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Between the Paley—Wiener theorem
and the Bochner tube theorem

by ZOFIA SZMYDT and BOGDAN ZIEMIAN (Warszawa)

Abstract. We present the classical Paley—~Wiener—Schwartz theorem [1] on the Lapla-
ce transform of a compactly supported distribution in a new framework which arises
naturally in the study of the Mellin transformation. In particular, sufficient conditions for
a function to be the Mellin (Laplace) transform of a compactly supported distribution are
given in the form resembling the Bochner tube theorem [2].

1. Notation. We employ the usual notation of set theory. R denotes the
set of real numbers, R, the set of positive real numbers, and R = (R )™.
For z € (z1,...,2,) € R®" we set (x) =1+ |z1]|+ ...+ |z,|. We write z < y
(x <y) for z,y € R™ to denote z; < y; (z; <y, resp.) for j =1,...,n, and
we set I = (0,t] = {x € R" : 0 < & < t}, where t € R",. By 1 we denote
(1,...,1). N is the set of positive integers and Ny the set of non-negative
integers. We write |a| = a1 + ... + ay, for @ € Njj. For x € R"” and a € N}
we write ® = z{* ... 2o,

We employ the usual notation of distribution theory. D’({2) denotes the
space of distributions on an open set {2 C R"™, and D’,(£2) the space of
distributions on {2 with support in A C {2. The value of a distribution u on
a test function ¢ is denoted by ulp].

2. Auxiliary theorems

THEOREM 1. Let u € D% (R"™) where K is a connected compact set in
R™ such that any two points x,y € K can be joined by a rectifiable curve in
K of length < Clx —y|, C < oo. Then there exists a constant C' < oo and
k € Ny such that
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wll<c 3 sup‘@)aw(m) for b € CHE™.

lal<k “€K
a€eNy

The proof of this theorem, based on the Whitney extension theorem, is
given in [1].

Now following [3] we recall the spaces of Mellin distributions. Denote by
p: R™ — R’ the diffeomorphism

wly) =e Y= (e Y, ...,e ).
We define the space of Mellin distributions on R} for every o € R™ as the
dual of the space
M, = Mo (RY) = {o € C¥(RY) : (2°TL0) o o € S(R™)},
with the natural topology in 9, induced from S(R™).

Note that u € 9, (R"}) if and only if e*¥(uop) € S’(R™). The M, Mellin
transform of u € M., is defined by means of the inverse Fourier transform
F~L
(1) Myu = (20)"2F~ (e (w0 p)).

Here we assume Fo(¢) = (2m)~"/? Jan €70 (x) dx for ¢ € R™ and o €
S(R™).
For a € R™ we introduce the space
M, = My(I) = {p € C(I) : sup [2"T*F1(9/02)p(x)| < 00, @ € Ny}
zel
equipped with the topology defined by the sequence of seminorms

0o () = sup 2" (/00) (x|, € NG,
xEe

Note that the space M, is complete (see [3]) but the set C) (1) (of restric-
tions to I of functions in C§°) is not dense in M, ().

Let w € (RU {oo})". We define the function space M, (I) as the
inductive limit

M) (1) = lim Mq(I).

a<w

Now the set CE’(%(I) is dense in M(,)(I) and the dual space M(’w) =

M, (I) is a subspace of D} (R} ). Therefore the elements of M, are called
Mellin distributions on I. Note that for a < b < w and w € (RU {oc0})",

AﬁaﬂI)C:ALKI)C:AﬂXI)C:AQwﬂI%
M) () = lim Mia (1),
My (1) = () ML) = () My (D).

a<w a<w
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The totality of Mellin distributions is denoted by
M= |J M@= {J M,
we(RU{o0})™ weR™
M'(I) coincides with the space of restrictions to R’} of distributions on R"

with support in 1.

Let u € M(’w)(I) for some w € (RU {oo})”. We define the Mellin trans-

form of u by
(2) Mu(z) = u[z™*"] for Re z < w.
This definition differs from the classical one by the change of variable
Z— —z.

The following theorem gives a relation between the Mellin transforma-
tions M and M, defined by (2) and (1) respectively.

THEOREM 2. Let u € M(’w)(I). Then Mu is holomorphic for Rez < w

and u € M (R"Y) for every o < w. The tempered distribution Myu is a
function:

3)  (Mauw)(B) = Mu(a +if) = (uo u)[e*T Y] for g e R™
Moreover, M, : M(’w) — S’ is continuous for a < w.
THEOREM 3 (Paley-Wiener type theorem). In order that a function

f(z) = f(z1,...,2n) be the Mellin transform of a unique Mellin distribu-
tion uw € M(,((0,t]) it is necessary and sufficient that f be holomorphic in

{z € C" : Rez < w} and that for every b < w and every o € Ry there exist
s =s(b) € Ng and C = C(b, 0) < oo such that

(4) |f(a+iB)] < C(B)°(e°t)™  fora <b.

3. The main theorem. Let t~ = (t[,...,t;), t* = (t],...,t5), 0<

t— < t*, write I = (0,t"] and consider the polyinterval
[t tT]={xeR": ¢t~ <ax <t}

THEOREM 4. Let f be a function holomorphic on {z € C" : Rez <
0} U{z € C™ : Rez > 0} and such that for every b € R™ with b < 0 and
o€ R-H
(5) [fla+iB)] < C{B)*(e?t™)™™  fora<b,

(6) [fla+iB)| < C{B)*(e™#t7)""  for o> —b,
with some s = s(b) € Ny and C = C(b, p) < oco. Moreover, assume that the

following limits exist in S"(R™) and are equal:

(7) Tim fla+i)= lim fla+i).
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Then there exists a unique u € th_ ] such that Mu = f. Furthermore, f
is an entire function on C™ and for every b € R™ and o € R, there exist
C =C(b,p) < 0 and s = s(b) € Ny such that for any o € {—,+}",
®)  |fla+ip)| < CB)* (e eth) " ... (e7netyr)
foroja; <ojbj, j=1,...,n.
Proof. By assumption (5), which is the sufficient condition in Theo-
rem 3, there exists a unique distribution u € My ((0, t*]) such that Mu = f.

Thus suppu C (0,t7] and u € 9. ((0,¢F]) for a < 0. Denote by w the tem-
pered distribution defined by (7). Hence

Jim [ fa+iB)p(B)ds =wly] for v € S(R)
e
and by (3) and (1) we get

wlp] = lim | (Mu)(a+iB)p(6) d3

a—0_
RTL

(2m)"2 lim f F~H (e (u o)) (B)u(8) dp

a—0_
= (2m)"2 lim F~(e™(uop))[y]

— (2m)" Tim (e*(u o u))[F 4]

a—0_

= (2m)™? lim (wo p)[e*VF~y).

a—U_

For ¢ = F¢ with ¢ € D(R™) the last formula yields
(9) Fulg] = @m)"2(wop)lg] for ¢ € D(R).

Now observe that by assumption (6),

|f(—a—ip)| < C(B)° <egt1_>_a for a < b,

where 1/2 := (1/x1,...,1/x,) for x € R?. As before, by Theorem 3, there
exists a unique distribution u € M(’O)((O, 1/t7]) such that

f(—a—1iB) = Mu(a+1i3).
Note that w € 9 ((0,1/t7]) for a < 0 and f(—a — iB) = Myu(B) =
(2m)" /2P (e (@0 ).

Since by (7), w = limy—o, f(a +1i-) we have lim,_o_ f(—a —i-) = w
where ¥ denotes the reflection 5 — —f3. Take p € D(R™) and let ¢ = F.

\%



Paley—Wiener theorem 303
Then ¢ € S(R™) and
w/[¥] = lim [ f(—a—iB)(3)dp
R"

a—0_

= @m)"? lim [ FH e (@o p)u(B)dp = (2m)" 2 (@o u)lg].
o

Hence

Fuw”[p] = 2m)"?(@o p)[¢] ~ for ¢ € D(R™).
This together with (9) yields (uopu)Y =@opu. Let A be the mapping R} >z —
1/x. Since (uou)Y = (uoX)ou we get uoX = u. Hence uo\ € My, ((0,1/t7])
and by definition of A we have suppu C {z : = > ¢t~ }, which together
with u € M('O)((O,tﬂ) gives the desired assertion u € th,ﬁ}. By Theo-
rem 1, u € M/ for every a € R™ (i.e. u € M(’OO)) and hence by Theorem 3
(the necessary condition this time) f = Mu is entire on C" and the esti-
mate (5) holds for o < b for every b € R™. Since uo \ € Dfl/t+71/t_] and
M(uo N)(z) = Mu(—z) we get as before, for all b € R™ and p € Ry,

|Mu(a+i8)| < C(B)°(e ™)™ fora>b
with s = s(b) and C' = C(b, o). Thus we have proved (8) for o = (+,...,+)
and 0 = (—,...,—). To get the proof for 07 = (0],...,0)) with o) = + if
i#j,and o) = —1 (j = 1,...,n), take the mapping

A RY S 2= (21,00, 1/, 25400, Tp).
Then
M(uoXj)(2) = Mu(z1,...,2j—1, =% Zj4+1s---+%n)

= f(zl7'"7Zj717_2j7zj+17"‘ 7271)7
supp(u o \j) C{x:t; <m; <t fori#j, 1/t] <ax; <1/t7}.

Fix arbitrarily b € R", p € Ry and j with1 < j < n. Take b = (b1,...,bj—1,
—bj,bj41,...,b,). By Theorem 3,

|M(uoX)(a+iB)| < C(B)*(e2t]) ... (egt) o (efthyTom

J
for a < b and hence
[fla+iB)| < C(B)* (et )™ ... (et )% ... (e?t;)) ™

for a; < b; if i # j, —a; < bj = —b;, i.e. (8) holds for o7 (j =1,...,n).

The remaining cases of o are left to the reader.

Remark 1. Note that in contrast to the classical Paley—Wiener the-
orem the sufficiency part of Theorem 4 does not require that the function



304 Z. Szmydt and B. Ziemian

f be entire. Instead we assume holomorphy in two wedges with a common
edge and identity of the corresponding boundary values. By the necessity
result this gives holomorphy in C™ as well as estimates in the “missing”
wedges, which can be regarded as a variant of the Bochner tube theorem.

Remark 2. By applying the techniques of the theory of Fourier hy-
perfunctions and analytic functionals one can prove a variant of Theorem 4
with (8)° in the estimates (5), (6) and (8) replaced by I8! for some 6 > 0.
Then the identity (7) should be understood as the equivalence of pertinent
boundary values in the sense of Fourier hyperfunctions.
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