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Between the Paley–Wiener theorem
and the Bochner tube theorem

by Zofia Szmydt and Bogdan Ziemian (Warszawa)

Abstract. We present the classical Paley–Wiener–Schwartz theorem [1] on the Lapla-
ce transform of a compactly supported distribution in a new framework which arises
naturally in the study of the Mellin transformation. In particular, sufficient conditions for
a function to be the Mellin (Laplace) transform of a compactly supported distribution are
given in the form resembling the Bochner tube theorem [2].

1. Notation. We employ the usual notation of set theory. R denotes the
set of real numbers, R+ the set of positive real numbers, and Rn+ = (R+)n.
For x ∈ (x1, . . . , xn) ∈ Rn we set 〈x〉 = 1 + |x1|+ . . .+ |xn|. We write x < y
(x ≤ y) for x, y ∈ Rn to denote xj < yj (xj ≤ yj resp.) for j = 1, . . . , n, and
we set I = (0, t] = {x ∈ Rn : 0 < x ≤ t}, where t ∈ Rn+. By 1 we denote
(1, . . . , 1). N is the set of positive integers and N0 the set of non-negative
integers. We write |α| = α1 + . . .+ αn for α ∈ Nn0 . For x ∈ Rn and α ∈ Nn0
we write xα = xα1

1 . . . xαn
n .

We employ the usual notation of distribution theory. D′(Ω) denotes the
space of distributions on an open set Ω ⊂ Rn, and D′A(Ω) the space of
distributions on Ω with support in A ⊂ Ω. The value of a distribution u on
a test function ϕ is denoted by u[ϕ].

2. Auxiliary theorems

Theorem 1. Let u ∈ D′K(Rn) where K is a connected compact set in
Rn such that any two points x, y ∈ K can be joined by a rectifiable curve in
K of length ≤ C̃|x− y|, C̃ <∞. Then there exists a constant C <∞ and
k ∈ N0 such that
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|u[ψ]| ≤ C
∑
|α|≤k
α∈Nn

0

sup
x∈K

∣∣∣∣( ∂

∂x

)α
ψ(x)

∣∣∣∣ for ψ ∈ Ck(Rn).

The proof of this theorem, based on the Whitney extension theorem, is
given in [1].

Now following [3] we recall the spaces of Mellin distributions. Denote by
µ : Rn → Rn+ the diffeomorphism

µ(y) = e−y := (e−y1 , . . . , e−yn).

We define the space of Mellin distributions on Rn+ for every α ∈ Rn as the
dual of the space

Mα = Mα(Rn+) = {σ ∈ C∞(Rn+) : (xα+1σ) ◦ µ ∈ S(Rn)},
with the natural topology in Mα induced from S(Rn).

Note that u ∈M′α(Rn+) if and only if eαy(u◦µ) ∈ S′(Rn). The Mα Mellin
transform of u ∈ M′α is defined by means of the inverse Fourier transform
F−1:

(1) Mαu = (2π)n/2F−1(eαy(u ◦ µ)).

Here we assume Fσ(ξ) = (2π)−n/2
∫

Rn e
−ixξσ(x) dx for ξ ∈ Rn and σ ∈

S(Rn).
For a ∈ Rn we introduce the space

Ma = Ma(I) = {ϕ ∈ C∞(I) : sup
x∈I
|xa+α+1(∂/∂x)αϕ(x)| <∞, α ∈ Nn0}

equipped with the topology defined by the sequence of seminorms

%aα(ϕ) = sup
x∈I
|xa+α+1(∂/∂x)αϕ(x)|, α ∈ Nn0 .

Note that the space Ma is complete (see [3]) but the set C∞(0)(I) (of restric-
tions to I of functions in C∞0 ) is not dense in Ma(I).

Let ω ∈ (R ∪ {∞})n. We define the function space M(ω)(I) as the
inductive limit

M(ω)(I) = lim−→
a<ω

Ma(I).

Now the set C∞(0)(I) is dense in M(ω)(I) and the dual space M ′(ω) =
M ′(ω)(I) is a subspace of D′I(Rn+). Therefore the elements of M ′(ω) are called
Mellin distributions on I . Note that for a < b < ω and ω ∈ (R ∪ {∞})n,

M(a)(I) ⊂Ma(I) ⊂Mb(I) ⊂M(ω)(I),
M(ω)(I) = lim−→

a<ω
M(a)(I),

M ′(ω)(I) =
⋂
a<ω

M ′a(I) =
⋂
a<ω

M ′(a)(I).
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The totality of Mellin distributions is denoted by

M ′(I) =
⋃

ω∈(R∪{∞})n

M ′(ω)(I) =
⋃
ω∈Rn

M ′(ω)(I).

M ′(I) coincides with the space of restrictions to Rn+ of distributions on Rn

with support in I.
Let u ∈M ′(ω)(I) for some ω ∈ (R ∪ {∞})n. We define the Mellin trans-

form of u by

(2) Mu(z) = u[x−z−1] for Re z < ω.

This definition differs from the classical one by the change of variable
z 7→ −z.

The following theorem gives a relation between the Mellin transforma-
tions M and Mα defined by (2) and (1) respectively.

Theorem 2. Let u ∈ M ′(ω)(I). Then Mu is holomorphic for Re z < ω

and u ∈ M′α(Rn+) for every α < ω. The tempered distribution Mαu is a
function:

(3) (Mαu)(β) = Mu(α+ iβ) = (u ◦ µ)[e(α+iβ)y] for β ∈ Rn.

Moreover , Mα : M ′(ω) → S′ is continuous for α < ω.

Theorem 3 (Paley–Wiener type theorem). In order that a function
f(z) = f(z1, . . . , zn) be the Mellin transform of a unique Mellin distribu-
tion u ∈ M ′(ω)((0, t]) it is necessary and sufficient that f be holomorphic in
{z ∈ Cn : Re z < ω} and that for every b < ω and every % ∈ R+ there exist
s = s(b) ∈ N0 and C = C(b, %) <∞ such that

(4) |f(α+ iβ)| ≤ C〈β〉s(e%t)−α for α ≤ b.

3. The main theorem. Let t− = (t−1 , . . . , t
−
n ), t+ = (t+1 , . . . , t

+
n ), 0<

t− < t+, write I = (0, t+] and consider the polyinterval

[t−, t+] = {x ∈ Rn : t− ≤ x ≤ t+}.

Theorem 4. Let f be a function holomorphic on {z ∈ Cn : Re z <
0} ∪ {z ∈ Cn : Re z > 0} and such that for every b ∈ Rn with b < 0 and
% ∈ R+,

|f(α+ iβ)| ≤ C〈β〉s(e%t+)−α for α < b,(5)
|f(α+ iβ)| ≤ C〈β〉s(e−%t−)−α for α > −b,(6)

with some s = s(b) ∈ N0 and C = C(b, %) <∞. Moreover , assume that the
following limits exist in S′(Rn) and are equal :

(7) lim
α→0−

f(α+ i·) = lim
α→0+

f(α+ i·).
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Then there exists a unique u ∈ D′[t−,t+] such that Mu = f . Furthermore, f
is an entire function on Cn and for every b ∈ Rn and % ∈ R+ there exist
C = C(b, %) <∞ and s = s(b) ∈ N0 such that for any σ ∈ {−,+}n,

(8) |f(α+ iβ)| ≤ C〈β〉s(eσ1%tσ1
1 )−α1 . . . (eσn%tσn

n )−αn

for σjαj ≤ σjbj , j = 1, . . . , n.

P r o o f. By assumption (5), which is the sufficient condition in Theo-
rem 3, there exists a unique distribution u ∈M ′(0)((0, t

+]) such thatMu = f .
Thus suppu ⊂ (0, t+] and u ∈M′α((0, t+]) for α < 0. Denote by w the tem-
pered distribution defined by (7). Hence

lim
α→0−

∫
Rn

f(α+ iβ)ψ(β) dβ = w[ψ] for ψ ∈ S(Rn)

and by (3) and (1) we get

w[ψ] = lim
α→0−

∫
Rn

(Mu)(α+ iβ)ψ(β) dβ

= (2π)n/2 lim
α→0−

∫
Rn

F−1(eαy(u ◦ µ))(β)ψ(β) dβ

= (2π)n/2 lim
α→0−

F−1(eαy(u ◦ µ))[ψ]

= (2π)n/2 lim
α→0−

(eαy(u ◦ µ))[F−1ψ]

= (2π)n/2 lim
α→0−

(u ◦ µ)[eαyF−1ψ].

For ψ = Fϕ with ϕ ∈ D(Rn) the last formula yields

(9) Fw[ϕ] = (2π)n/2(u ◦ µ)[ϕ] for ϕ ∈ D(Rn).

Now observe that by assumption (6),

|f(−α− iβ)| < C〈β〉s
(
e%

1
t−

)−α
for α < b,

where 1/x := (1/x1, . . . , 1/xn) for x ∈ Rn+. As before, by Theorem 3, there
exists a unique distribution ũ ∈M ′(0)((0, 1/t

−]) such that

f(−α− iβ) = Mũ(α+ iβ).

Note that ũ ∈ M′α((0, 1/t−]) for α < 0 and f(−α − iβ) = Mαũ(β) =
(2π)n/2F−1(eαy(ũ ◦ µ)).

Since by (7), w = limα→0+ f(α + i·) we have limα→0− f(−α − i·) = w∨

where ∨ denotes the reflection β → −β. Take ϕ ∈ D(Rn) and let ψ = Fϕ.
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Then ψ ∈ S(Rn) and

w∨[ψ] = lim
α→0−

∫
Rn

f(−α− iβ)ψ(β) dβ

= (2π)n/2 lim
α→0−

∫
Rn

F−1(eαy(ũ ◦ µ))ψ(β) dβ = (2π)n/2(ũ ◦ µ)[ϕ].

Hence
Fw∨[ϕ] = (2π)n/2(ũ ◦ µ)[ϕ] for ϕ ∈ D(Rn).

This together with (9) yields (u◦µ)∨= ũ◦µ. Let λ be the mapping Rn+3x 7→
1/x. Since (u◦µ)∨ = (u◦λ)◦µ we get u◦λ = ũ. Hence u◦λ ∈M ′(0)((0, 1/t

−])
and by definition of λ we have suppu ⊂ {x : x ≥ t−}, which together
with u ∈ M ′(0)((0, t

+]) gives the desired assertion u ∈ D′[t−,t+]. By Theo-
rem 1, u ∈ M ′a for every a ∈ Rn (i.e. u ∈ M ′(∞)) and hence by Theorem 3
(the necessary condition this time) f = Mu is entire on Cn and the esti-
mate (5) holds for α ≤ b for every b ∈ Rn. Since u ◦ λ ∈ D′[1/t+,1/t−] and
M(u ◦ λ)(z) = Mu(−z) we get as before, for all b ∈ Rn and % ∈ R+,

|Mu(α+ iβ)| ≤ C〈β〉s(e−%t−)−α for α ≥ b
with s = s(b) and C = C(b, %). Thus we have proved (8) for σ = (+, . . . ,+)
and σ = (−, . . . ,−). To get the proof for σj = (σj1, . . . , σ

j
n) with σji = + if

i 6= j, and σjj = −1 (j = 1, . . . , n), take the mapping

λj : Rn+ 3 x 7→ (x1, . . . , xj−1, 1/xj , xj+1, . . . , xn).

Then
M(u ◦ λj)(z) = Mu(z1, . . . , zj−1,−zj , zj+1, . . . , zn)

= f(z1, . . . , zj−1,−zj , zj+1, . . . , zn),

supp(u ◦ λj) ⊂ {x : t−i ≤ xi ≤ t
+
i for i 6= j, 1/t+j ≤ xj ≤ 1/t−j }.

Fix arbitrarily b ∈ Rn, % ∈ R+ and j with 1 ≤ j ≤ n. Take b̃ = (b1, . . . , bj−1,
−bj , bj+1, . . . , bn). By Theorem 3,

|M(u ◦ λj)(α+ iβ)| ≤ C〈β〉s(e%t+1 )−α1 . . .

(
e%

1
t−j

)−αj

. . . (e%t+n )−αn

for α ≤ b̃ and hence

|f(α+ iβ)| ≤ C〈β〉s(e%t+1 )−α1 . . . (e−%t−j )−αj . . . (e%t+n )−αn

for αi ≤ bi if i 6= j, −αj ≤ b̃j = −bj , i.e. (8) holds for σj (j = 1, . . . , n).
The remaining cases of σ are left to the reader.

R e m a r k 1. Note that in contrast to the classical Paley–Wiener the-
orem the sufficiency part of Theorem 4 does not require that the function
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f be entire. Instead we assume holomorphy in two wedges with a common
edge and identity of the corresponding boundary values. By the necessity
result this gives holomorphy in Cn as well as estimates in the “missing”
wedges, which can be regarded as a variant of the Bochner tube theorem.

R e m a r k 2. By applying the techniques of the theory of Fourier hy-
perfunctions and analytic functionals one can prove a variant of Theorem 4
with 〈β〉s in the estimates (5), (6) and (8) replaced by eθ|β| for some θ > 0.
Then the identity (7) should be understood as the equivalence of pertinent
boundary values in the sense of Fourier hyperfunctions.
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