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Existence of local solutions for free boundary
problems for viscous compressible barotropic fluids

by W. M. ZAjaczKOWSKI (Warszawa)

Abstract. We prove the local existence of solutions for equations of motion of a
viscous compressible barotropic fluid in a domain bounded by a free surface. The solutions
are shown to exist in exactly those function spaces where global solutions were found in
our previous papers [14, 15].

1. Introduction. We consider the motion of a viscous compressible
barotropic fluid in a domain 2, C R? bounded by a free surface S; = 9f2;.
Let v = v(x, t) be the velocity of the fluid, o = o(z, t) the density, f = f(x,t)
the external force field per unit mass, p = p(o) the pressure, u and v the
viscosity coefficients, o the surface tension coefficient and pg the external
(constant) pressure. Then the problem is described by the following system
(see [4], Chs. 1, 2, 5):

o(ve +v-Vov) 4+ Vp(o) — pAv —vVdive = of in 27,

ot +div(ov) =0 in 27,
(1.1) olt=0 = 00,  V|t=0 = vo in 12,

Tn —oHn = —pon on ST,

v-n=—¢/|V¢| on ST,

where ¢(x,t) = 0 describes S;, 27 = Useo,r) $2¢ x {t}, {2 is the do-
main of the drop at time ¢ € (0,T), 2 = (2 is its initial domain, 57 =
Useo,7) St x {t}, m is the unit outward vector normal to the boundary
(n = V¢/|V¢|), and p, v, o are constant coefficients. Moreover, thermo-
dynamic considerations imply v > 1/(3u) > 0, 0 > 0. The last condition
(1.1)5 means that the free boundary S; is built up of moving fluid particles.
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Finally, T = T(v, p) denotes the stress tensor of the form
(1.2) T ={T3;(v,p)} = {—pdij + 1(0z;vj + O, vi) + (v — p)ds; div v}
= {—pdi;} +{Di;(v)},
where 7,7 =1,2,3, D = D(v) = {D;;(v)} is the deformation tensor and H

is the double mean curvature of Sy, which is negative for convex domains
and can be expressed in the form

(1.3) Hn = Ag, (t)z, == (x1,22,23),

where Ag, (t) is the Laplace-Beltrami operator on S;. Let S; be determined
by = x(s1, 52,1), (s1,82) € U C R?, where U is an open set. Then

1 1 1
= 785(1 7@\& as = 7asa g gaﬁas ’ Oé,ﬁ = 1a27

\/g \/g BYsg \/g \/> B
where the summation convention over repeated indices is assumed, g =
det{gas}ta,p=1,2, gop = Ta - g, where z, = 05,z and the dot denotes the
scalar product in the Euclidean space, {g®”} is the inverse matrix to {gas}
and {gnps} is the matrix of algebraic complements for {gng}.

Let the domain {2 be given. Then by (1.1)5, 2, = {z € R® : z = x(£,1),
& € 2}, where x = x(&, t) is the solution of the Cauchy problem

dx

(15) % :'U(I‘,t), ‘T|t=0:€€ ‘Qv §:(§17€27§3)‘
Therefore the transformation z = z(£,t) connects the Eulerian x and the
Lagrangian £ coordinates of the same fluid particle. Hence

(1.4) Ast (t)

(1.6) z=¢+ [ulgs)ds = (1),
0

where u(§,t) = v(x(§,t),t). Moreover, the kinematic boundary condition
(1.1)5 implies that the boundary S; is a material surface, so if £ € S = Sy,
then z(§,t) € S; and

Sy ={x:x=ux(&t), €S}

In view of the continuity equation (1.1); and (1.1)5 the total mass M is
conserved and

fg(:v,t)da::M, t e 0,7,
2
which is also a relation between ¢ and (2.
We consider simultaneously two cases: ¢ > 0 and o = 0. The aim of this
paper is to prove local existence of solutions to problem (1.1). To prove the
existence we use the Lagrangian coordinates. Therefore, we write problem
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(1.1) in the form

nuy — ,uViu —vVyVy-u+Vyqg=ng in 27 =0 x (0,7),

m+nVy-u=0 in 27

(L.8)  Tyu(u,q)m — 0 Ag, (t)z(£, 1) = —poTa on ST =5 % (0,7),
ult=0 = vo(§) in (2,
Ni=o0 = 0(§) in (2,

where 77(5775) = Q(x(fvt)vt)) Q(fat) = p($(§,t),t), g(é.vt) = f(x(gat)vt)v
Vu = c%é}v&, 851. == V&., Tu(u, q) = —q5 + ]D)u(u), 0= {(51‘]‘}1',]‘:1’273 is the
unit matrix and D(u) = {1(92,&k Ve, uj + 0p,Ek Ve, ui) + (v — )05V - u},
with V- u = 0,,&; V¢, u;, with summation over repeated indices.

Let A be the Jacobi matrix of the transformation z = z(&,t) with ele-
ments a;; = 0;; + fot O¢,ui(§,7)dr. Let 0 < My = const be given. Assuming
Vet s or < My we obtain

(1.9) 0 < c1(1— Mot)® < det{0¢,x;} < ca(l+ Mot)®, t<T,

where c¢1, co are constants and T is sufficiently small. Moreover, det A =
exp(fg Vo -udr) = o/n.

Since S; is determined (at least locally) by the equation ¢(z,t) =0, S is
described by ¢(x(&,t),t)|t=0 = <;~S(£) = 0. Moreover, we have

no =no(§) = Vedld)

= n(x(S,t),t) Veo(€)]

B |VI¢($7 t)‘ z:m(ﬁ,t)?

The proof of existence of solutions of problem (1.8) is divided into the
following steps. First we prove existence of solutions to the problem (see
Section 4)

u — pAeu —vVeVe - u = fi in 27,

H()]D)g(u)ﬁo =0 on ST,

1.10 j 4
(1.10) nioDe (u)mg — o9 As(0) f w(r)dr=gs+o0 f hi(t)dr on ST,
0

0
u’t:() = Up in .Q,

where IIj is the projection defined by IIpg = g — (g - Ro)no and D¢ (u) =
{1(0¢,uj + Ogyui) + (v — 1) 0350, upe }-
Next we prove existence of solutions to the problem (see Section 5)
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nug — uViu — vV, -u=F in 7,

To(u,q)n —ocAg, (t)(E+ | w(& T)dr
- (u, q)7 — 0 As, (1) Jwten )

:G+UfH(T)dT on ST,
ult=0 = vo in 2,

where 17 and w are given functions.

Finally, by the method of successive approximations we show existence
of solutions of problem (1.8) (see Section 6).

In Section 2 we introduce the necessary notation and present some aux-
iliary results.

In this paper we prove existence of solutions to problem (1.1) exactly in
those classes in which global existence for this problem is shown (see [14,
15]). In [13] the local existence of solutions to (1.1) is proved in totally
different anisotropic Sobolev spaces. Therefore the proofs from this paper
and [13] are different in many details although the general idea is the same.

In this paper we tried to present numerous details of the proof because
the result is fundamental for the considerations in [9, 10, 11, 14, 15], where
the local existence has already been assumed.

Local existence to problem (1.1) is also shown in [5] but in a different
way and in different spaces.

2. Notation and auxiliary results. We use the anisotropic Sobolev—

Slobodetskii spaces Wl /Q(QT) leRy, QT =Q x (0,T), where @ is either
2 (a domain in R3) or S (the boundary of £2), with the norm

lalSysargry = 2 IDEuliuor)
|| <[1]
tu x, t Da, tu(l'/ t)|2 /
|cv|<[l] ( (L)/‘éfé[ |.’E — ;L'/|S+2(l ) dx dz’ dt

Dgt/u(m t)|?

+ f f f \t—t'|1+2(l/2 072 dmdt/dt>

Q0 0
= > DS ul3qr
[l <[!]

+ Z Sl .or o + IDTedle_ 2,07 o)

o=

= Hqu,QTa
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where s = dim Q, Dy = 031092032, a = (a1, oo, a3) is a multiindex, |a| =
a1+ az + a3, DY, = D3O, @ = (ap, @), a = (a1, a2, a3), [a@] = 2a0 + |a]
and [{] is the integer part of I. For ) = S the above norm is introduced by
using local mappings and a partition of unity.

To consider problems with vanishing initial conditions we need a space
of functions which admit a zero extension to ¢ < 0. Therefore for every v>0

we introduce the space HY Z/Q(QT) with the norm
T

||U||i,i,l/2 :f672%”“”12,th+||u||12qg,l/2
0

M) ")’

For /2 ¢ Z,

T
il gny =7 J " el g

|0Fuo(-,t — 7) — O uo (-, t)|I3
—2~t ,Q
+f 7t f 7_1+2(l/2—k) dr,

where k = [I/2] < 1/2, and ug(x,t) = u(x,t) for t > 0, ug(x,t) =0 for t < 0.
For 1/2 € Z,

T
/2
el 00y = J €20 Nl o + 10} ulld o) dt
0

and we assume that &/uli—o =0, 5 =0,...,1/2 — 1, so ug(z,t) has a gener-
alized derivative 8i/2u0 in @ x (—o0,T'). For simplicity we write ||ul|; . or =

HUHHZ’I/Q(QT)‘ In the above definition we used the notation
vy

1/2
biha=( 3 1D+ X 1D o) .
e <[1] lor|=
Set R? = {z € R" : x,, > 0}, R =R" x (0,7), D' = R? x (0,7),
n = 2,3. For functions defined in R and vanishing sufficiently fast at
infinity we define the Fourier transform with respect to x and the Laplace
transform with respect to ¢ by the formula

f(f,s):fe—stdt [ fla,t)e "¢ da.
o

0

Hence we define the norm

lulll} | gure = J d€ f|u & 5)(lsl + &) do, s =7 +i&,v € Ry.
RTL
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Similarly for functions defined in D! we have

f(f, S, Xp) = f e Stdt f f(x,t)e_irl'fl dv’; ' = (x1,..., 20 1),
0 RrR71

and introduce the norm

Ml s = 3 [ e’ [ 103,36, 5,2)]3 g (1s] + €)' o

J<Hrr—t —oo

+ [ d¢ [ A€ s )iry déo, s =7+ i, v € Ry
Rt —oo

We introduce
W5E2(QT) = {u e Wy (@QT) : diulimo = 0, i < [1/2 — 1/2]}

and Wl Z/Q(QT) to be the space with the norm [|ull; g7 + |u, or, Where

1/2
I‘t |2Q
[ulysx.or :< Z f > '

loe|=

For functions defined in {2 we introduce ||ulli,o = [Jullgi(), |ulpe =

lullz, @), € NU{0}, 1 < p € R, and we define I'L(£2) to be the space
with the norm

lull 1 (@) = > N0t -2 ) = [ulik.o-
2i<l—k
Similarly we define I'}(S).

We introduce a partition of unity. Let us define two collections of open
subsets {w®} and {2®}, k € MUN, such that @) c 2F) c 2, |, w® =
U 2®) = 2, 2 NS =0 for k € Mand XX NS #£ O for k € N
Assume that at most Ny of the 2(%) have nonempty intersection. Suppose
sup,, diam 2*F) < 2X for some A > 0. Let ((*)(z) be a smooth function such
that 0 < ¢(F)(x) <1, (¥ (z) =1 for x € W), () (z) =0 for 2\ %) and
|D¥¢®) (2)] < ¢/AYl. Then 1 < 37(¢™¥)(2))? < Ny. Introduce the function

(k) () — ¢ (x)
1) = = o

We have n*) () = 0 for z € 2\ 20 3> ) (2)¢*®) () = 1 and |D*n ()|
< ¢/AVI. By € we denote the center of w®) and 2 for k € 9 and the
center of w®) NS and 2*) N S for k € N.

Considering problems invariant with respect to translations and rotations
we can introduce a local coordinate system y = (y1,ys2,y3) with center at
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¢®) such that the part S®) = §n 2K of the boundary is described by
y3 = F(y1,y2). Then we consider new coordinates defined by

2 = Yi, 1= 1727 Z3 =Yz — F(ylayQ)-

We will denote this transformation by z = & (y), where y € w®) c 2®);
we assume that the latter sets are described in local coordinates at £%) by
the inequalities

lysl <A, i=1,2, 0<ys— F(y1,y2) < A,
lyil <2\, i=1,2, 0<vys— F(y1,y2) <2\,

respectively.
Assume S € H*~1/2. Then ||F||471/2 Sy < M, where M can be chosen

independently of £ € S. We extend F' to a function F on R? in such a way
that ||F||4,R3+ < ¢M. Moreover, F satisfies F'(0) = 0, VF(0) = 0. Therefore,
the following inequalities hold:

|F(2)] < eAM, |VF(2)| < XM, a>0.

Let y = Yj(t) be a transformation from coordinates x to local coordinates
y which is the composition of a translation and a rotation. Then we set

A (z,8) = (@ oV (2),1),  a®(z,1) = a0 (2, )¢V (2, 1).
Now we recall some results.

LEMMA 2.1 (see [5]). Let u € HY™/?(2T). Then for every ¢ € (0,1) and
0< q<r-— |O[|,

(21)  IDgullgy,0r < 1 ull,  0r + ceT T leT Ul or
< (el ey 2em Tl |, o

LEMMA 2.2 (see [5]). There exist constants c¢; and co, which do not
depend on u and vy, such that

(2.2) erlllull g < lully gos < calllulll, g

LEMMA 2.3 (see [5]). There exist constants c3 and c4, which do not
depend on u and 7y, such that

(2.3) calllullly y prr < Nlullyy prer < callfullly  poer-
We also need

LEMMA 2.4 (see [5]). Let u € Hi’lﬂ(R:TﬁH) and 0 < 2m + |a| <. Then
0/"D%u € Hél’ll/z(]R’}'H), where Iy =1 —2m — |a| and

(24) HalegUHhmR;ﬂ S CHUHZKY’R;+1’
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Moreover, for o € (0,11) and € > 0,
(25) 10Dl myn < <l s e e ull g,
where h = o+ 2m + |a|.

Let u € HY'?(DE) and 0 < 2m+ || < 1 —1/2. Then " D%ul,,—q €
H§27l2/2(R1}), where lo =1 —2m — |a| — 1/2, and
(2.6) 10" Dtz =olltz r. < cllully y pper-

3. Existence of solutions to problem (1.10) with vanishing initial

data in the half-space. Now we consider problem (1.10) in the half-space
x3 > 0. First we examine the following problem:

— pAu —vVdivu = 0, x3 > 0,
8ui 8’[1,3 .
= biv = 17 27 = 07
u(ﬁxg + 81'@) ‘ s

8u3 8U1 8u2
(3.1) (M+V>8953+(V_M)<8xl+8x2>

+oA f’LL3 dT—bg, z3 =0,

u|t:0 =0, z3 > 0,

where A’ = 8%1 + 832. By applying the Laplace-Fourier transformation

(3.2) F(€, s, m3) = fe_Stdt ff(a:,t)e_”,f/da:', Res > 0,
0 R?

where & = (£1,&), @' = (x1,22), & -2’ = {1 + Ex9, problem (3.1) takes
the form

d*u du,
/’L# 5’673_(8—’_“{ )uk—yé.kfju,] _07 k:1727 $3>0,
(3.3) ’
d*us
(s +0) o+ i€y T — (5 i)y =0 v5 =0,
3
diis
/’LT + kaUg = bka k=1,2, x3 =0,
(34
d’LL3 2
(u-i-l/)d—gvg—i-(u— )(ijuj)——f U3—bg, r3 =0,

U — 0 as x3 — 00, where § = (£1,82), £2 = &7 + &
Every solution to (3.3) vanishing at infinity has the form

(35) u= (& s)e” ™ +U(E, 5) (61, €2, ima)e” T,
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where ¢(£a 5) = (¢17¢27 (2/7'1)6 . ¢)a ¢j = ¢j(§as)a ] = 1727 T1 =/ S/M + 527
Ty = \V S/(:U’+V) +£2, argTj € (777/4371-/4)7 ] = 1727 5 ' ¢ = €l¢1 + §2¢27
¢ = (¢1,¢2).
Putting (3.5) into (3.4) yields
§E- ¢+ Tio; +2mim = —p oy, =12,
(3.6) g &? 2 2, 02 7
(20 28 Ve 04 (G vrd + (=) + €0 )0 =

Solving (3.6) we have

5-¢>——11)[T( +2u€ + m)b £+2¢ mzzbg}
W

== +>b 5+<S+2§2>z‘63],
0 5 T1 I
where

(3.8) [(Z ) 25272 —4¢ 7172]
Using (3.6) and (3.7) in (3.5) gives

~ &1 5 - 3 =

(3.7)

U = DT - (Tl + 52 - 27’17’2)() . 561 + 52(7'162 — Tgel)b f
gk S 2
flbg ;4—2& — 27Ty 62—|—27’17’2(62—61)
1 ~
f*kig (Tre2 — T91)E%0 - € — —byey, k=1,2,
DMSTI T
(39) i s _
’173 = — |:2T1T2(T2 — Tl)eo + <2T1T2 — < + 2§2>>€1:| b f
D %
1 0
- 5/75 To(T1 — T2)b - Eeg

- % |:<'u + 2§ )(T2 — 7'1>60 + Zel:|53,

where e; = e~ 773§ =1,2, e9 = (e1 — e2)/ (11 — T2).
Using the expressions
S s v

2 2 _
T — T8 = — — = 5= ¢S,
VR oty oppty)
9 .o 9 s coS s
—2 = — — = — =
+§ T1T2 (Tl T2) M+V (T]_ _’_7_2)2 M+V Cc1S,

CoS CoS

7'162—7'261:(Tl—T2)62+T2(€2—61):T g €2 7'27_ e
1 2 1 2
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we write (3.9) in the form

~ 1 ~
Uy, = <5’“015b.§— bk>e1
KT

D n
25 (0 g cusi + e g, £)es
— % <27’2 7163—8723' E4 2110 p——— z'gg
(3.10) - ﬁn%comg%' 5) 0
= Erie1 + Erzea + Epoeo,  k=1,2,
Uz = — % [<2T1TziTlciST2 + ffjfi;)g-f

ToCpnS S ~
420 (+2§2>b3]eo
T+ To \ W

1 ~ ToS~
+ —= <i618b . 5 — 2b3)61 = E30€0 + E3161.
D 2

From [8, 12] we have

LEMMA 3.1. For all £ = (&1,&2) € R? and s = y+i&y with v > 0, v € R,
50 € Rla

(3.11) D] > calsl€?, D] = es(|s]* + [¢]°).
Using Lemma 3.1 we obtain

LEMMA 3.2. For £ € R? and v = Res > 0,
Cs

Vsl +¢2

(3.12) |Eo| <caldl, |E1|+|Es| < bl,

where Ez = (Eli,EQi,Egi), 1= 0, 1, 2.
Moreover, from [12] (see also [5]) we have

LEMMA 3.3. For £ € R%, s = v+ iv9, 7,& € R, v > 0, and for every
nonnegative integer j,
2

0o | s
d’e; )
f el(‘xS) 3 < 7|T’L|2]_1a 1= 1727
da?,
0
j? d‘jeo(.’fg) d:L‘3<c|7-1’2] 1+’72’2] 1
o da, - |71]2

Lemmas 3.1-3.3 and [12] imply



Free boundary problems for barotropic fluids 265

THEOREM 3.4. Let by, by € H>T/*/4R3 ) by = dy + Jfg da(7)dr,

dy € H3+1/271+1/4(R§o), and dy € H$71/27171/4(R‘zo). Then solutions of
problem (3.1) satisfy the estimate

3
(3.13) ) uillaqos
=1

2
< C(W)(Z Hba”2+1/2,~y,Rgo + ||d1||2+1/2,~y,Rgo + ||d2||2—1/2,7,Rgo>7
a=1

where c(y) remains bounded for v > 79 > 0.

Now we consider the problem

uy — pAu —vVdivu = f, x3 >0,
8ui 811,3 .
= bi: =1,2, =0,
M(al'g, + 81’,) ‘ 3

aug 8’&1 8u2
pan g e (G o)

t
+0’A/ IU3(T)dT:b3, 517320,
0

u|t:0 =0, x3 > 0.
In view of the considerations in [12] and Theorem 3.4 we have

THEOREM 3.5. Let the assumptions of Theorem 3.4 be satisfied. Let f €
H2Y(DY)). Then there exists a solution to (3.14) such that u € H3?(D2,)
and

3 2
(3.15) Z [willaype, < C(’Y)(Z [1ball2+1/2 ks, + ldill241/2,4 R,
=1

a=1

+ [ld2llo—1/2,v,r3, + |If Z,W,D‘éo)-

4. Existence of solutions to problem (1.10). First we consider prob-
lem (1.10) with vanishing initial data:

L(0y,0¢) = up — pAu —vVdivu = f in 2 x (—o00,T),
Bi(z,0:)u = Iy T(u)ng = IIpb =V on S x (—o0,T),

t
(41) Ba(z,0:)u=7oT(u)g — 070 As [ u(r)dr=b-7
0
t

=di+o f do(T)dr on S x (—o0,T),
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where IIpb = b — (b-7g)p = V. We write B(x,0,)u = (Bi(x,0;)u,
By(z,0x)u).
Let £ (x,t) = (¥ (z,t) f(x,t). We denote by R, k € 90, the operator

(4.2) u™ (z,t) = R® f®) (1 ¢),

where u(®) (1) is the solution of the Cauchy problem

(4.3) L(0y, 0)u® (2, t) = f¥)(z,1).

For k € M we define R to be the operator

(4.4) @M (z,t) = RO (F9 (2,1),0 (=,1)),

where () (z, t) is the solution to the boundary value problem

(45)  L(D.,8,)a™ (z,t) = f®(2,t),  B(z,8.)a® (z,t) =™ (z2,1),

where 0¥ (2,t) = Z, *u®) (x,t) and Zj, is the operator which represents the
relation between u(*) (z,t) and u® (, ).

Then we define an operator R (called a regularizer) by the formula (see
[3, 6])

(4.6) Rh=3 1™ (@)u®™ (z,1),
k
where
(&) (x,1) kem
hE) () = fA RV )
z¢) { FO 1), 50 (20, ke,
(

and

’ ZRRW(Z f0) (2,1), Z 0 (3,1)), ke M.

Theorem 3.5 implies existence of solutions of problems (4.3), (4.5) and
the estimates

(4.7) [ |y e, < el &

and

2,v,D4_» k € m,

2
(48) @Dy me < (1T o e + D0 I8P o125

i—1
+ H%k)”zﬂ/z,y,n@go + Hggk)Hz—l/z,y,Rgo), ke M.

Let h = (fbiba,di,dy) € HY/2(QT) x HJH/2UZHA(GT) o
1+1/2,1/2+1/4 1+1/2,1/2+1/4 1-1/2,0/2—1/4 _

H»Y+//+/(ST)><H»Y+//+/(ST)XH»Y// /(ST):H,IY

let VI = Hy 2T (0T,
Inequalities (4.7) and (4.8) imply

and
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LEMMA 4.1 (see [12]). Let S € H*Y2 and h € H2 with vy sufficiently
large. Then there exists a bounded linear operator R : H2 — V2 such that

(4.9) [RA|lvz2 < cllhl g2,
where ¢ does not depend on v and h.

We write problem (4.1) in the following short form:

(4.10) Au=h, A= (L,B).
LEMMA 4.2. Let S € H*Y/2 and h € H3 with ~ sufficiently large. Then
(4.11) ARh = h+Th,

where T is a bounded operator in Hg with small norm for small A and
large ~.

Proof. We have
LRh= Y (L(d, 0™ u® —n®™L(0,,0,)u)

keMmuMn
+ > 9™ Zy(L(0. — VFO.,,0,) — L(0:,0,) Z;, ' u'® (x, 1)
keNn
+ > B L(0, 0)u®) (2, 8) + > M 2, L(0., 0, Z;; ul®) (x, 1)
kem ken
= f + T1h7
and
BRh = Z (B(x, 0, )nFu® — n® B(z,9,)u®)
keMmuMn
+ Z (k) D) — B(f(k),aw))u(k) + Z n*F)p(k)
kemum kem
+ > "z (BEW, 0. — VFI.,) — B(E™,0.)) 2 (1)
ken
+ Y ™ zB(E™,0.)Z;  u® (2, t) = b + Thh.
ken

Now we estimate operators 77 and 7T5. By using Lemmas 2.1, 2.4 and
Theorems 3.4, 3.5 the first term in T1h is estimated in the following way:

| S @ -, <o S 1Ol
kemum v kemumn
<e(e® +eoe)r ™) D P lanqu < ele® + o)y )Pz,
keMUN
where §; > 0, i = 1,2, Q) = 20 x (0,7T), and cy(¢) is a decreasing
function.
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The second term in 77 h is bounded by

¢ (VEVEVEM)|_o, (g ll2.r0m
ken

+(VEQ + VE)V2E™)| g, (y@)) l2y.000
+ (VEEVE®) | gy (g 24.000)

<cy ((IVF

ken

5,00 1™ 13 Q00

+sup |VE|(1 + sup [VE)) [u® |4, o) = 1,
Qk) QK

where p is a polynomial of degree two. Using sup ) |Vﬁ|§c)\1/2 ||Vﬁ||3yg(k) ,
the interpolation inequalities and Theorems 3.4 and 3.5 we have

I <c(e™ +eole) A2+ ) Bllmz, 6 >0, i=1,2,3,

and co(e) is a decreasing function.
Similar considerations can be applied to the other terms of 77 and T5.
Summarizing we have

(4.12) IThll 2 < el + co(e) (A" +47)]|| Al 2.
This concludes the proof.

LEMMA 4.2 (see [12]). Let S € H*"Y/2. Then for every v € V2,
(4.13) RAv = v+ W,

where W 1s a bounded operator in Vf whose norm can be made small for
small A and large -, because

(4.14) [Wollvz < e’ +co(e) (A2 + 7] |[ollvz, e €(0,1),
where co(€) is a decreasing function.

Proof. See the proof of Theorem 3.4 of [12].

For sufficiently large v and sufficiently small ¢ and A the norms of W

and T are less than one. Therefore Lemmas 4.1 and 4.2 imply
THEOREM 4.3. Let f € H2'(QT), v,d; € HyTV/>HVYST), 4y €
H371/2’171/4(ST) and S € H;l*l/g. Then for sufficiently large ~y there exists
a unique solution of problem (4.1) such that w € H3?(2T) and
(4.15) Hu”4,~y,QT < C(HfHQ,'y,QT + Hb/H2+1/2,7,ST
+ lldillat1/2,4,57 + [ld2lla—1/2,,57),

where ¢ does not depend on u and ~y.
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Now we consider problem (1.10) with nonvanishing initial data. Then we
have

THEOREM 4.4. Let f € Wi (0T), g; € W;T/lf’lﬂ/zl(ST), i=1,2,

h e W21+1/2’1/2+1/4(ST), S e H*Y2 ug € H3(2), and T < oo. Then there
exists a solution of problem (1.10) such that u € Wy*(2T) and

(4.16) [ulls,0r < e(T) (X1 + Xz),
where X1 = || fill2,or + 22221 lgill2+1/2),57 174 + Bllig1/2,57, X2 =
1£(0)l1,2 + lluolls, 2, and c(T) is an increasing function of T.

Proof. Let ¢° = ug € H3(2) and ¢' = plug + vVdivug + f(0) €
H(£2). We extend the functions onto R? in such a way that the extended
functions ¢°, ¢! satisfy ¢° € H3(R3), ¢* € H*(R?) and [|¢°||5.55 < c[|¢°]|5.2,
16 1,me < cllgt]l1,0-

In view of Lemma 4.5 below there exists a function & € Wy*(R3 x R?)
such that

(4.17) Olymo = ¢,  i=1,2,
and
(4.18) [0ll4.07 < |[0]larexrr < c(|@0]|z,rs + 16" l1.2)

< c([luollz,2 + 1 (0)[[1,22),

where v = U] pr. Introducing the function

(4.19) w=u—"v
we see that it is a solution of the problem

wy — pAw —vVdivw = f/ in 2T,

IID(w)ng = ¢} on ST,
(4.20) _ L : !

noD(w)mg — oMo As(0) f w(r)dr=g5+o0 f B'(r)dr  on ST,

0 0

wli=o =0 in £,

where
f = f— (v — pAv — vV dive) € W2(07),

(4.21) gi = g1 = HoD(w)mo € W5/ HH(ST),

gh = go — MeD(v)m € WEHY/2IH/4 (9T,
W =h—TmgAg(0)w € W2 Y/21714(gT)y,

To prove existence of solutions to problem (4.20) we have to extend the
right-hand side functions by zero for ¢ < 0. The function f’ can be extended
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easily to a function f” € Hy'(27) and

(4.22) 1" ll2,0,0r < cllf'll2.or < c(lfllz.or + l|v]la,0r).

Since 1 —1/4 —[1 —1/4] =3/4 > 1/2, in view of Lemma 2.5 of [13], h’ can
be extended by zero to a function h” € Hy~ 1/2.1= 1M(ST) and

(4.23) 1A lla—1/2,0,87 < e|W [|la—1 /2,57 < c(l|hlla=1 /2,57 + [V]|a,07).

Since 1 +1/4 —[1 +1/4] = 1/4 < 1/2, to extend the function g}, i =
1,2, we have to assume that g, € WQH/2 1+1/4(ST), i = 1,2. Hence g; €

2,1/4
H22J1r/142 1+1/4(ST) i =1,2, and v must be such that

(4.24) | HoD(v)7o0 |l 241/2),57,1/4 + [RoD(v)70 || (241 /2),57,1/4
< c(lluollz,2 + I £(0)[|1,2)-

If we show this, then the extended functions g’ € H2+1/2 1+1/4(ST) i =1,2,
and

(4.25) 1197 la1/2,0,57 < cllgill2+1/2),57,1/4
< c(llgill241/2),57,1/4 + oz, + 1£(0)]|1,2)-

To prove (4.24) it is sufficient to estimate the expressions

T D2 IID: (07 2 1/2 T D2 inD(v)7 2 1/2
(IR ) (IO
0 0

t1/2 t1/2

r |D£”|§,s+‘DE’U@,S“"DEU@,S‘HD@W‘%,S 1/2
<( [ dt

t1/2
0

<

( j" |DeV3 g + |DE0I3 g + |DEVS g + | D3 dt) 172 .
0

t1/2

where we have used the fact that S € H*~1/2. In view of Lemma 2.6 of [13]
we have the estimate

Deo(t) — Deo(t') |3 D2v(t) — D?o(t) |3
(fdtfdt<| 3 Ut )|2,S | € (t) £ ( )‘2,5

t/\1+1/2 |t — ¢/|1+1/2

| DEu(t) — Dot )Iz,s |De0:(t) — Dedvv(t) 3,5\ )/
It — ¢/|1+1/2 It — ¢/|1+1/2
< cl[vll4,oxre-
Hence in view of (4.18) we have (4.24).

Since T' < oo the norms of HY Z/Q(QT) and H(l)’l/Q( 27T) are equivalent
(and similarly for boundary norms) Therefore, f” € H2'(027), gf, g4 €
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H,%H/Q’HIM(ST), - H$+1/2’1/2+1/4(ST)
¢(7y) such that
1£" ll2,y,0m < eI l2,0,07
(4.26) 197 l241/2,7,57 < e()llgi’
1A 141 /24,57 < (V)R l141/2,0,57-

and there exists a constant

‘2+1/2,0,ST7 i = 1a27

On using the above extensions, problem (4.20) takes the form
w; — pV3*w — vV divw = f” in 2 x (—o00,T),
HO]D)(&;)WO = gil on S x (—OO,T),

¢
4.27)  MD(@)Ag — oM As(0) [ @(r)dr
0
¢
=gy+o f R'(t)dr  on S x (—o0,T),
0

where w is zero for t < 0 and w = w for t > 0.

In view of Theorem 4.3 and (4.22), (4.23), (4.25), (4.26) there exists a
solution of problem (4.27) such that w € H}?(S™) and

(4.28) [@0][4,9,07 < c(7)(X1 + X2).
Now (4.19), (4.18), (4.28) and the equivalence of the norms of H(l)’l/2(QT)
and Hi’lm(QT) for T' < oo imply
(4.29) lulla,0r < wlla,or + [[vlla,er < [lw]lso,0r + X2
< clwllaq,er + Xz < e(7)(X1 + Xa).
Hence (4.29) implies (4.16). This concludes the proof.

To prove Theorem 4.1 we needed the following result:

LEMMA 4.5 (see also [2], Section 3, Ch. 2, Theorem 21). Let ¢y, ..., Ok,
¢; € H7271(R"), 1—2k—1 >0, I,k € NU{0}, be given. Then there exists
a function u € ng’l/2(1R" x R4) such that

du
4.30 —_— =, 1 =0,...,k
( ) ot o ¢J($)7 J ) s oy
and
k
(4.31) lulli g xr, <> 105lli2j-18n,
=0

where the constant c¢ does not depend on ¢, j =0,..., k.
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Proof. Assume that ¢; € C5°(R"™). Define a Fourier transform of u(x,t)
with respect to the variables = (z1,...,2,) by

k 2)
49 60 = 3 T 0O €= )
Jj=

where the ®; € C§°(R!) satisfy the relations

(4.33) d'2;(5)

- =6, i,j=0,....k

s=0

and qgj (€) is the Fourier transform of ¢;.
We can take @;(s) = (s7/j1)Po(s), Do € C§°(R), Pp(s) = 1 for small s.
Taking the Fourier transform of (4.32) with respect to ¢ gives

k

D,(&/(1+ &2
(4:34) et = e
Jj=

where éi\j is the Fourier transform of ®;.
Now we estimate the norm

- ¢ o6 |7
olfase, = O+ +6)| 22 (H‘)gz) D deao
R™ xR 7=0
Zf 15,©P ( )2<1+\512+§>ld§
_J 0 R™ |1+§2 1+§2 0 0

Introducing a new variable in the inner integral,

€o

=T

we get

I Z [ 18P +1g2) =" dg f 1B,(n) (L + m)! d

j=0 R"
écZ [ 165 P+ 1g/?)! %" de.
j=0 R"

Hence (4.31) follows. This concludes the proof.

5. Existence of solutions to problem (1.11). First we consider the
following problem with 7 > 0:
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nuy — ,uvgu —vVeVeu=F in 7,
UQDg(U)ﬁO =Gy on ST,
(5.1) ! T
oD (u)ny — ofpAg(0 f u(t)dr =Gy +o f H(t on S,
0
ult=0 = uo in £2.

LEMMA 5.1. Let 0 < n € C(02T)NLoo (0, T; TE(£2)), 1/n € Lo (27), f €

W (27), Gi e Wy T PTTYAST), i = 1,2, H e Wy VAYA(ST), and

S € H*1/2. Then there exists a solution of (5.1) such that u € Wy*(27)
and

(5.2) ||u||4,QT
< ¢1(|1/n!oo,m,51t1p nl2,1,0)|ull2,or

+ ¢2(|1/77|OO,QT7 |77’oo,.QT7 ’n‘CO‘(QT))
X [I1Fl2,0r + [|Gllo41/2,57 174 + [ HIl2—1/2,57 + [u(0)]3,0,0];

where ¢1, ¢o are increasing functions of their arguments and G = (G1,Gs2).

Proof. First we consider problem (5.1) with vanishing initial data. In-
troducing a partition of unity ¢(%1(¢,t) in 27 such that supp (¥ (¢,t) C
2 x (Ti—1,Tq) (see Section 2) and setting ;) = u¢®Y we write prob-
lem (5.1) locally in the form (see [13])

(& t) gyt — BV g — vV Ve - Uk
= (& tr) — (& ugeay + e — p[VE, (D]
— V[VeVer, (" DNu+ Fyopy = Fliopy + Faon) = Fay.s
IToDe (v, 1)) Mo = MoDe (¢ )Tou + Gy (1)

=Gy + Gi = Gy,
(53)  TioDe(uge)fo — oMo As(0) [ g (7)dr
0
= ﬁng(C(k’l))ﬁou + GQ(}CJ)

+f O'TLO AS C( l)]u—i—n Dg( )C’(f’l)ﬁo) dr

t
+ f (—GotFV) + Hey yy (7)) dr
0
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t
= Ghyy + Gageny + 0 [ (H{pyy(7) + Hiopp (7)) dr
0

(5.3) ~ .
[cont.] = G2(k,l) +o f H(k:,l) (T) dr,
0

Uk, |t=0 = 0,

where we have used the notation K ;) = K¢BD K € {F,G1,Go, H}.

Introducing a new variable 7 = nl;llt, et = N(&k,t1), where & € (2,
t; € (T1—1,T;), applying Theorem 4.4 and then going back to the variable ¢
we have

(5.4) e, lla,or < 01/ kM1, T)
X (1Fwp ll2,0m + |G ll2+1/2),57,1/4
+ [ H,py li41/2,57 + [ Fre,0) (0)||1,2)5

where ¢ is a positive increasing function of its arguments.
Now we estimate the particular terms on the right-hand side of (5.4).
First we consider

(55) N Fplla.or

< eA*leeory [ lla,or
r 2 2 2 2 1/2
+C( f f (IVnVue el + IVEnugnel” + meue, el )dﬁdt)
0 0

+ c(IVull2, 0, x (11_1,11) + 1ull2,00x (11 1))

where the middle term is estimated by
csup 2,1, Nu@nlls,or + c@)llugplle,er), € €(0,1).
Next, we consider
(5.6) ||Gl(k,l)H2+1/2,ST71/4 < c(l[moulla41/2,8,x(1i-1,11),1/4
+ [[moT0ul|241 /2,5, x (Ty_1,1),1/4)

where S = SN §2;,. To estimate the right-hand side of (5.6) it is sufficient
to find a bound for

T s, )
(5.7) IMoull241 /2,8, x (11 _1,1) + < f t17/41 b dt> =1 + I-.
Ty 1

To estimate I; and I, we consider only the highest order terms. First we
estimate the expression
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(Mo 241 /2,8, x (T 1, 1)),
|DE yu — Dg qul?| DF T ?

< 2 (J gy )

[a|<2 “M_1 Sk

T DQ ap. _ Do [2 1/2
CX () P P )

‘E|:2 Ti—1 Sk Sk

|u(&) ‘ ) / 1/2
<f f { |§ £/|3 |D (&) dfdﬁdt>

Ti—1 Sk

+ (|| Sk—1lla=1/2)

T,

1/2
< ([ (DB s, + [Deuljos, + IDEul} s, + |Deulf 5,) dt)
Ty 1
+ef f|uhms¢ﬁ) (Do) a5,
Ti—1
where ¢ is a positive increasing function, Dg’t = Z‘ al=2 D?,w Dg =

>jaj=2 DE, @@= (a0, a).
Using the interpolation inequalities (see [1], Secs. 10, 18)

[DZul1)a,s, + [Detl1)a,s, + lull2,s, < ellulls,q, +c()]
[Oru]1/2,s, + [Oculo,s, < ellutll2,0, + c(e)llullo,o;,

we obtain

(58) [ﬁou]2+1/2,5kX(Tz—lyTl),I
<ellulla,apx@m_ym) + e 1Skllamr2)ullz,.eux iy 1y, € € (0,1).

Now we examine

(5.9)  [Moulay1/2,5,x (11 1,Tz) ¢

T fu(t) — u@) B, + 190 — Ol 12

2,8 t t 0,9

< ollsillsya) (S i ukﬂwg v
Ty—1 Ty

< ellulla,2ux i ym) + c@)ull2, 20 x 1y 1)

where the last inequality follows from interpolation inequalities (see [1],
Sec. 18) and c(e) depends also on the length of the interval [T;_1,7;], which
is fixed.
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Finally, the second term in (5.7) is bounded by

< jf €|D§,t“’%,nk +C(€)|D§,tu|§,f2k dt> 1/2
t1/2

Ti—1

<e(lulls,oux iy +  sup |ulzo.e.) +cllulle,0x @, 1)
te(Ti—1,11)

Summarizing the above considerations we obtain
(5.10) e,

< Ao ory w4, or

4,07

+5(||U(k,z)||4,nT + ||U||4,Qkx(Tl,l,T,) + sup |U|3,o,nk)
te(Ty-1,1y)

+ ¢1(|1/77|oo,QT781t1P |77|2,1,Q)(||U(1~:,z) ||2,QT + ||U||2,Qkx(T,,1,Tl))

+ ¢2(’1/77’0079T7 ’n’oo,.QT)
X (1Fk,pyll2,0r F1G ey llo41 /2,57 174 + 1 Heeyll2—1/2,87),

where (;~51, ggg are positive increasing functions. Summing (5.10) over all sub-
domains of the partition of unity and using the fact that A and e are suffi-
ciently small we obtain (5.2) for vanishing initial data.

To obtain (5.2) for nonvanishing initial data we write problem (5.1) in
the form of two problems

wy — dive Dg(w) = F,
H()Dg(W)ﬁo == 0,

t
oD (w)g — oMo As(0) [ w(r)dr =0,
0

w|t:0 = Uo,

and
nue — dive De (v) = (1 — n)wy,
Hng(U)ﬁo = Gl,

t t
MoDe (v)7rg — oM As(0) f v(r)dr=Gs+ 0o f H(r)dr,
0 0

U|t:0 = 07

where v = v 4+ w.

Applying Theorem 4.4 to the first problem and estimate (5.2) for solu-
tions of the second problem, which has just been shown above, we obtain
(5.2) for solutions of (5.1).
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We prove existence of solutions to (5.1) by the method of successive
approximations. We put u,,+1 into the left-hand sides of (5.3) and u,, into
the right-hand sides. In view of estimate (5.10) the sequence converges for
sufficiently small A and €. This concludes the proof.

Now we examine the problem

nuy — uViu — v,V -u=F,
H()Dw(u)ﬁo = Gy,

(5.11) p
ﬁoDw(U)ﬁo — JﬁoAst f u(7T dT =Gy+o f H
0

U|t:0 = Up.

LEMMA 5.2. Let the assumptions of Lemma 5.1 be satisfied. Let w €
W24’2(QT). There exists a function ¢z and T such that if

(5.12)  T25(T(||wlla,0r + sup|wls.0.2), T)

X ¢2(’1/77|00,.QT7 |77’oo,QT7 ’n‘CO‘(QT)) < 57

then there exists a solution to problem (5.11) for § sufficiently small such
that w € Wy* (2T and

(513)  ulls,or < cp2([|Fll2,0r + [|Gll241/2),57,1/4
+ [[Hl2—1/2,57 + [w(0)|3,0,2) + co1llulls,or.

Proof. We write problem (5.11) in the form
nuy — ,uvgu —vVeVe-u
= —u(VE—V2)u—v(VeVe - VoV )u+ F=F +F,
oD (w)Ttg = oD (w)Tig — Mo IID,, (w)iig + G1 = Gy + G,
foDe ()79 — o9 Ag(0) fu(T) dr
(5.14) ’
= oD (u) (Mo —7) + Mo (Dg (u) — Doy (w)) 7

t
—onp(As(0) — Ag, (1) fu )Ydr + Gy + o fH
0 0

=G+Gy+o ft (H(7) + H (1)) dr,

Ult=0 = UQ.
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Using Lemma 5.1 we have the following estimate for a solution of (5.14):
(5.15)  lulla,or < é1(11/nloc, 7 5up [nl2,1,0) [ull2, 0

+ ¢2(|1/77|OO,QT7 |77|OO,QT7 |77’C°‘(QT))[”F + F||2,.QT
+ |G+ Gllag1/2,57 174 + | H + Hlla—1 /2,57 + [u]3,0,2]-

Now we have to estimate the particular terms on the right-hand side of
(5.15). The functions F,G and H have the following qualitative forms:

t t
ﬁ:fl fw5§d7'u§+f2 fwngu,gg,
) 0 ) 0
(5.16) G = s fwfdmg)(s,
0

t t
ﬁ:f4<!wgngU£+Ju§dTu§§)‘s,

where f;, i = 1,...,4, depend on ¢ + [ we dr, where ¢ is the unit matrix,

and f3, f4 depend additionally on V¢, where ¢(§) = 0 describes S locally.
In view the Holder inequality and imbedding theorems we have

(5.17)  [|Fllg,0r + ||éH2+1/2,ST,1/4 + ”ﬁ[||2—1/2,ST

< IV (wlla.r +sup wls0.0)

x 1 (T3

|l,0r, T)T*(J|ull4,0r + Sup |ul3,0,2)

= c3(TY*(|Jwla,0r + sup |wlz,0,2),T)

X T1/2(||“H4,QT + sup |ul3,0,0),
¢

where 11 and ¢3 are increasing functions of their arguments and ¢ does not
depend on T

From (5.15), (5.17) we obtain (5.13) for sufficiently small 0.

Existence can be proved by the method of successive approximations.
This concludes the proof.

6. Existence of solutions to problem (1.1). First we consider the
continuity equation (1.8)y with the initial condition (1.8)5. By the method
of characteristics we have

(6.1) n(€t) = oo(€)exp |~ [ V- u(&,7)dr].
0
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LEMMA 6.1. Assume that u € Wy*(27)NLoo (0, T; T3(12)), 00 € H3(12),
and T < oo. Then the solution (6.1) of problem (1.1)23 is such that
n € Co([0,T]; H*(2)), ne € Co([0,T]; H*(£2)) N L2(0,T5 H*(R2)), ner €
Lo(0,T; HY(£2)) and the following estimates hold:

(6:2)  sup|infs.e < clloolls, e (T2 ulla,0r ) (T2 ullaor + 1),

(6.3)  suplimeflz.0 < cloolls, o2 (T2 ullaor ) (Jullaor + [[u(0)]s,0),

T1/2

(6.4) el Loco,msm3(02)) < clloolls,.es(T = |lulls,or)||lull4,0r,

65) e\l Lo 0,701 (2)) < cllolls,va (T2 |ulla o) |[ulls 07,
sup ||77tt||0,9

< clleolls. 2y (T2 ulla,0r, [u(0)]5,0,2) (lulla,or + [u(0)]30.2),
(6.6)  [1/Nloc,07 + [Mloc, 27 < (11/00]00,2 + |00]00,2) exp(T |4, o),
6.7)  lnlloe@ry < lleolloaa)$s (T |lulls or)
x (@6(T2|ullg,0r) + T (ulla,or + [u(0)]l3,0)),
where V;, i =1,...,6, and ¥} are positive increasing functions.

Proof. First we show (6.2). We calculate
(6.8)  ln

3,02

)

< clanllsal|exo [~ 7.-uer]|
0

t
< cllooll3,2 eXp‘ f Vu-udr‘
0 00, 2

¢ 3
Lt || [ v war]
X(+[‘)f ’U,TLQ

t t t
| S vordr], S vaewdr], 5| V], ).
0 0 0
and we have the estimates
t t t
oo | Surail el f 9], <] f 7o
(6.9) (‘)[ UTOOyQ cof u7’2,Q CE)f u7379

< Jl(Tl/z”uH4,QT)T1/2”uH4,QT7

where 1y is an increasing positive function. Using (6.9) in (6.8) implies (6.2).
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From (6.1) we have

¢
(6.10) Nt = 00 €XP [—f Vu-udT}(—Vu-u),
0
SO
t
6.11 < |exp [~ [ Vu-udr]| [Vu- ul20.
(6.11) 17¢ll2.2 < ¢lleoll.2 || exp OfV udr ||l IVu-ulao

In view of the Holder inequality and imbedding theorems we have
(6.12) V- ull2,0 < IZ2(T1/2”UH4,QT)||U”3,Q
< Gao(T 2 |lull 4, ) ([ulla, o + [[u(0)]13,22),

where the last inequality follows from Theorem 2 of [8] and QZQ is a positive
increasing function.

Using (6.8), (6.9) and (6.12) in (6.11) implies (6.3).

From (6.10) we have

t
Iells.c < clleols,o | exp [~ J v udr]||, IV ull .

Hence (6.4) holds.
From (6.10) we obtain

Nt = 00 €XP [—j Vi - UdT} [(Vu . U)2 -V - uy +IZ3( j Ug dT) (Vgu)ﬂ.
0 0

Therefore, (6.5) is valid. Similarly we show (6.6) and (6.7). This concludes
the proof.

Finally, we prove the main result of the paper.

THEOREM 6.2. Assume that vo, 0o € H3(£2), 1/00 € Loo(£2), S € H =1/
and f € W;’I(QT). Let G be the function from (6.18) below and suppose
A > G(v,0,0), where ~y is defined in (6.17)2. Let |v(0)|3,0.0 < A. Let 6 be
sufficiently small. Let T, be so small that

TY245(TL A, T ) o (A, A, A) <6 (see (5.12)),

0 < ci(l—AT,)? < det{0x/0¢} < co(1 + AT,,)?,
where x = £ + fg%(f,T)dT, t < T, G(’y,T*l/2A,T*) < A and v is de-
fined below. Moreover, let compatibility conditions be satisfied (see proof
below). Then there exists Tyx, 0 < Tyw < Ty, such that for T < T..

there exists a unique solution to problem (1.1) such that v € Wy ?(07),
n € C([0,T); I$(£2)), ns € Lo(0,T; H3(£2)), it € Lo2(0,T; HY(2)) and

lullg,0r < A,



Free boundary problems for barotropic fluids 281

sup Inlls,2 + sup 1n¢ll2,2 + (106l 0,7, 13 (2)) + M6t Lo 0,757 (2))
< (T, T*A)lloolls,0,
11/noo, 2 < 1/ 0010, 2P2(T/? A),
where @1, Py are some increasing positive functions.

Proof. To prove existence of solutions to problem (1.1) we use the
following method of successive approximations:
N Optm41 — uVim Um+1 — YV, Vau,, * Um+1
= —Vu, ¢(m) + Nmg;
IID,,, (Umt1)7 () =0,

(6.13) _ _ a t

0D, (U417 (tm) = 070 Am (t) [ g1 (7) dT

0
=ng - ﬁ(um)(Q(T/m) - pO) + aﬁOAm(t)fv

Um+1[t=0 = V0,
and
(6.14) OtNm + MmVu,, * Um =0,

T]m’t:O = 0o,

where m = 0,1,... and ug = vg. Now we define vy. Let us introduce the

functions ¢' = diuli—g, i = 0,1, which are calculated from (1.8);. The
functions ¢° satisfy the following compatibility conditions:

az(Tu(uv Q)ﬁ(gv t) - O-AStx(€7 t) + pOﬁ(£7 t))|t:0 = 07 1= 05 1a
where Oju|i—o and 9in|;—0, i = 0,1, have to be calculated from (1.8); 4 and

(1.8)2 5, respectively. Next, we extend ¢° to functions ¢ on R3, and define
v to be the solution of the Cauchy problem

(8, — AT =0, 0|0 =0¢", i=0,1.

Finally, v9=71|g. First we obtain a uniform estimate. Applying Lemma 5.1
to (6.13) yields

(6.15) ||Um+1||4,rzT

< C¢1(|1/77m‘oo,.QTvsltlp |77m|2,1,(2)’|um+1||2,QT
+ @211/ Mmoo, 27 s Mmoo, 07 Ml ce(21))
X (I = Vau,, a(m) + 1mgll2,07
+ |70 - 7(m ) (q(Mm) — Po) + oMo A (t)€ll241/2,57 174
+ |um+1(0)[3,0,0]-
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Now we estimate the particular terms on the right-hand side of (6.15).
First we consider

< ||€m(um)q/(77m)vnm“2,QT + ”77m9||2,QT

< [TV 200 (T2l o500 [ 2.00) (L4 5 [a2) + 1]
(5 il + 51 .0

where ¢’'(n) = dq/dn and «; is an increasing positive function of its argu-
ments.

Next, we have

1720 - () (q(0m) = o) ll241/2,57

< 02 (T2 6,500 2,0, 500 [ . )
T T
Y [Tl/ﬂ\umru,m b [l dr+ [ el dr
0 0

Hnm 1) 13
(] (s
4 M) = nm(t/)”%ﬁ + me (£) = 1 (t’)||3,5> dt dt'> 1/2} :

|t _ t/|3/2

where

‘ 2 1/2 1/2 1/2
(S Il gdr) ™ < loolls.T (T lumlls,or).
0

T ) 1/2
(Il o dr)
0
< Jlooll2. 2T X2 (T [t || 4,07, T) ([[tmls, 27 + 1u(0)]|2,2),
(A ‘nm nm(t/)H%,S
f f t/|3/2
0 0

N ||7lm(t) — ()3, + [ (£) — e (t’)llﬁ,s>

’t _ t"3/2

dt dt’

< lloolls,2xa(T2|[wmlla,0r, T)T ]l 07,

where x;, ¢ = 1,2, 3, are positive increasing functions, a > 0.
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Next, we have
I70 - (wm ) (a(m) — Po)l2y1 /4,57

< az(Tl/zHumHzx,m’Sgp 13m]3,42)

t1/2

T t 2
| Jo llwmlla,edr? =+ [11m
(]
o

2 2 2 1/2
+ [um + |1Mm
3,02 | ||2,.Q lIm t||1,(z d§dt>

< agT AT g + 500 [ g2+ 50D [ .22+ 59D [t 2.2).
Finally, we consider the expression

1
no - A?’n(t)6 - ﬁﬁo . gaﬂasasﬁg'

Then we have
1720 - A (t)€ll241/2,s7

< 044(T1/2HUmH4,QT)H§H42L+1/2,S

X (T + umll3 or + T2 um |} or + Tllum ] o),
and

1720 - A (t)€ll241/2,57
< as(TY w4, 0) 1€l a1 /2. T (T2 | um |l 4.0 + |umll2.0r)-

Summarizing the above considerations and using Lemma 6.1 we have

(6:16) Yot (t) < B Py (1), ,7) + @ty (1), £,7) [ Y (7) dr,
0

where «, 3 are positive increasing functions and

Ym(t) = [lumll3 00 + supuml3 0,0,

(6.17) ) ¢ )
Y= HQOHS,Q + ’Um(o)ys,o,n-

In view of the Gronwall lemma we have

(6.18) Ym+1(t) < explta(tPyn (t), .78 2y (t),t,7)

= G(v, 1" Pym (1), 1),
where G(7,0,0) = Go(y) > 0 and G is an increasing positive function of its
arguments.

Let 0 < A be sufficiently large and such that Go(y) < A4, ym(0) < A.
Then there exists a time 7T, such that for ¢t < T, we have

ym-i-l(t) < G(77t1/2‘4at) < A.
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In this way we have shown that
(6.19) ym(t) <A form=0,1,... and t < T,.

Now we prove convergence of the sequence {t,, ., }. To show this we
consider the system of problems for the differences U,, = uy,, — U1 and
Hy =N — Nim—1:

N0 Ums1 — Vo Uni1 — vV, V. - Unga
= —H,, 0y — (Vim — Vimfl)um
—v(Vu, Vau,, - =V, Vu, " )Um
+ Vi @(m) =V, 1q(Mm-1) + Hng = F1 + F»,
oDy, (Upni1)0 (um)

= I1y[Dy,,, (Um )0(tm) — D, _, (Um)0(tm-1)] = G1,

t
Mo D, (Um-+1)1(um) — 0T Ay ( f Upa (1) dr

(6.20) 0
= 10[Du,, (W )70(Um) — Dy, (U )0(Ur—1)]
— 0T (A (t) = Am1(1)) [ tm(7)dr
0
+ 70 -+ [(um)q(Nm) — 7(tm—1)q(1m-1)]
— pono - (M(um) —n(um 1))
+ ono(Am(t) — Am—1(t))€ = Ga + G3,
Un+1lt =0,
where
(6.21) Fy = —H,,00up, + ng +4q (nm)vumHmv

G =7(tm)(q(1m) — ¢(1m-1))
and Fp,G9 are determined by the remaining terms on the right-hand sides.

To estimate the right-hand sides of (6.20) we shall restrict to their qual-
itative forms:

t t
Fr=hfn fUmngumgg+f2 fUmgng’Lng
0 0

t
+ f3 fUmﬁde{nmfl,ﬁv
(6.22) 0
Gi=fa f Upne dT ume,
0
¢

t
Go=f5 [ Unedr (14 ume)+ f [ Unmedr,
0 0
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where f; = fi(d + fotumg dr,0 + fgum_lng), i=1,...,6, f]’ = f]’-(nm),
j=1,2, are C* functions of their arguments. Moreover, we have

(6.23) K = —ny(An(t) — Ap—1(t))um
t t
= f6( f Unme dTumee + f Unmee dTum§>.
0 0

Now we have to estimate the functions (6.21)—(6.23):
1F2llz,0r < C(A)(SUp | Hmlls,0 + sup | Hmel1,2),

| F1ll2,0r < C(A)TI/Q(HUmMQT + Sup |Unl3,0,02)s

1Gillot1/2,57 < CATY2([Un 4,0 + Sup|[Unls.0.2) i=1,2,

6.24
O 1l sr < CATIT (U laor +59 Unlso.),

i=1,2,
1K 212,57 < C(AT?(||Un|

1,07 +5up|Unlso.2).
1G3ll241/2,57 174 < C(A,T)Tl/‘*(sgp [ Hmll3,0 + sgp [ Homtll1,02)-
Summarizing the above considerations we have shown
(6.25)  [Unyillaer < Bu(T, ATV (U400 + Sup [Unnls,0,2)
+ B2(T, A) Slip | Hml3,0,0-
Next, we consider the problem
OcHp, + Hyy divey, U = —Nim—1(divy, U — divy,, tm-1),
Hm|t:0 = 0
Integrating (6.26) with respect to time one obtains

(6.27)  Hp(&,1)

(6.26)

t
= —exp {—f div,, Uy, dT
0

t t’
X f [nm_l(divumum —divy,, _Um—1)€Xp f divy, ty, dt” | dt’,
0 0
so one has

(6.28) sup [Hnls.0.0 < O(T, A)TY2|Upp]|a, 2t

To obtain (6.28) the most difficult point is when we differentiate the
middle term in (6.27) with respect to t. Then we have to estimate the ex-
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pression

Slzp Hﬁm(um—l)Umg exp[ ]Hl(z
< ¢(A) sup [Unell1,0 < cd(A)||Unell2,00

t

9 9 1/2
= o) ([ (Unmel 0 + 1Uneel ) dt)
0

cp(A)t/? SUP([[Umellz.2 + [1Umcllo.2) < (AUl 20

IN

Now (6.25) and (6.28) imply that the sequence {tu,, nm} converges to a

limit {u,n} € Wy?(£2') x Loo(0,; T3(£2)) for t < T.,, where T, is suffi-
ciently small. Uniqueness can be proved in the standard way. This concludes

the proof.
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