order 2, or
- K = I.

Proof. Clearly we can assume that J is not a singleton. Put

$$K_0 = \bigcup_{n=0}^{\infty} f^n(J).$$

By Remark 1, any continuous solution  $\psi: I \to [0, \infty)$  of (2) vanishing on J vanishes also on  $K_0$ . Since J contains a fixed point of f, the set  $K_0$  is an interval. Moreover,  $J \subset K_0 \subset f^{-1}(K_0)$ .

By induction we construct a sequence  $(K_n : n \in \mathbb{N})$  of intervals such that each  $K_n$  is a component of  $\operatorname{cl}_I f^{-1}(K_{n-1})$  containing  $K_{n-1}$ . Making use of Remark 4 it is easy to observe that any continuous solution  $\psi : I \to [0, \infty)$ of (2) vanishing on J vanishes also on each  $K_n$ , i.e. on  $\bigcup_{n=0}^{\infty} K_n$ . Let

$$K = \bigcup_{n=0}^{\infty} K_n, \quad a_n = \inf K_n, \quad b_n = \sup K_n, \quad n \in \mathbb{N}_0$$

Clearly K is an interval containing J and  $K_n = [a_n, b_n] \cap I$  for  $n \in \mathbb{N}_0$ . We now prove that for every  $n \in \mathbb{N}_0$ ,

- either  $a_{n+1} = \inf I$  or  $f(a_{n+1}) \in \{a_n, b_n\}$ , and
- either  $b_{n+1} = \sup I$  or  $f(b_{n+1}) \in \{a_n, b_n\}$ .

For suppose that one of the above conditions is not satisfied, say  $a_{n+1} > \inf I$  and  $f(a_{n+1}) \in (a_n, b_n)$  for some  $n \in \mathbb{N}_0$ . By the continuity of f there exists a  $\delta > 0$  such that  $(a_{n+1} - \delta, a_{n+1}] \subset I$  and

$$f((a_{n+1}-\delta,a_{n+1}]) \subset (a_n,b_n).$$

Therefore  $(a_{n+1} - \delta, a_{n+1}] \cup K_{n+1}$  is a connected set containing  $K_n$  and contained in  $\operatorname{cl}_I f^{-1}(K_n)$ , which contradicts the definition of  $K_{n+1}$ .

Now, since  $(a_n : n \in \mathbb{N})$  decreases and  $(b_n : n \in \mathbb{N})$  increases, we infer that

- (9) either  $a_n = \inf I$  for n sufficiently large or  $f(a_{n+1}) \in \{a_n, b_n\}$  for every  $n \in \mathbb{N}$ , and
- (10) either  $b_n = \sup I$  for n sufficiently large or  $f(b_{n+1}) \in \{a_n, b_n\}$  for every  $n \in \mathbb{N}$ .

Let  $a = \lim_{n \to \infty} a_n$  and  $b = \lim_{n \to \infty} b_n$ . Then  $a = \inf K$ ,  $b = \sup K$  and, by (9) and (10),

- either  $a = \inf I$  or  $f(a) \in \{a, b\}$ , and
- either  $b = \sup I$  or  $f(b) \in \{a, b\}$ .

Assume that  $\{a, b\}$  does not contain any fixed point of f and is not a cycle of f of order 2. To finish the proof it is enough to prove that neither

- $\inf I = a = f(b)$  and  $b < \sup I$ , nor
- $\sup I = b = f(a)$  and  $a > \inf I$ .

Suppose, for instance, that the first alternative holds true. (In the second case we proceed analogously.) Since a = f(b) we have  $a \in I$ . If  $\inf I < a_n$  for  $n \in \mathbb{N}$  then, by (9),  $f(a) \in \{a, b\}$ , whence either a = f(a) or  $\{a, b\}$  is a cycle of f of order 2. Consequently, we may assume that there exists an  $n_0 \in \mathbb{N}$  such that  $a_n = \inf I$  for  $n \ge n_0$ . Then, according to (10) and the fact that f(b) = a, we can find an  $n \ge n_0$  for which  $f(b_{n+1}) = a_n = \inf I$ . Since  $b_{n+1} \le b < \sup I$ , from the continuity of f we deduce that there exists a  $\delta > 0$  such that  $[b_{n+1}, b_{n+1} - \delta] \subset I$  and

$$a_n = \inf I \le f(x) < b_n \quad \text{ for } x \in [b_{n+1}, b_{n+1} + \delta).$$

Therefore  $K_{n+1} \cup [b_{n+1}, b_{n+1} + \delta)$  is a connected set containing  $K_n$  and contained in  $cl_I f^{-1}(K_n)$ , which contradicts the definition of  $K_{n+1}$  and finishes the proof of the lemma.

THEOREM 2. Assume (H<sub>1</sub>) and (H<sub>2</sub>), let  $f: I \to I$  be continuous and let  $J \subset I$  be an interval containing a fixed point of f and such that  $cl_I(I \setminus J)$  contains no cycle of f of order not greater than two. If  $\psi: I \to [0, \infty)$  is a continuous solution of (2) vanishing on J then  $\psi$  is the zero function.

Proof. Clearly we can assume that  $J = cl_I J$ . If  $\inf I < \inf J$  and  $\sup J < \sup I$  then the assertion follows from Lemma 2. Thus let  $\inf J =$   $\inf I$  or  $\sup J = \sup I$ . Assume, for instance, the first possibility and fix a continuous solution  $\psi : I \to [0, \infty)$  of (2) vanishing on J. We now prove that  $\psi(x_0) = 0$  for each  $x_0 \in I$ . Of course, we can consider the case  $x_0 > \sup J$ only.

First assume that  $x_0 < f(x_0)$ . Then, by our assumptions,

$$f(x) > x$$
 for  $x \in I \cap [\sup J, \infty)$ ,

whence we can construct a sequence  $(x_n : n \in \mathbb{N})$  of points of I converging to sup  $\operatorname{Per}(f, 1)$  such that  $f(x_{n+1}) = x_n$  for  $n \in \mathbb{N}_0$ . Since sup  $\operatorname{Per}(f, 1) < \sup J$ it follows that  $x_n \in J$  for an  $n \in \mathbb{N}$ . Thus  $\psi(x_n) = 0$ , which means (cf. Remark 4) that  $\psi(x_0) = \psi(f^n(x_n)) = 0$ .

In the case  $f(x_0) < x_0$  we proceed similarly. Then f(x) < x for  $x \in I \cap [\sup J, \infty)$ , whence we deduce that if  $f^n(x_0) > \sup J$  then  $f^{n+1}(x_0) < f^n(x_0)$ , for every  $n \in \mathbb{N}_0$ . Therefore either

- $f^n(x_0) \in J$  for some  $n \in \mathbb{N}$ , or
- $\sup J \le f^{n+1}(x_0) < f^n(x_0)$  for every  $n \in \mathbb{N}$ .

But in the latter case we would have

$$\lim f^n(x_0) \in \operatorname{Per}(f,1) \cap \operatorname{cl}_I(I \setminus J),$$

which is impossible. Therefore  $f^n(x_0) \in J$  for some  $n \in \mathbb{N}$ . Consequently,  $\psi(f^n(x_0)) = 0$ , which means (cf. (7)) that  $\psi(x_0) = 0$ .

As a consequence of Theorems 1 and 2 we get the following fact:

COROLLARY 2. Assume (H<sub>1</sub>), (H<sub>2</sub>) and let  $f : I \to I$  be continuous. If Per  $f \neq \emptyset$  and  $cl_I(I \setminus Z_f)$  contains no cycle of f of order not greater than 2 then the zero function is the unique continuous solution  $\psi : I \to [0, \infty)$ of (2).

In order to apply Theorem 2 and Corollary 2 to the problem of uniqueness of continuous solutions of (3) fix a metric space  $(Y, \sigma)$  and consider the following hypothesis:

(H<sub>4</sub>) g maps a subset  $\Omega$  of  $I \times Y$  into Y and there exist  $\beta$  and  $\alpha$  satisfying (H<sub>1</sub>) and (H<sub>2</sub>) respectively, and such that

$$\alpha(x,\sigma(y_1,y_2)) \le \sigma(g(x,y_1),g(x,y_2)) \le \beta(x,\sigma(y_1,y_2)),$$

for every  $(x, y_1), (x, y_2) \in \Omega$ .

COROLLARY 3. Assume (H<sub>4</sub>), let  $f : I \to I$  be continuous and let  $J \subset I$ be an interval containing a fixed point of f such that  $cl_I(I \setminus J)$  contains no cycle of f of order not greater than 2. If  $\varphi_1, \varphi_2 : I \to Y$  are continuous solutions of equation (3) and  $\varphi_1(x) = \varphi_2(x)$  for  $x \in J$ , then  $\varphi_1 = \varphi_2$ .

Proof. Since  $\psi : I \to [0, \infty)$  defined by (8) is a continuous solution of (2) it suffices to use Theorem 2.

COROLLARY 4. Assume (H<sub>4</sub>) and let  $f : I \to I$  be continuous. If Per  $f \neq \emptyset$  and  $\operatorname{cl}_I(I \setminus Z_f)$  contains no cycle of f of order not greater than 2 then (3) has at most one continuous solution  $\varphi : I \to Y$ .

Modifying a little a classical reasoning from [5] we show in the next two examples that inequalities (2) can allow a lot of non-negative continuous solutions when  $\operatorname{cl}_I(I \setminus Z_f)$  contains a cycle of f of order 2 as well as when it contains a fixed point of f.

EXAMPLE 1. Fix an  $s \in (0,1)$  and let  $f : \mathbb{R} \to \mathbb{R}$  be an arbitrary continuous function satisfying the following conditions:

- $f([0,1]) \subset [0,1],$
- $f|_{(-\infty,0]}$  is strictly decreasing,
- $f|_{[1,\infty)}$  is decreasing,
- 1 < f(x) < -x + 1 for x < 0,
- -x + 1 < f(x) < 0 for x > 1.

Then

$$x < f^{2}(x) < 0$$
 for  $x \in (-\infty, 0)$ ,  
 $1 < f^{2}(x) < x$  for  $x \in (1, \infty)$ .

Consequently, Per  $f \subset [0, 1]$ , inf Per f = 0, sup Per f = 1 and these points form a cycle of f of order 2. (They belong to  $cl(\mathbb{R} \setminus Z_f)$ .)

We now show that for each  $x_0 \in (-\infty, 0)$  and for every continuous function  $\psi_0 : [x_0, f^2(x_0)] \to [0, \infty)$  with

(11) 
$$\psi_0(f^2(x_0)) = s^2 \psi_0(x_0)$$

there exists a continuous solution  $\psi : \mathbb{R} \to [0, \infty)$  of the equation

(12) 
$$\psi(f(x)) = s\psi(x)$$

such that

(13) 
$$\psi|_{[x_0, f^2(x_0)]} = \psi_0$$

To this end define  $g: (-\infty, 0] \to (-\infty, 0]$  by  $g(x) = f^2(x)$ . Observe that g is strictly increasing and

(14) 
$$x < g(x) < 0$$
 for  $x \in (-\infty, 0)$ .

Fix an  $x_0 \in (-\infty, 0)$  and let  $\psi_0 : [x_0, f^2(x_0)] \to [0, \infty)$  be a continuous function satisfying (11). According to [5, Theorem 2.10] there exists a (unique) continuous function  $\psi_1 : (-\infty, 0] \to \mathbb{R}$  such that

(15) 
$$\psi_1(g(x)) = s^2 \psi_1(x) \quad \text{for } x \in (-\infty, 0]$$

and

(16) 
$$\psi_1|_{[x_0, f^2(x_0)]} = \psi_0$$

We show that  $\psi_1$  is non-negative. Notice that, iterating (15), we obtain

(17) 
$$\psi_1(g^n(x)) = s^{2n}\psi_1(x) \quad \text{for } x \in (-\infty, 0)$$

and for every  $n \in \mathbb{N}_0$ . Fix an  $x \in (-\infty, 0]$ . Taking into account (14) we see that there exists a  $y \in [x_0, g(x_0)] = [x_0, f^2(x_0)]$  and an  $n \in \mathbb{N}_0$  such that either  $g^n(x) = y$  or  $g^n(y) = x$ . From (16) and (17) we infer that  $\psi_1(x) \ge 0$ .

Since  $\psi_1(0) = 0$ , the function  $\psi : \mathbb{R} \to [0, \infty)$  defined by

$$\psi(x) = \begin{cases} \psi_1(x), & x \in (-\infty, 0), \\ 0, & x \in [0, 1], \\ \frac{1}{s}\psi_1(f(x)), & x \in (1, \infty), \end{cases}$$

is continuous. Moreover (cf. (16)), it satisfies (13). We prove that  $\psi$  is a solution of (12). Fix an  $x \in \mathbb{R}$ . If  $x \in (-\infty, 0)$  then, by the definitions of  $\psi$  and g and property (15), we have

$$\psi(f(x)) = \frac{1}{s}\psi_1(f^2(x)) = \frac{1}{s}\psi_1(g(x)) = \frac{1}{s}s^2\psi_1(x) = s\psi(x)$$

For  $x \in [0, 1]$  equality (12) is evident. Finally, assume that  $x \in (1, \infty)$ . Then  $\psi(f(x)) = \psi_1(f(x)) = s\psi(x)$ .

EXAMPLE 2. Fix an  $s \in (0, 1)$  and let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous function satisfying

- $f([0,1]) \subset [0,1],$
- $f|_{(-\infty,0]\cup[1,\infty)}$  is strictly increasing,
- x < f(x) < 0 for x < 0,
- 1 < f(x) < x for x > 1.

Then clearly inf  $\operatorname{Per} f = 0$ , sup  $\operatorname{Per} f = 1$  and these points are both fixed points of f. (They belong to  $\operatorname{cl}(\mathbb{R} \setminus Z_f)$ .) Moreover, reasoning as in the previous example we infer that for all  $x_0 \in (-\infty, 0), y_0 \in (1, \infty)$  and for every non-negative continuous function  $\psi_0 : [x_0, f(x_0)] \cup [f(y_0), y_0] \to \mathbb{R}$ such that

$$\psi_0(f(x_0)) = s\psi_0(x_0), \quad \psi_0(f(y_0)) = s\psi_0(y_0),$$

there exists a non-negative continuous solution  $\psi : \mathbb{R} \to \mathbb{R}$  of (12) such that  $\psi|_{[x_0,f(x_0)] \cup [f(y_0),y_0]} = \psi_0$ .

We end this paper by another two corollaries concerning solutions of (2) and (3).

COROLLARY 5. Assume (H<sub>1</sub>), (H<sub>2</sub>) and let  $f: I \to I$  be continuous. If Per  $f \neq \emptyset$  and

$$\cap Z_f \subset \operatorname{int}_I f(I \cap Z_f)$$

then the zero function is the unique continuous solution  $\psi: I \to [0,\infty)$  of (2).

Ι

Proof. Fix a continuous solution  $\psi: I \to [0, \infty)$  of (2). By Theorem 1,  $\psi$  vanishes on  $I \cap Z_f$ . By Remark 4,  $\psi$  vanishes on  $f(I \cap Z_f)$ . Moreover,  $f(I \cap Z_f)$  contains a fixed point of f and

$$cl_I(I \setminus f(I \cap Z_f)) = I \setminus int_I f(I \cap Z_f) \subset I \setminus Z_f.$$

Now use Theorem 2.

COROLLARY 6. Assume  $(H_4)$  and let  $f: I \to I$  be continuous. If Per  $f \neq \emptyset$  and

$$I \cap Z_f \subset \operatorname{int}_I f(I \cap Z_f)$$

then (3) has at most one continuous solution  $\varphi: I \to Y$ .

Proof. Use Corollary 5 for  $\psi: I \to [0, \infty)$  defined by (8).

**Acknowledgements.** I would like to thank the referee for considerable simplification of the proof of Theorem 1.

This research was supported by the State Committee for Scientific Research Grant No. 2 1062 91 01.

## References

- B. Gaweł, A linear functional equation and its dynamics, in: European Conference on Iteration Theory, Batschuns, 1989, Ch. Mira et al. (eds.), World Scientific, 1991, 127–137.
- [2] —, On the uniqueness of continuous solutions of an iterative functional inequality, in: European Conference on Iteration Theory, Lisbon, 1991, J. P. Lampreia et al. (eds.), World Sci., 1992, 126–135.
- W. Jarczyk, Nonlinear functional equations and their Baire category properties, Aequationes Math. 31 (1986), 81-100.
- [4] M. Krüppel, Ein Eindeutigkeitssatz für stetige Lösungen von Funktionalgleichungen, Publ. Math. Debrecen 27 (1980), 201–205.
- [5] M. Kuczma, *Functional Equations in a Single Variable*, Monografie Mat. 46, PWN–Polish Scientific Publishers, 1968.
- [6] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge University Press, 1990.

INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14 40-007 KATOWICE, POLAND

> Reçu par la Rédaction le 4.10.1993 Révisé le 13.5.1994