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Abstract. A nonlinear differential equation of the form (q(x)k(u)u′)′ = F (x, u, u′)
arising in models of infiltration of water is considered, together with the corresponding
differential equation with a positive parameter λ, (q(x)k(u)u′)′ = λF (x, u, u′). The the-
orems about existence, uniqueness, boundedness of solution and its dependence on the
parameter are established.

1. Introduction. To describe the mathematical model of unsteady infil-
tration in water percolation and seepage, the Boussinesq equation is used [4].
The simplest case is that of a horizontal base without accretion, when the
flow is the same in all vertical parallel planes. In this case, the correspond-
ing mathematical model assumes the most common form of the Boussinesq
equation:

(1) (hhx)x = mht/K.

The corresponding equation, when the impervious base has a constant slope,
is as follows:

(2) (hhx)x = Ihx +mht/K.

This equation can be reduced to (1) by a transformation of the independent
variables

x′ = x− IKt/m, t′ = t.

In the case of accretion, the flow on a horizontal base obeys

(3) (hhx)x = mht/K + ε/K
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and on an inclined base of constant slope,

(4) (hhx)x = Ihx +mht/K + ε/K.

Similar to (2), (3) and (4) can also be reduced to (1) by a suitable trans-
formation. In an axisymmetric unsteady flow, as in the single well problem,
h = h(r, t). Boussinesq’s equation then becomes

(5) (rhhr)r = mrht/K.

Under different cases, their particular similarity solutions are reduced
to solving the following second order nonlinear differential equations with
unknown function f = f(α) [1, 2, 4]:

(6) α(ff ′)′ + ff ′ + α2f ′/2 = 0;
(7) α(ff ′)′ + ff ′ = nα2f ′ − (1 + 2n)αf ;
(8) α2(ff ′)′ + (1 + 4ν)αff ′ + 2ν2f2 = α3−νf ′/(ν − 2)

and

(9) α(ff ′)′ + ff ′ = n(α2f ′ − 2αf).

Therefore, in [7–9], the authors investigated the following second order
nonlinear differential equations:

(10) (k(u)u′)′ = f(x)u′, x > 0;
(11) (q(t)k(u)u′)′ = f(t)h(u)u′, t > 0;

and

(12) (q(t)k(u)u′)′ = F (t, u)u′, t > 0.

In this paper, we shall consider the more general second order nonlinear
differential equations arising in models of water infiltration:

(13) (q(x)k(u)u′)′ = F (x, u, u′), x > 0,

and

(14) (q(x)k(u)u′)′ = λF (x, u, u′), x > 0.

Obviously, (10), (11) and (12) are special cases of (13). We obtain qual-
itative results on (13) and (14), such as existence, uniqueness, boundedness
and dependence on parameters. Our theorems imply all results in [7–9].

2. Definition of solution and equivalence. Let q, k and F satisfy
the following assumptions (α > 0, R+ = (0,∞), R− = (−∞, 0) and R =
(−∞,∞)):

(H1) q ∈ C0(R+); q(x) > 0, x ∈ R+;
α∫

0

(1/q(x)) dx <∞;
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k ∈ C0(R); k(u)u > 0, u ∈ R− {0};

(H2)
α∫

0

(k(u)/u) du <∞,
0∫
−α

(k(u)/u) du <∞,

−α∫
−∞

(k(u)/u) du =∞,
∞∫
α

(k(u)/u) du =∞;

(H3) F ∈ C0(R+ × R2); f1(x)h1(u) ≤ F (x, u, u′)/u′ ≤ f2(x)h2(u),

where fi ∈ C0(R+), fi(x) > 0, fi(x) is decreasing, either h1(u) = h2(u) ≡ 1,
or hi ∈ C0(R), hi(u)u > 0 for u ∈ R− {0}, i = 1, 2.

R e m a r k 1. It follows from (H2) that k(0) = 0. Similarly, if it is not the
case that h1(u) = h2(u) ≡ 1, then hi(0) = 0, i = 1, 2, and so F (x, 0, u′) = 0
for x ∈ R+ and u′ ∈ R.

In what follows, we shall investigate the differential equation (13) on R+

with u(0) = 0 under the assumptions above.

Definition. By a solution of (13) we mean a function u ∈ C0(R+) ∩
C1(R+) such that u(0) = 0,

lim
x→0+

q(x)k(u(x))u′(x) = 0,

q(x)k(u(x))u′(x) ∈ C1(R+) and (13) is satisfied in R+.

R e m a r k 2. From (H3), it follows that F (x, u, 0) ≡ 0 for x ∈ R+ and
u ∈ R.

R e m a r k 3. Obviously, u(0) ≡ 0 for x ∈ R+ is a solution of (13).

Lemma 1. Let u(x) be a nontrivial solution of (13). Then either u′(x) >
0 in R+ or u′(x) < 0 in R+.

P r o o f. First, u′(x) is not equivalent to 0, since otherwise, u(x) ≡ 0.
Next, let us prove that u′(x) cannot have more than one root. If not,

assume 0 ≤ x1 < x2 are such that u′(x1) = u′(x2) = 0 and u′(x) 6= 0 in
(x1, x2); without loss of generality, let u′(x) > 0 in (x1, x2). Then u(x) is
increasing in (x1, x2), and for x > ε > 0,

x∫
ε

F (s, u(s), u′(s)) ds = q(x)k(u(x))u′(x)− q(ε)k(u(ε))u′(ε).

Hence (by letting ε→ 0),

(15) q(x)k(u(x))u′(x) =
x∫

0

F (s, u(s), u′(s)) ds, x ∈ R+.
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In the following, we consider three cases: u(x) > 0, u(x) < 0 and u(x1) <
0 < u(x2). If u(x) > 0 in (x1, x2), then by (H3),

x2∫
x1

F (s, u(s), u′(s)) ds ≥
x2∫
x1

f1(s)h1(u(s))u′(s) ds ≥ f1(x2)
u(x2)∫
u(x1)

h1(s) ds.

By the mean value theorem [5],

u(x2)∫
u(x1)

h1(s) ds = h1(ξ)(u(x2)− u(x1)),

where ξ ∈ (u(x1), u(x2)). Hence,
x2∫
x1

F (s, u(s), u′(s)) ds > 0.

But, from (15),
x2∫
x1

F (s, u(s), u′(s)) ds = q(x)k(u(x))u′(x)|x2
x=x1

.

Noting that u′(x1) = 0 and u′(x2) = 0, we have
x2∫
x1

F (s, u(s), u′(s)) ds = 0.

This is a contradiction.
The case of u(x) < 0 in (x1, x2) can be treated quite analogously.
If u(x1) < 0 < u(x2), then there exists a unique x ∈ (x1, x2) such that

u(x) = 0. In this case, u′(x) > 0 and u(x) > 0 in (x, x2); hence, from the
above proof,

x2∫
x

F (s, u(s), u′(s)) ds > 0;

but, from (15) and noting that u(x) = u′(x2) = 0, we have
x2∫
x

F (s, u(s), u′(s)) ds = q(x)k(u(x))u′(x)|x2
x=x = 0,

again a contradiction.
Finally, let us prove that there cannot exist a root of u′(x). If not, assume

x0 > 0 is such that u′(x0) = 0 and u′(x) 6= 0 in (0, x0). Without loss of
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generality, let u′(x) > 0 in (0, x0). Then u(x) > 0 in this interval and
x0∫
0

F (s, u(s), u′(s)) ds ≥
x0∫
0

f1(s)h1(u(s))u′(s) ds

≥ f1(x0)
u(x0)∫
0

h1(s) ds > 0.

On the other hand,
x0∫
0

F (s, u(s), u′(s)) ds = q(x0)k(u(x0))u′(x0) = 0,

a contradiction. So u′(x) 6= 0. Since u ∈ C1(R+) the proof is complete.

R e m a r k 4. It follows from Lemma 1 that u ∈ A+ or u ∈ A− for any
nontrivial solution u of (13), where

A+ = {u ∈ C0(R+) : u(0) = 0, u is strictly increasing on R+},
A− = {u ∈ C0(R+) : u(0) = 0, u is strictly decreasing on R+}.

Set

Wε(u) =
u∫

0

k(s) ds, u ∈ Aε, ε ∈ {+,−}.

Obviously, W+ is strictly increasing on A+ and W− is strictly decreasing
on A−.

Theorem 1. If u is a solution of (13), u 6= 0, then u is a solution of the
functional-integrodifferential equation

(16) u(x) = W−1
ε

( x∫
0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds
)

in the corresponding set Aε. Conversely , if u ∈ Aε, ε ∈ {+,−} is a solution
of (16) then u is a solution of (13) and u 6= 0. Here W−1

ε denotes the inverse
function of Wε.

P r o o f. Let u 6= 0 be a solution of (13). Then u ∈ A+∪A− by Remark 4
and (15) holds. If u ∈ Aε then

Wε(u(x)) =
x∫

0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds

for x ∈ R+ and u is a solution of (16) in Aε.
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Conversely, noting that Wε is monotonic and continuously differentiable,
we have

u′(x) =
1

k(u(x))

( x∫
0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds
)′

=
1

k(u(x))q(x)

x∫
0

F (t, u(t), u′(t)) dt

or

q(x)k(u(x))u′(x) =
x∫

0

F (t, u(t), u′(t)) dt.

Hence q(x)k(u(x))u′(x) ∈ C1(R+) and (13) holds. Consequently, u is a
solution of (13).

R e m a r k 5. It follows from Theorem 1 that solving (13) is equivalent
to solving (16) in Aε.

3. Existence. We further suppose:

(H4)

α∫
0

(k(u)/Hi(u)) du <∞,
0∫
−α

(k(u)/Ti(u)) du <∞,

∞∫
α

(k(u)/Hi(u)) =∞,
−α∫
−∞

(k(u)/Ti(u)) du =∞,

where α > 0, Hi(u) =
∫ u
0
hi(s) ds for u ∈ A+ and Ti(u) =

∫ 0

u
hi(s) ds for

u ∈ A−, i = 1, 2.
Set

Pi(u) =
u∫

0

(k(s)/Hi(s)) ds, u ∈ A+;

Vi(u) =
0∫
u

(k(s)/Ti(s)) ds, u ∈ A−;

k1(x) =
x∫

0

(f1(s)/q(s)) ds, k2(x) = f2(0)
x∫

0

(1/q(s)) ds,

l1(x) = f1(0)
x∫

0

(1/q(s)) ds, l2(x) =
x∫

0

(f2(s)/q(s)) ds,

ϕ+(x) = P−1
1 (k1(x)), ϕ+(x) = P−1

2 (k2(x)),

ϕ−(x) = V −1
1 (l1(x)), ϕ−(x) = V −1

2 (l2(x))



Infiltration of water 45

for x ∈ R+, i = 1, 2. Obviously, from (H4),

lim
u→∞

Pi(u) =∞, lim
u→−∞

Vi(u) =∞

and Pi(u) is increasing and Vi(u) decreasing, i = 1, 2.

Lemma 2. Under assumptions (H1)–(H4), if u ∈ Aε is a solution of (16),
ε ∈ {+,−}, then

(17) ϕε(x) ≤ u(x) ≤ ϕε(x), x ∈ R+,

and for 0 < x1 < x2,

(18)
u(x2)− u(x1) ≥

H1(ϕ+(x1))(k1(x2)− k1(x1))
max{k(u) : ϕ+(x1) ≤ u ≤ ϕ+(x2)}

, u ∈ A+,

u(x1)− u(x2) ≥
T2(ϕ−(x1))(l2(x1)− l2(x2))

max{−k(u) : ϕ−(x2) ≤ u ≤ ϕ−(x1)}
, u ∈ A−.

P r o o f. Let u ∈ A+ be a solution of (16). Then

f1(x)
u(x)∫
0

h1(s) ds ≤ q(x)k(u(x))u′(x)

=
x∫

0

F (s, u(s), u′(s)) ds ≤ f2(0)
u(x)∫
0

h2(s) ds.

Hence,

(19) f1(x)/q(x) ≤ P ′1(u(x)), f2(0)/q(x) ≥ P ′2(u(x)),

and integrating (19) from 0 to x we obtain

k1(x) ≤ P1(u(x)), k2(x) ≥ P2(u(x)).

Consequently, ϕ+(x) ≤ u(x) ≤ ϕ+(x) for x ∈ R+.
Let 0 < x1 < x2. Then

W+(u(x2))−W+(u(x1))

=
x2∫
x1

1
q(x)

x∫
0

F (s, u(s), u′(s)) ds dx ≥
x2∫
x1

f1(x)
q(x)

u(x)∫
0

h1(s) ds dx

≥
x2∫
x1

f1(x)
q(x)

ϕ+(x)∫
0

h1(s) ds dx ≥ H1(ϕ+(x1))(k1(x2)− k1(x1))

and since W+(u(x2)) − W+(u(x1)) = k(ξ)(u(x2) − u(x1)), where ξ ∈
(u(x1), u(x2)) ⊂ (ϕ+(x1), ϕ+(x2)), we see that (18) is true for u ∈ A+.

The case of u ∈ A− can be treated quite analogously.
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Set Kε = {u ∈ Aε : ϕε(x) ≤ u(x) ≤ ϕε(x) for x ∈ R+, u satisfies (18)}
and define Tε : Kε → C0(R+) by

(Tεu)(x) = W−1
ε

( x∫
0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds
)
, u ∈ Kε, ε ∈ {+,−}.

Lemma 3. Tε : Kε → Kε for each ε ∈ {+,−}.

P r o o f. We prove T+ : K+ → K+ (the proof of T− : K− → K− is very
similar and will be omitted). Let u ∈ K+. Setting

α(x) =
x∫

0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds−W+(ϕ+(x)),

β(x) =
x∫

0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds−W+(ϕ+(x))

for x ∈ R+, we have

α′(x) =
1

q(x)

x∫
0

F (t, u(t), u′(t)) dt− k(ϕ+(x))ϕ′+(x)

=
1

q(x)

[ x∫
0

F (t, u(t), u′(t)) dt− f1(x)H1(ϕ+(x))
]

≥ 1
q(x)

[ x∫
0

f1(t)h1(u(t))u′(t) dt− f1(x)H1(ϕ+(x))
]

≥ 1
q(x)

[
f1(x)

u(x)∫
0

h1(s) ds− f1(x)
ϕ+(x)∫
0

h1(s) ds
]

=
f1(x)
q(x)

u(x)∫
ϕ+(x)

h1(s) ds ≥ 0,

β′(x) =
1

q(x)

x∫
0

F (t, u(t), u′(t)) dt− k(ϕ+(x))ϕ′+(x)

≤ − f2(0)
q(x)

ϕ+(x)∫
u(x)

h2(s) ds ≤ 0

for x ∈ R+. Since α(0) = β(0) = 0, we have α(x) ≥ 0 and β(x) ≤ 0 for
x ∈ R+, and consequently,

(20) ϕ+(x) ≤ (T+u)(x) ≤ ϕ+(x), x ∈ R+.
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Let 0 < x1 < x2. Then

W+((T+u)(x2))−W+((T+u)(x1))

=
x2∫
x1

1
q(x)

x∫
0

F (s, u(s), u′(s)) ds dx

≥
x2∫
x1

1
q(x)

x∫
0

f1(s)h1(u(s))u′(s) ds

≥
x2∫
x1

f1(x)
q(x)

u(x)∫
0

h1(s) ds dx ≥
x2∫
x1

f1(x)
q(x)

dx

u(x1)∫
0

h1(s) ds

≥ (k1(x2)− k1(x1))
ϕ+(x1)∫

0

h1(s) ds = H1(ϕ+(x1))(k1(x2)− k1(x1))

and

W+((T+u)(x2))−W+((T+u)(x1)) = k(ξ)[(T+u)(x2)− (T+u)(x1)]
≤ [(T+u)(x2)− (T+u)(x1)] max{k(u) : ϕ+(x1) ≤ u ≤ ϕ+(x2)}

(here ξ ∈ ((T+u)(x1), (T+u)(x2)) ⊂ (ϕ+(x1), ϕ+(x2))), thus

(21) (T+u)(x2)− (T+u)(x1)
≥ H1(ϕ+(x1))(k1(x2)− k1(x1))[max{k(u) : ϕ+(x1) ≤ u ≤ ϕ+(x2)}]−1.

From (20) and (21) it follows that T+u ∈ K+, therefore, T+ : K+ → K+.

Theorem 2. Let assumptions (H1)–(H4) be satisfied. Then a solution
u ∈ Aε of (13) exists for each ε ∈ {+,−}.

P r o o f. By Lemma 2, u ∈ Aε is a solution of (13) if and only if u is
a fixed point of the operator Tε. We shall prove that under assumptions
(H1)–(H4) a fixed point of T+ exists. The existence of a fixed point of T−
can be proved similarly.

Let X be the Fréchet space of C0-functions on R+ with the topology of
uniform convergence on compact subintervals of R+. Then K+ is a bounded
closed convex subset of X and T+ : K+ → K+ (see Lemma 3) is a continuous
operator. It follows from the inequalities (0 ≤ x1 < x2)

0 ≤W+((T+u)(x2))−W+((T+u)(x1)) =
x2∫
x1

1
q(x)

x∫
0

F (s, u(s), u′(s)) ds dx

≤
x2∫
x1

1
q(x)

x∫
0

f2(s)h2(u(s))u′(s) ds dx ≤ f2(0)H2(ϕ+(x2))
x2∫
x1

1
q(x)

dx
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and from the Arzelà–Ascoli theorem [3] that T+(K+) is a relatively compact
subset of X. According to the Tikhonov–Schauder fixed point theorem [6]
there exists a fixed point u+ of T+.

4. Boundedness

Theorem 3. Let assumptions (H1)–(H4) be satisfied. Then any nontriv-
ial solution of (13) on R+ is bounded if and only if

∫∞
0

(1/q(s)) ds <∞.

P r o o f. We prove this for ε = + (the case ε = − is similar).
Sufficiency . If

∫∞
0

(1/q(x)) dx <∞ then any solution of (13) is bounded
by Lemma 2.

Necessity . Let
∫∞
0

(1/q(x)) dx = ∞ and u ∈ A+ be a solution of (13).
Then u 6= 0 and

W+(u(x)) =
x∫

0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ≥
x∫

0

1
q(s)

s∫
0

f1(t)h1(u(t))u′(t) dt.

Since ( s∫
0

f1(t)h1(u(t))u′(t) dt
)′

= f1(s)h1(u(s))u′(s) > 0

in R+ and we have
∫ s
0
f1(t)h1(u(t))u′(t) dt > 0 in R+, it follows that

limx→∞W+(u(x)) =∞. So limx→∞ u(x) =∞.

5. Uniqueness

Theorem 4. Let assumptions (H1)–(H4) be satisfied and suppose that
for 0 ≤ x1 < x2 and u2(x) > u1(x),

(H5)

x2∫
x1

[F (s, u2(s), u′2(s))− F (s, u1(s), u′1(s))] ds > 0, ui ∈ A+,

x2∫
x1

[F (s, u2(s), u′2(s))− F (s, u1(s), u′1(s))] ds < 0, ui ∈ A−.

Then there exist solutions uε, vε ∈ Aε of (13) for each ε ∈ {+,−} such that
uε(x) ≤ vε(x) for x ∈ R+. Moreover ,

(22) uε(x) ≤ u(x) ≤ vε(x), x ∈ R+,

for any solution u ∈ Aε of (13) and

(23) u(x) 6= v(x), x > 0,

for any two different solutions u, v of (13).
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P r o o f. Let u ∈ A+ be a solution of (13). Define sequences {un} ⊂ A+

and {vn} ⊂ A+ by the recurrence formulas

(24) u0 = ϕ+, un+1 = T+(un), v0 = ϕ+, vn+1 = T+(vn)

for n ∈ N. Then u0(x) ≤ u(x) ≤ v0(x) in R+ by Lemma 2 and u0(x) ≤
u1(x) ≤ v0(x), u0(x) ≤ v1(x) ≤ v0(x) in R+ by Lemma 3. Since α1, α2∈A+,
ϕ+(x) ≤ α1(x) ≤ α2(x) ≤ ϕ+(x) for x ∈ R+ implies

(T+α2)(x)− (T+α1)(x)

= W−1
+

( x∫
0

1
q(s)

s∫
0

F (t, α2(t), α′2(t)) dt ds
)

−W−1
+

( x∫
0

1
q(s)

s∫
0

F (t, α1(t), α′1(t)) dt ds
)

=
1

k(ξ)

x∫
0

1
q(s)

s∫
0

[F (t, α2(t), α′2(t))− F (t, α1(t), α′1(t))] dt ds > 0,

where ξ ∈ (ϕ+(x1), ϕ+(x2)) and T+ : K+ → K+ by Lemma 3, we have

u0(x) ≤ u1(x) ≤ . . . ≤ un(x) ≤ . . . ≤ u(x) ≤ . . .
. . . ≤ vn(x) ≤ . . . ≤ v1(x) ≤ v0(x)

for x ∈ R+ and n ∈ N. Therefore, the two limits limn→∞ un(x) = u+(x) and
limn→∞ vn(x) = v+(x) exist for all x ≥ 0. We have u+(x) ≤ u(x) ≤ v+(x)
on R+ and using the Lebesgue dominated convergence theorem [6] we see
that u+, v+ ∈ K+ are solutions of (16), and thus also solutions of (13) by
Theorem 1. Let u, v ∈ A+ be different solutions of (13). First, suppose that
there exists a x0 > 0 such that u(x) < v(x) for x ∈ (0, x0) and u(x0) = v(x0).
Then

0 = W+(v(x0))−W+(u(x0))

=
x0∫
0

1
q(s)

s∫
0

[F (t, v(t), v′(t))− F (t, u(t), u′(t))] dt ds.

On the other hand, by (H5),
x0∫
0

1
q(s)

s∫
0

[F (t, v(t), v′(t))− F (t, u(t), u′(t))] dt ds > 0,

a contradiction.
Now, assume that there exist 0 < x1 < x2 such that u(x1) = v(x1),

u(x2) = v(x2) and u(x) 6= v(x) for x ∈ (x1, x2); without loss of generality,
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let u(x) < v(x) for x ∈ (x1, x2). Then u′(x1) ≤ v′(x1), u′(x2) ≥ v′(x2) and

0 ≥ q(x2)k(u(x2))(v′(x2)− u′(x2))− q(x1)k(u(x1))(v′(x1)− u′(x1))

=
x2∫
x1

[F (s, v(s), v′(s))− F (s, u(s), u′(s))] ds,

contrary to (H5). So, the proof is complete.

Theorem 5. Let assumptions (H1)–(H4) be satisfied. Moreover , assume
that

(H6) (i) there exist ε0, ε > 0 such that

∣∣∣ u∫
0

[F (w1(s), s, 1/w′1(s))w′1(s)− F (w2(s), s, 1/w′2(s))w′2(s)] ds
∣∣∣

≤ L|w1(u)− w2(u)|min{|H1(u)|, |H2(u)|}

for (x, ui) ∈ [0, ε] × [−ε0, ε0] (i = 1, 2), where wi is the inverse
function of ui, ui ∈ Aε, and L > 0 is a constant ;

(ii) the modulus of continuity γ(X) = sup{|q(x1) − q(x2)| : x1, x2

∈ [0, ε], |x1 − x2| ≤ X} of q on [0, ε] satisfies limx→0+ sup γ(x)/x
<∞;

and

(H7) there exist two positive constants K0 and ε0 such that

|F (w2(t), t, 1/w′2(t))w′2(t)− F (w1(t), t, 1/w′1(t))w′1(t)|
≤ K0|w2(t)− w1(t)| for 0 < |t| < ε0.

Then equation (13) admits a unique solutions in Aε, ε = {+,−}.

P r o o f. Assume u1, u2 ∈ A+ are solutions of (13) and assume u1 6= u2.
First, we prove u1(x) = u2(x) on an interval [0, a], a > 0. Setting Ai =
limx→∞ ui(x), i = 1, 2, we see that 0 < Ai ≤ ∞ and the wi : [0, Ai) → R+

are continuous strictly increasing functions,

w′i(u) = k(u)q(wi(u))
[wi(u)∫

0

F (s, ui(s), u′i(s)) ds
]−1

, u ∈ (0, Ai), i = 1, 2.

Hence,

wi(u) =
u∫

0

k(s)q(wi(s))
[wi(s)∫

0

F (t, ui(t), u′i(t)) dt
]−1

ds,

u ∈ (0, Ai), i = 1, 2,
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and thus for u ∈ [0,min(A1, A2)] we have

w1(u)− w2(u)

=
u∫

0

k(s)[q(w1(s))− q(w2(s))]
[w2(s)∫

0

F (t, u2(t), u′2(t)) dt
]−1

ds

+
u∫

0

k(s)q(w1(s))

w2(s)∫
0

F (t, u2(t), u′2(t)) dt−
w1(s)∫
0

F (t, u1(t), u′1(t)) dt

w1(s)∫
0

F (t, u1(t), u′1(t)) dt
w2(s)∫
0

F (t, u2(t), u′2(t)) dt

ds

≤
u∫

0

k(s)[q(w1(s))− q(w2(s))]
[w2(s)∫

0

f1(t)h1(u2(t))u′2(t) dt
]−1

ds

+
u∫

0

k(s)q(w1(s))

×

s∫
0

[F (w2(t), t, 1/w′2(t))w′2(t)− F (w1(t), t, 1/w′1(t))w′1(t)] dt

w1(s)∫
0

f1(t)h1(u1(t))u′1(t) dt
w2(s)∫
0

f1(t)h1(u2(t))u′2(t) dt

ds.

Let ε > 0 be as in assumption (H6) and set a = min{u1(ε), u2(ε)}, X(u) =
max{|w1(s) − w2(s)| : 0 ≤ s ≤ u} for u ∈ [0, a]. Suppose X(u) > 0 for
u ∈ (0, a]. Then (cf. (H6))

|q(w1(u))− q(w2(u))| ≤ γ(X(u)), u ∈ [0, a].

In this way,

|w1(u)− w2(u)|

≤
u∫

0

k(s)γ(X(s))
f1(w2(s))H1(s)

ds+
u∫

0

k(s)q(w1(s))L|w1(s)− w2(s)|
f1(w1(s))f1(w2(s))H1(s)

ds

≤ γ(X(u))P1(u)/f1(ε)

+ LX(u)P1(u) max{q(x) : 0 ≤ x ≤ ε}/f2
1 (ε), 0 ≤ u ≤ a.

Hence
X(u) ≤ (Bγ(X(u)) + CX(u))P1(u), u ∈ [0, a],

where B = 1/f1(ε), C = B2Lmax{q(x) : 0 ≤ x ≤ ε}, and therefore

(25) γ(X(u))P1(u)/X(u) ≥ (1− CP1(u))/B, u ∈ (0, a].
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Now, on the left-hand side of (25) (cf. (H6)),

lim
u→0+

γ(X(u))P1(u)/X(u) = 0;

but, on the right-hand side of (25),

lim
u→0+

(1− CP1(u))/B = 1/B > 0.

This is a contradiction.
Next, assume [0, c] is the maximal interval where u1(x) = u2(x). Define

Y (x) = max{|u2(s)− u1(s)| : c ≤ s ≤ x},
α(x) = min{u1(x), u2(x)}, β(x) = max{u1(x), u2(x)}

for x ≥ c. Then Y (c) = 0, α(c) = β(c), 0 ≤ β(x) − α(x) ≤ Y (x) and
Y (x) > 0 for x > c. We have

W+(u2(x))−W+(u1(x))

=
x∫
c

1
q(s)

[ s∫
c

[F (t, u2(t), u′2(t))− F (t, u1(t), u′1(t))] dt
]
ds

=
x∫
c

1
q(s)

[ u2(s)∫
u2(c)

F (w2(t), t, 1/w′2(t))w′2(t) dt

−
u1(s)∫
u1(c)

F (w1(t), t, 1/w′1(t))w′1(t) dt
]
ds

=
x∫
c

1
q(s)

{ u2(s)∫
u1(c)

[F (w2(t), t, 1/w′2(t))w′2(t)− F (w1(t), t, 1/w′1(t))w′1(t)] dt

+
u2(s)∫
u1(s)

F (w1(t), t, 1/w′1(t))w′1(t) dt
}
ds

≤
x∫
c

1
q(s)

{
K0

u2(s)∫
u1(c)

|w2(t)− w1(t)| dt+
β(s)∫
α(s)

F (w1(t), t, 1/w′1(t))w′1(t) dt
}
ds.

Set ε = min{ε0, β−1(ε0+u1(c))−c}, m = min{u′1(x) : c ≤ x ≤ α−1(β(c+
ε))}, M = max{F (w1(t), t, 1/w′1(t))w′1(t) : α(c) ≤ t ≤ β(c + ε)} and r =
max{u′2(x) : c ≤ x ≤ c+ ε}. For x ∈ [c, c+ ε] we have

|w1(u2(x))− x| = |w1(u2(x))− w1(u1(x))| = w′1(ξ)|u2(x)− u1(x)|
= (1/u′1(η))|u2(x)− u1(x)| ≤ Y (x)/m,
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where ξ=(α(x), β(x)), η=w1(ξ)∈(w1(α(x)), w1(β(x)))⊂ [c, α−1(β(c+ ε))].
Consequently,

|w1(u)− w2(u)| ≤ Y (w2(u))/m, u ∈ [u1(c), u2(c+ ε)].

Therefore

|W+(u2(x))−W+(u1(x))| ≤
x∫
c

1
q(s)

{
r(K0/m)

s∫
c

Y (t) dt+MY (s)
}
ds

≤
x∫
c

1
q(s)

[K0r(s− c)/m+M ]Y (s) ds

≤ (K0rε/m+M)Y (x)
x∫
c

1
q(s)

ds

for x ∈ [c, c + ε]. Since |W+(u2(x)) −W+(u1(x))| = k(ξ)|u2(x) − u1(x)|,
where ξ ∈ (α(x), β(x)) ⊂ [α(c), β(c+ ε)], we have

|u2(x)− u1(x)| ≤ [(K0rε/m+M)Y (x)/p]
x∫
c

1
q(s)

ds,

where p = min{k(u) : α(c) ≤ u ≤ β(c+ ε)}. Hence,

Y (x) ≤ [(K0rε/m+M)Y (x)/p]
x∫
c

1
q(s)

ds, x ∈ [c, c+ ε].

Then

1 ≤ [(K0rε/m+M)/p]
x∫
c

1
q(s)

ds, c ≤ x ≤ c+ ε,

which is impossible. This proves u1(x) = u2(x) for x ∈ R+.
The uniqueness of solution of (13) in A− can be treated analogously.

Theorem 6. Suppose that assumptions (H1)–(H6) are satisfied. Then
(13) admits a unique solution in Aε, ε = {+,−}.

P r o o f. It is sufficient to prove that under assumptions (H1)–(H6), uε =
vε, ε ∈ {+,−}, where uε, vε are defined in Theorem 3. If not, for example,
u+ 6= v+, without loss of generality, let u+(x) < v+(x) in R+ by Theorem 4.
Since assumptions (H1)–(H4) and (H6) imply (see the first part of the proof
of Theorem 5) that u+(x) = v+(x) on an interval [0, b] (b > 0), we have a
contradiction.

6. Dependence of solution on a parameter. Consider the differential
equation (14) depending on a positive parameter λ.



54 X. Wu

Theorem 7. Suppose that assumptions (H1)–(H5) are satisfied. Then for
each ε ∈ {+,−} there exist solutions uε(x, λ), vε(x, λ) of (14) such that

(26) uε(x, λ) ≤ u(x, λ) ≤ vε(x, λ), x ∈ R+,

for any solution u(x, λ) ∈ Aε of (14) and

(27)
u+(x, λ1) < u+(x, λ2), v+(x, λ1) < v+(x, λ2),
u−(x, λ1) > u−(x, λ2), v−(x, λ1) > v−(x, λ2)

for all x ∈ R+ and 0 < λ1 < λ2.

P r o o f. The first part of the statement follows from Theorem 3. Set

(28)
ϕ+(x, λ) = P−1

1 (λk1(x)), ϕ+(x, λ) = P−1
2 (λk2(x)),

ϕ−(x, λ) = V −1
1 (λl1(x)), ϕ−(x, λ) = V −1

2 (λl2(x))

for x ∈ R+, λ > 0. Since (14) can be rewritten in the form

(q(x)k(u)u′/λ)′ = F (x, u, u′), λ > 0,

we have (see Lemma 2)

u(x2)− u(x1) ≥ λH1(ϕ+(x, λ))(k1(x2)− k1(x1))(29+)

× [max{k(u) : ϕ+(x1, λ) ≤ u ≤ ϕ+(x2, λ)}]−1

for any solution u ∈ A+ of (14) and 0 < x1 < x2, and

(29−) u(x1)− u(x2) ≥ λT2(ϕ−(x1, λ))(l2(x1)− l2(x2))
×[max{−k(u) : ϕ−(x2, λ) ≤ u ≤ ϕ−(x1, λ)}]−1

for any solution u ∈ A− of (14) and 0 < x1 < x2.
Set Kλ,ε = {u ∈ Aε : ϕε(x, λ) ≤ u(x) ≤ ϕε(x, λ), x ∈ R+, u satisfies

(29ε)} and define Tλ,ε : Kλ,ε → C0(R+) by

(Tλ,εu)(x) = W−1
ε

(
λ

x∫
0

1
q(s)

s∫
0

F (t, u(t), u′(t)) dt ds
)
,

where ε ∈ {+,−}, λ > 0. Then (cf. Lemma 3) Tλ,ε : Kλ,ε → Kλ,ε. Next, set

u
(0)
λ,ε(x) = ϕε(x, λ), u

(n+1)
λ,ε (x) = (Tλ,εu

(n)
λ,ε)(x),

v
(0)
λ,ε(x) = ϕε(x, λ), v

(n+1)
λ,ε (x) = (Tλ,εv

(n)
λ,ε)(x)

for x ∈ R+, λ > 0 and ε ∈ {+,−}. Then the limits

lim
n→∞

u
(n)
λ,ε(x) = uε(x, λ), lim

n→∞
v
(n)
λ,ε(x) = vε(x, λ)

exist for x ∈ R+, λ > 0 and ε ∈ {+,−}.
Let 0 < λ1 < λ2 and ε = + (for ε = −, the proof is similar). Then

ϕ+(x, λ1) < ϕ+(x, λ2), ϕ+(x, λ1) < ϕ+(x, λ2) and for each α1, α2 ∈ A+
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with α1(x) < α2(x) in R+ we have

(Tλ2,+α2)(x)− (Tλ1,+α1)(x)

= W−1
+

(
λ2

x∫
0

1
q(s)

s∫
0

F (t, α2(t), α′2(t)) dt ds
)

−W−1
+

(
λ1

x∫
0

1
q(s)

s∫
0

F (t, α1(t), α′1(t)) dt ds
)

=
1

k′(ξ)

x∫
0

1
q(s)

s∫
0

[λ2F (t, α2(t), α′2(t))− λ1F (t, α1(t), α′1(t))] dt ds

≥ λ1

k′(ξ)

x∫
0

1
q(s)

s∫
0

[F (t, α2(t), α′2(t))− F (t, α1(t), α′1(t))] dt ds > 0

and therefore u
(n)
λ1,+

(x) < u
(n)
λ2,+

(x) and v
(n)
λ1,+

(x) < v
(n)
λ2,+

(x) for x ∈ R+,
n ∈ N. Hence

u+(x, λ1) ≤ u+(x, λ2), v+(x, λ1) ≤ v+(x, λ2), x ∈ R+.

If r(x0, λ1) = r(x0, λ2) for an x0 > 0, where r is either u+ or v+, then
(ri(x) = r(x, λi), i = 1, 2)

r1(x0) = W−1
+

(
λ1

x0∫
0

1
q(s)

s∫
0

F (t, r1(t), r′1(t)) dt ds
)

< W−1
+

(
λ2

x0∫
0

1
q(s)

s∫
0

F (t, r2(t), r′2(t)) dt ds
)

= r2(x0),

which is a contradiction. So u+(x, λ1) < u(x, λ2) and v+(x, λ1) < v+(x, λ2)
for x ∈ R+.

Theorem 8. Let
∫∞
0

(1/q(s)) ds < ∞ and assumptions (H1)–(H6) be
satisfied. Then for a ∈ R− {0}, there exists a unique λ0 > 0 such that (14)
has a (necessarily unique) solution u(x, λ0) with limx→∞ u(x, λ0) = a.

P r o o f. By Theorem 6, (14) has a unique solution u+(x, λ) ∈ A+ and
a unique solution u−(x, λ) ∈ A− for each λ > 0 and the two finite limits
limx→∞ u+(x, λ) (> 0) and limx→∞ u−(x, λ) (< 0) exist by Theorem 4.
Define

g+(λ) = lim
x→∞

u+(x, λ), g−(λ) = lim
x→∞

u−(x, λ)

for λ > 0. Then g+ : (0,∞) → (0,∞) and g− : (0,∞) → (−∞, 0). In
view of Theorem 7, g+ is increasing on (0,∞) and g− is decreasing on
(0,∞). If for example, g+(λ1) = g+(λ2) for some 0 < λ1 < λ2, then setting
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ri(x) = u+(x, λi) for x ∈ R+ we have r1(x) < r2(x) in R+, hence

g+(λ1) = W−1
+

(
λ1

∞∫
0

1
q(s)

s∫
0

F (t, r1(t), r′1(t)) dt ds
)

< W−1
+

(
λ2

∞∫
0

1
q(s)

s∫
0

F (t, r2(t), r′2(t)) dt ds
)

= g+(λ2).

This is a contradiction. Consequently, g+ is strictly increasing and g− is
strictly decreasing.

To prove our theorem, it is enough to show that g+ and g− map (0,∞)
onto (0,∞) and (−∞, 0), respectively. We prove, for example, that g+
maps (0,∞) onto itself. First, from ϕ+(x, λ) ≤ u+(x, λ) ≤ ϕ+(x, λ) we
see that limλ→0+ g+(λ) = 0 and limλ→∞ g+(λ) = ∞. Next, assume, on
the contrary, that limλ→λ0− g+(λ) < limλ→λ0+ g+(λ) for λ0 > 0. Setting
v1(x) = limλ→λ0− u+(x, λ) and v2(x) = limλ→λ0+ u+(x, λ) for x ≥ 0, we get
v1 6= v2. Using the Lebesgue dominated convergence theorem as λ → λ0−
and λ→ λ0+ in the equality (rλ(x) = u+(x, λ) for (x, λ) ∈ R+ × (0,∞))

rλ(x) = W−1
+

(
λ0

x∫
0

1
q(s)

s∫
0

F (t, rλ(t), r′λ(t)) dt ds
)
,

we see that

vi(x) = W−1
+

(
λ0

x∫
0

1
q(s)

s∫
0

F (t, vi(t), v′i(t)) dt ds
)
, x > 0, i = 1, 2.

Therefore v1 and v2 are solutions of (14) for λ = λ0, and consequently
v1 = v2. This is a contradiction.
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