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On the uniqueness of continuous solutions
of functional equations

by BoLEsEAw GAWEE (Katowice)

Abstract. We consider the problem of the vanishing of non-negative continuous so-
lutions 1 of the functional inequalities

(1) U(f(x) < Bz, v(x))
and
(2) a(z,P(z)) <Y(f(z)) < Bz, ¥ (),

where x varies in a fixed real interval I. As a consequence we obtain some results on the
uniqueness of continuous solutions ¢ : I — Y of the equation

®3) e(f(x)) = g(x, p(2)),

where Y denotes an arbitrary metric space.

It is well known that the iterative properties of the given function f
occurring in (3) play a fundamental role in the theory of continuous solutions
of this equation. For the most part, the assumptions imposed on f in the
literature imply very simple dynamics of f; it is usually assumed that f has
exactly one fixed point which is, moreover, attractive (cf. [5] or [6]). Papers
in which the dynamical behaviour of f plays a role and this assumption is
not imposed appear quite seldom. (The author can only quote [1]-[4].)

In [2] one can find results on the vanishing of non-negative continuous
solutions of

a(z, ¥(z) < ¢(f(x))
as well as on the uniqueness of continuous solutions of (3). Now we want

to investigate (1), (2) and (3) in the spirit of [2] but under complementary
assumptions on the given functions o and g.
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We use the following notations. If f : I — I and n € N then the set of
all periodic points of f with period n is denoted by Per(f,n), i.e.,
Per(f,n)={zecl: f"(z)=ux, fi(x)#xfori=1,...,n—1}.

The trajectory {f*(z) : k € No} of any point = € [J -, Per (f,n) is called
a cycle. Of course any cycle is a finite set. Its cardinality will be called
the order of the cycle. Clearly, if C is a cycle of order n and x € C' then
x € Per(f,n) and C = {x, f(),..., f* *(z)}. Furthermore, we put

Per f = G Per(f,n)
n=1

and (if Per f # ()
Zy = [inf Per f, sup Per f].

Given a real interval I (not necessarily compact) consider the following
hypotheses concerning the functions o and S.

(Hy) B maps I x [0,00) into [0,00) and
B(x,0) =0 forzel,
Bla,y) <y forzel, ye(0,00).

(H2) a maps I x [0,00) into [0,00) and

a(z,0)=0 forxzel,

alz,y) >0 forxel, ye(0,00).
Below we list some immediate observations.

Remark 1. Assume f: I — I. If (Hy) is satisfied and ¢ : I — [0, 00)
is a solution of (1) then

(4) U(f(x) <9(x)  forxel,
and, for every x € I,
(5) if Y(x) > 0 then ¢(f(x)) < ¢(x).

In particular, we have the following simple statement.

Remark 2. Assume (Hy) and let f : I — I. If ¢ : I — [0,00) is a
solution of (1) then

(6) Y(x) =0 forx € Perf.

In a sense, a converse of Remark 1 holds true:
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Remark 3. Assume f: 1 — I. If 1 : I — [0,00) satisfies (4) and (5)
then B : I x [0,00) — [0,00) defined by
_ (@) ify = (),
B(x,y) = {0 if y # (),
satisfies (Hy) and 1 is a solution of (1).

Remark 4. Assume (Hy) and (Hs) and let f: I — 1. Ifv¢: I — [0,00)
is a solution of (2) then, for every x € I,

(7) W(x) =0 if and only if (f(x))=0.
Our first aim is to prove the following result:

THEOREM 1. Assume (Hy) and let f : I — I be continuous. If ¢ : I —
[0,00) is a continuous solution of (1) then

Y(x)=0 forxelnZy.

The proof will easily follow from the following lemma. I owe this proof
to the referee (the original proof was much longer). In the lemma below we
do not need the assumption that I is an interval. It can be an arbitrary
topological space.

LEMMA 1. Assume (Hy), let f: 1 — I and let A be a compact subset of
I such that A C f(A). If¢: I — [0,00) is a continuous solution of (1) then
P(xz) =0 forxz e A.

Proof. Let xo € A be such that ¢(x¢) = sup(A), and choose an z; € A
with f(z1) = xo. If ¥(xg) > 0 then, by (5), ¥(xo) = ¥(f(z1)) < ¥(z1),
which contradicts the choice of xg.

Proof of Theorem 1. Let a and b, a < b, be periodic points of f
with periods k and I, respectively. To complete the proof it is enough to
apply Lemma 1 to f* (in place of f; cf. also Remark 1) and A = [a, b].

Now we apply Theorem 1 to the problem of uniqueness of continuous so-
lutions of (3). To this end fix a metric space (Y, ) and consider the following
hypothesis:

(H3) g maps a subset 2 of I XY intoY and there ezists a function (3
satisfying (Hy) and such that

U(g(ﬁ,yl),g($,y2)) < ﬂ(xva-(ylayQ))
for every (z,y1), (z,y2) € 2.

COROLLARY 1. Assume (Hg) and let f : I — I be continuous. If o1, ps :
I — Y are continuous solutions of equation (3) then pi(x) = @a(z) for
rxeln Zf.
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Proof. It is enough to observe that the function ¢ : I — [0, 00) given
by

(8) (@) = o(p1(x), p2(z))
is a continuous solution of (1), and use Theorem 1.

Now we pass to the study of non-negative continuous solutions of (2).
Let us start with the following lemma, important in the proof of Theorem 2.

LEMMA 2. Assume (Hy) and (Hg), let f : I — I be continuous and
let J C I be an interval containing a fixed point of f. Then there exists
a subinterval K of I containing J and such that any continuous solution
Y I — [0,00) of (2) vanishing on J vanishes also on K and, moreover,
either

e {inf K,sup K} contains a fized point of f, or
e {inf K,sup K'} is a cycle of f of order 2, or
e K =1.

Proof. Clearly we can assume that J is not a singleton. Put
Ko=J .
n=0

By Remark 1, any continuous solution ¢ : I — [0, 00) of (2) vanishing on J
vanishes also on K. Since J contains a fixed point of f, the set Ky is an
interval. Moreover, J C Ko C f~1(Kj).

By induction we construct a sequence (K, : n € N) of intervals such that
each K, is a component of cl; f~!(K,_1) containing K,,_;. Making use of
Remark 4 it is easy to observe that any continuous solution ¢ : I — [0, 00)
of (2) vanishing on J vanishes also on each K, i.e. on [J,_, K,. Let

o0
K=|JK, a,=infK, b,=swpK, nécN,.
n=0
Clearly K is an interval containing J and K,, = [an, b,] NI for n € Ny.
We now prove that for every n € Ny,
e cither a,4+q1 = inf I or f(ap+1) € {an, by}, and
e cither b,11 =sup or f(byy1) € {an,bn}.
For suppose that one of the above conditions is not satisfied, say a,+1 >
inf I and f(an+1) € (an,by) for some n € Ny. By the continuity of f there
exists a 6 > 0 such that (an4+1 — 0, an4+1]) C I and

f((@ng1 = 6, an+1]) C (an,by).

Therefore (an+1 — d,an41] U K, 11 is a connected set containing K, and
contained in cl; f~1(K,), which contradicts the definition of K, 1.
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Now, since (a, : n € N) decreases and (b,, : n € N) increases, we infer
that

9) either a,, = inf I for n sufficiently large or f(an+1) € {an,b,} for
every n € N, and

(10)  either b, = sup[ for n sufficiently large or f(b,y1) € {an,b,} for
every n € N.

Let a = lim,, . ap, and b = lim,, oo b,,. Then a = inf K, b = sup K and,
by (9) and (10),

o cither a = inf I or f(a) € {a,b}, and
o either b =sup [ or f(b) € {a,b}.

Assume that {a,b} does not contain any fixed point of f and is not a
cycle of f of order 2. To finish the proof it is enough to prove that neither

einf/ =a= f(b) and b < sup I, nor
esup/ =b= f(a) and a > inf I.

Suppose, for instance, that the first alternative holds true. (In the second
case we proceed analogously.) Since a = f(b) we have a € I. If inf I < a,
for n € N then, by (9), f(a) € {a,b}, whence either a = f(a) or {a,b} is
a cycle of f of order 2. Consequently, we may assume that there exists an
no € N such that a,, = inf I for n > ng. Then, according to (10) and the
fact that f(b) = a, we can find an n > ng for which f(by4+1) = a, = inf I.
Since b,11 < b < sup I, from the continuity of f we deduce that there exists
a 0 > 0 such that [b,41,bp41 — ] C I and

anp =inf I < f(x) <b, forzx € [byt1,bni1 +9).

Therefore K, 11 U[by41,b,+1+9) is a connected set containing K,, and con-
tained in cl; f~1(K,,), which contradicts the definition of K, and finishes
the proof of the lemma.

THEOREM 2. Assume (Hy) and (Hs), let f: I — I be continuous and let
J C I be an interval containing a fized point of f and such that cly(I\ J)
contains no cycle of f of order not greater than two. If ¢ : I — [0,00) is a
continuous solution of (2) vanishing on J then i is the zero function.

Proof. Clearly we can assume that J = clyJ. If inf] < infJ and
supJ < sup/ then the assertion follows from Lemma 2. Thus let inf J =
inf I or supJ = sup . Assume, for instance, the first possibility and fix a
continuous solution ¢ : I — [0, c0) of (2) vanishing on J. We now prove that
Y(xg) = 0 for each xg € I. Of course, we can consider the case xg > sup J
only.

First assume that 2o < f(xg). Then, by our assumptions,

f(z) >z forxz e In][supJ,o0),



236 B. Gawel

whence we can construct a sequence (z,, : n € N) of points of I converging to
sup Per(f,1) such that f(x,41) = x, for n € Ny. Since sup Per(f,1) < sup J
it follows that =, € J for an n € N. Thus ¢ (x,) = 0, which means (cf.
Remark 4) that ¢(xo) = ¢¥(f"(x,)) = 0.

In the case f(xg) < zo we proceed similarly. Then f(x) < z for z €
I N [sup J,00), whence we deduce that if f"(z¢) > supJ then f"™1(zg) <
f™(zp), for every n € Ny. Therefore either

e f"(xg) € J for some n € N, or
o supJ < [T (xg) < f*(xg) for every n € N.
But in the latter case we would have

nlin;o f™(xo) € Per(f,1)Necly(I\J),

which is impossible. Therefore f™(z¢) € J for some n € N. Consequently,
Y(f™(xo)) = 0, which means (cf. (7)) that ¢(z9) = 0.

As a consequence of Theorems 1 and 2 we get the following fact:

COROLLARY 2. Assume (H;), (Hz) and let f : I — I be continuous. If
Per f # 0 and cl;(I \ Zy) contains no cycle of f of order not greater than
2 then the zero function is the unique continuous solution v : I — [0,00)

of (2).
In order to apply Theorem 2 and Corollary 2 to the problem of unique-

ness of continuous solutions of (3) fix a metric space (Y, o) and consider the
following hypothesis:

(Hy) g maps a subset 2 of [ XY intoY and there exist 3 and o satisfying
(Hy) and (Hs) respectively, and such that

a(z,o(y1,y2)) < o(g(z,v1), 9(z,y2)) < B(z,0(y1,92)),
for every (z,y1), (z,y2) € 2.

COROLLARY 3. Assume (Ha), let f: I — I be continuous and let J C I
be an interval containing a fixed point of f such that cly(I'\ J) contains no
cycle of f of order not greater than 2. If p1,p2 : I — Y are continuous
solutions of equation (3) and p1(x) = @a(x) for x € J, then ¢1 = pa.

Proof. Since ¢ : I — [0,00) defined by (8) is a continuous solution of
(2) it suffices to use Theorem 2.

COROLLARY 4. Assume (Hy) and let f : I — I be continuous. If Per f
# 0 and clf(I'\ Zy) contains no cycle of f of order not greater than 2 then
(3) has at most one continuous solution ¢ : I — Y.

Modifying a little a classical reasoning from [5] we show in the next two
examples that inequalities (2) can allow a lot of non-negative continuous
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solutions when cl; (I \ Z) contains a cycle of f of order 2 as well as when
it contains a fixed point of f.

ExaMPLE 1. Fix an s € (0,1) and let f : R — R be an arbitrary
continuous function satisfying the following conditions:

e f([0,1)) [0, 1],
® fl(—s,0] is strictly decreasing,
® flj1,00) is decreasing,
el< f(x)<—xz+1forz <0,
o —x+1< f(zr) <0 foraz>1.
Then
< f*(x) <0 forz € (—00,0),
1< f2(x) <z forx € (1,00).
Consequently, Per f C [0, 1], inf Per f = 0, supPer f = 1 and these points
form a cycle of f of order 2. (They belong to cl(R\ Zf).)

We now show that for each xy € (—o0,0) and for every continuous func-
tion g : [0, f2(z0)] — [0,00) with

(11) bo(f*(w0)) = 5o (wo)

there exists a continuous solution 9 : R — [0, 00) of the equation
(12) U(f(2)) = s(z)

such that

(13) Ylizo, £2(20)] = Y0-

To this end define g : (—00,0] — (—o0,0] by g(x) = f2(x). Observe that
g is strictly increasing and
(14) x<g(xr) <0 forze (—00,0).

Fix an zg € (—00,0) and let 1 : [z, f?(x0)] — [0, 00) be a continuous func-
tion satisfying (11). According to [5, Theorem 2.10] there exists a (unique)
continuous function 5 : (—oo, 0] — R such that

(15) Di(g(@)) = "¢ (z)  for x € (—o0,0]

and

(16) V120, £2(z0)] = Yo-

We show that v is non-negative. Notice that, iterating (15), we obtain
(17) ¥1(g" () = "1 (x)  for x € (—00,0]

and for every n € Ny. Fix an = € (—o00,0]. Taking into account (14) we see
that there exists a y € [z0,9(z0)] = [z0, f2(70)] and an n € Ny such that
either ¢"(x) =y or ¢"(y) = z. From (16) and (17) we infer that ¢, (z) > 0.
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Since 11 (0) = 0, the function ¢ : R — [0, 00) defined by

1 (x), x € (—00,0),
Y(z) =< 0, z € [0,1],
%¢1(f($)), T e (1700)7

is continuous. Moreover (cf. (16)), it satisfies (13). We prove that ¢ is a
solution of (12). Fix an x € R. If x € (—00,0) then, by the definitions of
and ¢ and property (15), we have

YU )) = L) = “ha(g(e)) = 5 (x) = s9 ().

For z € [0, 1] equality (12) is evident. Finally, assume that « € (1,00). Then
O(f (@) = i (f(z)) = sv(x).

EXAMPLE 2. Fixan s € (0,1) and let f : R — R be a continuous function
satisfying

e f([0,1]) C [0, 1],

® fl(—s0,0]U[1,00) is strictly increasing,

o x < f(x) <0 for x <0,

o1 < f(z) <zxforz>1.

Then clearly inf Perf = 0, supPer f = 1 and these points are both fixed
points of f. (They belong to cl(R\ Zy).) Moreover, reasoning as in the
previous example we infer that for all o € (—00,0), yo € (1,00) and for
every non-negative continuous function ¢g : [z, f(20)] U [f(v0),%] — R
such that

Yo(f(w0)) = svo(xo),  Yo(f(yo)) = stbo(yo),

there exists a non-negative continuous solution 7 : R — R of (12) such that
Dlizo,7(20)1ULF (w0) 0] = Yo-

We end this paper by another two corollaries concerning solutions of (2)
and (3).

COROLLARY 5. Assume (Hy), (Hz) and let f : I — I be continuous. If
Per f # 0 and

INZy Cinty f(INZy)

then the zero function is the unique continuous solution 1 : I — [0, 00)
of (2).

Proof. Fix a continuous solution ¢ : I — [0,00) of (2). By Theorem 1,
1 vanishes on I N Zy. By Remark 4, ¢ vanishes on f(I N Zy). Moreover,
f(INZyf) contains a fixed point of f and

i(I\fF(INZy))=1\int; fINZs) CI\ Zy.

Now use Theorem 2.
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COROLLARY 6. Assume (Hy) and let f : I — I be continuous. If Per f

#0 and

INZy Cinty frn Zf)

then (3) has at most one continuous solution ¢ : I —Y .

Proof. Use Corollary 5 for ¢ : I — [0,00) defined by (8).
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