
ANNALES
POLONICI MATHEMATICI

LXI.1 (1995)

Critical points of asymptotically quadratic functions

by Michal Fečkan (Bratislava)

Abstract. Existence results for critical points of asymptotically quadratic functions
defined on Hilbert spaces are studied by using Morse–Conley index and pseudomonotone
mappings. Applications to differential equations are given.

1. Introduction. In this paper, we study the existence of critical points
for functions on infinite-dimensional spaces which are asymptotically qua-
dratic at infinity. Recently, several papers dealing with such problems have
appeared. The so-called P.S. condition is required in most of those papers.
First results of that kind have been obtained by H. Amann and E. Zehnder
(see [1, 4, 5]).

In Section 2, we investigate functions asymptotically quadratic at infin-
ity with pseudomonotone gradients. The linear asymptotes of the gradients
at infinity are allowed to be either invertible or not. Such functions can be
approximated by functions satisfying the P.S. condition. So we are able to
combine some results on the Morse–Conley index (see [1, 4]) and on pseu-
domonotone mappings (see [6]). We were stimulated by [2, 3] to use that
approximation (non-Galerkin) method. By using that method, we also hint
at a possible way of extending the theory of Morse–Conley index of [1] to
functions asymptotically quadratic at infinity with pseudomonotone gradi-
ents. Results on the existence of nontrivial critical points are derived as
well, i.e. we deal with the existence of additional critical points of functions
with a finite number of critical points. Consequently, we give a generaliza-
tion of [4, Theorem 1.2′]. Generally, when gradients of functions are only
pseudomonotone, we are almost able to find nontrivial critical points. To
find exact nontrivial critical points, we have to require the so-called prop-
erty S+ (see [3, p. 946]) of gradients. The property S+ is stronger than
pseudomonotony.
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In Section 3, we use these results to show the existence of weak solutions
for the following two differential equations:

∂F

∂x
(t, u(t), u′(t))− ∂

∂t

(
∂F

∂y
(t, u(t), u′(t))

)
= 0,

u : R→ R is 2π-periodic,
and

−
n∑
i=1

∂

∂xi
(fi(x,∇u)) + g(x, u) = 0, x ∈ Ω ⊂ Rn,

u(x) = 0, x ∈ ∂Ω, u : Ω → R,
where F ∈ C1(R × R × R,R) is 2π-periodic in t, fi(x, y) = ∂F̄

∂yi
(x, y), F ∈

C2(Rn×Rn,R), g ∈ C0(Rn×R,R) and Ω is an open bounded subset of Rn
with a smooth boundary ∂Ω.

2. Abstract results. Let H be a Hilbert space with an inner product
〈·, ·〉 and the norm | · |. Note that the index of a bounded self-adjoint linear
map is the (finite) dimension of the subspace of all eigenvectors of that map
with negative eigenvalues. The index of a critical point of a C2-smooth
function is the index of its Hessian at that point. The Hessian at a critical
point x of a C2-smooth function f is denoted by Hess f(x). A critical point
x of a C1-smooth function f is nondegenerate if f is C2-smooth at x and
Hess f(x) is invertible.

Theorem 2.1. Let f ∈ C1(H,R) and suppose that

(i) f(u) = 1
2 〈Lu, u〉+g(u), where L is an invertible self-adjoint bounded

linear operator for which the index exists;
(ii) grad g(x) = o(|x|) as |x| → ∞;
(iii) grad f is pseudomonotone (see [3, p. 946]).

Then there is a solution of grad f(u) = 0.

P r o o f. Let us consider fε(u) = f(u) + ε|u|2/2 for ε > 0 small. So
grad fε = grad f+εI. Since it is the sum of a pseudomonotone mapping with
εI for ε > 0, we know by [2, 3, 6] that grad fε satisfies (see also Definition 2.4
below)

if un ⇀ u and lim
n→∞

〈grad fε(un)− grad fε(u), un − u〉 ≤ 0, then un → u

(see [6, Definition 3.3.16]). Here ⇀ means weak convergence.
Furthermore, grad fε(x) = (L + εI)x + o(|x|) as |x| → ∞. These two

properties of grad fε imply the validity of the P.S. condition for any ε > 0
sufficiently small. Indeed, it is sufficient to observe the following fact: the P.S.
condition is satisfied for a function f̃ ∈ C1(H,R) provided that grad f̃ has
the above property (see Definition 2.4 below) and (grad f̃)−1(B) is bounded
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for any bounded subset B. The last property is valid if grad f̃ has a linear
invertible asymptote at infinity.

Since ‖(L + εI)−1‖ is uniformly bounded for ε small, by applying the
well-known result of [1, 4], there is a constant K > 0 and uε ∈ H such that
grad fε(uε) = 0 and |uε| ≤ K for any ε > 0 small. So grad f(uε) = −εuε → 0
as ε → 0+. By using the pseudomonotony of grad f , the existence of a
solution of grad f(u) = 0 is standardly proved (see [6]).

Definition 2.2. An equation F (u) = 0, F : S → H, is said to be almost
solvable on S ⊂ H if 0 ∈ F (S), i.e. there is a sequence {un}∞n=1 ⊂ S such
that F (un)→ 0 as n→∞.

Theorem 2.3. Suppose f satisfies the conditions (i)–(iii) of Theorem 2.1.
Moreover , assume that

(i) grad f(0) = 0 and A = Hess f(0) exists, it is invertible and indexA
exists;

(ii) indexA 6= indexL.

Then there are open, bounded neighbourhoods U1, U2 of 0 such that U1 ⊂ U2

and grad f = 0 is almost solvable on U2 \U1. (We then say that grad f = 0
almost has a nonzero solution.)

P r o o f. We follow the above proof. Since index(L+ εI) 6= index(A+ εI)
for ε small, by using again the well-known result of [1, 4], there are positive
constants K, k and uε ∈ H such that grad fε(uε) = 0 and k ≤ |uε| ≤ K for
any ε > 0 small. So grad f(uε) = −εuε→0 as ε→ 0+. The proof is finished
in the same way as for Theorem 2.1.

Definition 2.4. An operator F : H → H has the property S+ if
whenever un ⇀ u and

lim
n→∞

〈grad f(un)− grad f(u), un − u〉 ≤ 0,

then un → u (see [6, Definition 3.3.16], [3, p. 946]).

We already know that f ∈ C1(H,R) satisfies the P.S. condition provided
that grad f has the property S+ and (grad f)−1(B) is bounded for any
bounded subset B. The last property is valid if grad f has a linear invertible
asymptote at infinity. This implies that if grad f has the property S+ in
Theorem 2.3, which is stronger than pseudomonotony, then grad f = 0 has
a nonzero solution. This result is well known (see [1, 4]).

If f ∈ C1(H,R) is such that f(u) = 1
2 〈Lu, u〉+g(u) for a bounded linear

self-adjoint operator L with kerL 6= {0}, the assumption (ii) of Theorem 2.1
is satisfied as well, and grad f has the property S+, then f generally does
not satisfy the P.S. condition.

Now we extend Theorems 2.1 and 2.3 to resonant cases.
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Theorem 2.5. Let L : H → H be a Fredholm, self-adjoint bounded linear
operator for which the index exists and dim kerL > 0. Let H1⊕kerL = H be
the orthogonal decomposition with the orthogonal projection P : H → kerL.
Suppose that f ∈ C1(H,R) satisfies the following assumptions:

(i) f(u) = 1
2 〈Lu, u〉+ g(u);

(ii) there is a constant M > 0 such that |grad g(x)| ≤M for all x ∈ H;
(iii) grad f is pseudomonotone;
(iv) there is a continuous map ω : S1 = {v ∈ kerL | |v| = 1} → H such

that
lim

r→+∞
grad g(u+ rv) = ω(v)

uniformly in both v ∈ S1 and u ∈ A for any fixed bounded subset A of H1;
(v) there is no solution of the equation λv+Pω(v) = 0 with v ∈ S1 and

λ ≥ 0.

Then there is a solution of grad f(u) = 0.

P r o o f. Let us consider fε(u) = f(u) + ε|u|2/2 for ε > 0 small. We
already know by the proof of Theorem 2.1 that there is uε ∈ H such that
grad fε(uε) = 0 for any ε > 0 small. Now we show the boundedness of
{uε} by using some ideas of [7]. Assume uε → ∞. We take the orthogonal
projections P : H → kerL and Q = I− P . Then

(L+ εI)uε2 +Q grad g(uε) = 0,

εuε1 + P grad g(uε1 + uε2) = 0,
uε = uε1 + uε2, uε1 ∈ kerL, uε2 ∈ H1.

The assumption (ii) implies the boundedness of {uε2} and {εuε1}. So uε1 →
∞. By putting wε = uε1/|uε1| we have

ε|uε1|wε + P grad g(uε2 + |uε1|wε) = 0.

We can assume wε → w0 and ε|uε1| → λ0. Finally, we arrive at the equation

λ0w0 + Pω(w0) = 0

for some w0 ∈ S1 and λ0 ≥ 0. The contradiction with the assumption (v)
proves the boundedness of {uε}. The rest of the proof is similar to that for
Theorem 2.1.

Theorem 2.6. Suppose f satisfies the conditions (i)–(ii), (iv)–(v) of The-
orem 2.5. Moreover , assume

(i) grad f has the property S+;
(ii) grad f(0) = 0 and A = Hess f(0) exists, it is invertible and indexA

exists;
(iii) indexA 6= indexL.

Then grad f = 0 has a nonzero solution.
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P r o o f. We follow the proofs of Theorems 2.3 and 2.5. So there are
positive constants K, k and a sequence {uε} such that grad fε(uε) = 0 and
k < |uε| < K for any ε > 0 small. Since grad f has the property S+, we can
assume uε → u0. The proof is finished.

R e m a r k 2.7. The variational nature of the problems in Theorems 2.1
and 2.5 is not essential. By using ideas of [2, 3], it is possible to derive
nonvariational versions of these theorems. The assumptions (iv)–(v) of The-
orem 2.5 are the so-called Landesman–Lazer conditions (see [7]).

R e m a r k 2.8. If f ∈ C1(H,R) satisfies f(u) = 1
2 〈Lu, u〉+g(u), where L

is a Fredholm, self-adjoint bounded linear operator for which the index exists
and grad g is compact, then grad f has the property S+. Indeed, assume
un ⇀ u and

lim
n→∞

〈grad f(un)− grad f(u), un − u〉 ≤ 0.

Then {un}∞n=1 is bounded. Hence we can assume the existence of
limn→∞ grad g(un) in H. This implies

0 ≥ lim
n→∞

(〈L(un − u), un − u〉+ 〈grad g(un)− grad g(u), un − u〉)

= lim
n→∞

〈L(un − u), un − u〉.

Now we take the decomposition un = un1 + un2, u = u1 + u2, ui, uni ∈ Hi,
i = 1, 2, where Hi are closed subspaces of H, H = H1 ⊕ H2, which are
invariant for L and σ(L|H1) ⊂ (γ,∞), σ(L|H2) ⊂ (−∞, 0] for γ > 0. We
know dimH2 <∞. Hence un2 → u2. This gives

0 ≥ lim
n→∞

〈L(un1 − u1), un1 − u1〉 ≥ γ lim
n→∞

|un1 − u1|2.

Hence un → u.

Now we hint at a possible extension of the theory of Morse–Conley index
in [1]. Let us assume that f ∈ C1(H,R) satisfies all assumptions of Theo-
rem 2.1. Then we consider fε ∈ C1(H,R) introduced in the above proofs
for any ε > 0 sufficiently small. We already know that this function satisfies
the P.S. condition. Hence there is a variational system {Γε, ηε} relative to
fε in the sense of [1]. So the generalized Morse–Conley index can be defined
for any fε, i.e. there is a family Σε of subsets of H and a map iε : Σε → S
for any ε > 0 sufficiently small. Here S is the set of formal power series
in t with nonnegative coefficients. Moreover, by analysing the proof of [1,
Lemma 3.1] there is R > 0 such that BR = {x ∈ H | |u| < R} ∈ Σε and
iε(BR) = tindexL. More generally, let S ⊂ H be a bounded subset such
that S ∈ Σε for any ε > 0 small. By [1, Theorem 1.5], the index iε(S) is
independent of ε. We can introduce the following

Definition 2.9. Suppose f satisfies the assumptions of Theorem 2.1.
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Let Σ be the set of all bounded subsets S ⊂ H such that S ∈ Σε for any
ε > 0 small. Then the generalized Morse–Conley index of S ∈ Σ relative to
f is defined by i(S) = iε(S).

Theorem 2.10. If i(S) 6= 0 then 0 ∈ grad f(conS). Here conS is the
closed convex hull of S.

P r o o f. Since i(S) 6= 0 we have iε(S) 6= 0. So there is uε ∈ S such that
grad fε(uε) = 0. Since any closed convex subset of H is weakly closed, there
is a solution of grad f = 0 in conS by the same arguments as in the proof
of Theorem 2.1.

By using Theorem 2.10 with S = BR for R > 0 sufficiently large, we
have another proof of Theorem 2.1.

We note that the invertibility of L is not used in the definition of i(S).
Only the property dist(0, σ(L)\{0}) > 0 is essential. Then L+εI is invertible
for any ε > 0 small.

Theorem 2.11. Definition 2.9 is meaningful provided that f ∈ C1(H,R)
is such that f(u) = 1

2 〈Lu, u〉 + g(u) for a bounded linear self-adjoint oper-
ator L satisfying dist(0, σ(L) \ {0}) > 0, and the assumptions (ii)–(iii) of
Theorem 2.1 are satisfied as well.

Of course, Theorem 2.10 is also true for the case of Theorem 2.11.
Finally, we give a result on the existence of additional critical points for

functions with a finite number of critical points, motivated by [4].

Theorem 2.12. Let f ∈ C1(H,R) satisfy the P.S. condition and assume
f(u) = 1

2 〈Lu, u〉+ g(u), where L is an invertible self-adjoint bounded linear
operator for which the index exists and grad g(x) = o(|x|) as |x| → ∞.
Suppose that f has only a finite number of critical points x1, . . . , xk and all
of them are nondegenerate. Then at least one of them satisfies

indexxi = indexL.

P r o o f. The proof follows immediately from [1, Corollary 2.10, Theo-
rem 2.8 and Lemma 3.1].

Corollary 2.13. Let f ∈ C1(H,R) satisfy the P.S. condition and as-
sume f(u) = 1

2 〈Lu, u〉+ g(u), where L is an invertible self-adjoint bounded
linear operator for which the index exists and grad g(x) = o(|x|) as |x| → ∞.
Suppose that f has nondegenerate critical points x1, . . . , xk satisfying

indexxi 6= indexL ∀i = 1, . . . , k.

Then f has another critical point.

Corollary 2.13 can be extended in the sense of Theorem 2.6 as follows.
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Theorem 2.14. Let L : H→H be a Fredholm, self-adjoint bounded linear
operator for which the index exists and dim kerL > 0. Let H1 ⊕ kerL =
H be the orthogonal decomposition with the orthogonal projection P : H →
kerL. Suppose that f ∈ C1(H,R) satisfies the following assumptions:

(i) f(u) = 1
2 〈Lu, u〉+ g(u);

(ii) there is a constant M > 0 such that |grad g(x)| ≤M for all x ∈ H;
(iii) grad f has the property S+;
(iv) there is a continuous map ω : S1 = {v ∈ kerL | |v| = 1} → H such

that
lim

r→+∞
grad g(u+ rv) = ω(v)

uniformly in both v ∈ S1 and u ∈ A for any fixed bounded subset A of H1;
(v) there is no solution of the equation λv+Pω(v) = 0 with v ∈ S1 and

λ ≥ 0;
(vi) f has nondegenerate critical points x1, . . . , xk such that

indexxi 6= indexL ∀i = 1, . . . , k.

Then f has another critical point.

P r o o f. We apply Corollary 2.13 to the functions fε=f + εψ with ε>0
sufficiently small, where ψ ∈ C1(H,R) is a convex function equal to 0 in
an open neighbourhood U ⊂ H of {x1, . . . , xk} and ψ(z) = |z|2/2 for any z
sufficiently large. Moreover, we can assume that gradψ(B) is bounded for
any bounded subset B ⊂ H. Such a function ψ can be defined by the formula
ψ(z) = τ(|z|2/2) for a function τ ∈ C∞(R,R) such that τ ′ ≥ 0, τ ′′ ≥ 0 and

τ(x) =
{

0 for |x| ≤ max1≤i≤k |xi|2/2 + 1,
x for |x| ≥ max1≤i≤k |xi|2/2 + 3.

Of course, such a function τ exists.
Since grad f has the property S+ and gradψ is a monotone operator,

we see that grad fε has the property S+ as well. It is clear that x1, . . . , xk
are the only critical points of fε in some open set U1 ⊂ U , and they are
nondegenerate with indices indexxi, i = 1, . . . , k. Moreover, grad fε has the
linear asymptote L+εI at infinity. Now we apply Corollary 2.13, by following
simultaneously the proof of Theorem 2.5, to obtain a critical point of fε in
the set B \ U1, where B is a sufficiently large, fixed ball. By letting ε→ 0+

as in the proof of Theorem 2.6, we find a nontrivial critical point of f . The
proof is finished.

R e m a r k 2.15. If, in Theorem 2.14, we assume additionally that

(vii) x1 = 0 and f is C2-smooth in an open neighbourhood of {x2, . . . , xk},
then we can consider in the proof the usual, more convenient approximation
fε(z) = f(z)+ε|z|2/2. Indeed, we can now use the implicit function theorem
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to show the existence of an open set U1 containing {x1, . . . , xk} such that
grad fε has only k critical points in U1, which are nondegenerate with indices
indexxi, i = 1, . . . , k.

So, similarly to Theorem 2.3, if grad f is only pseudomonotone in Theo-
rems 2.6 and 2.14 instead of having the property S+, but (vii) additionally
holds in Theorem 2.14 then f almost has another critical point different from
the given nondegenerate ones, i.e. there are open, bounded neighbourhoods
U1, U2 of the set of all given nondegenerate critical points of f such that
U1 ⊂ U2 and grad f = 0 is almost solvable on U2 \ U1 (see Definition 2.2).

R e m a r k 2.16. If grad f is only quasimonotone (pseudomonotony im-
plies quasimonotony; see [3, p. 946]) in all the above theorems, and (vii)
of Remark 2.15 holds, in addition, in Theorem 2.14, then critical points of
f sought in these theorems almost exist in the sense of Definition 2.2 and
Remark 2.15. This follows from the observation that the sum of a quasimono-
tone operator with εI, ε > 0, has the property S+. So grad fε = grad f + εI
also has the property S+, and we can repeat the above proofs as in the
proof of Theorem 2.3. In particular, in Theorem 2.3 and Remark 2.15 pseu-
domonotony can be replaced by quasimonotony.

Summing up we see that quasimonotony (resp. pseudomonotony) is not
enough for the existence of a critical point (resp. a nontrivial critical point).
Pseudomonotony (resp. the property S+) is sufficient to ensure that some
almost critical points (resp. almost nontrivial critical points) converge to
exact ones. This convergence is only weak in the case of pseudomonotony.

R e m a r k 2.17. The assumption (v) of Theorems 2.5 and 2.14 is satisfied
provided that we suppose

(v′) For any v ∈ kerL with |v| = 1 there is a symmetric positive semi-
definite matrix Mv, Mv ∈ L(kerL), relative to the inner product on H, such
that 〈ω(v),Mvv〉 > 0.

If there is an orthogonal basis {ei} of kerL such that for all v ∈ kerL
with |v| = 1 there is an i such that 〈ω(v), vi〉 > 0, where v = (vj) is the
orthogonal decomposition (the coordinates) of v with respect to {ei}. Then,
by taking Mvw = wi for w ∈ kerL, the assumption (v′) holds. Of course, it
holds if 〈ω(v), v〉 > 0 for v ∈ kerL with |v| = 1.

3. Applications. In this section, we use the above abstract results to
prove existence results for several differential equations.

The first example is

∂F

∂x
(t, u(t), u′(t))− ∂

∂t

(
∂F

∂y
(t, u(t), u′(t))

)
= 0,(3.1)

u : R→ R is 2π-periodic,
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where F ∈ C1(R× R× R,R) and F is 2π-periodic in t. The equation (3.1)
is the Euler equation of the functional

f(u) =
2π∫
0

F (t, u(t), u′(t)) dt.

Theorem 3.1. Assume that

(i) there are numbers a, b, d with d > 0 satisfying∣∣∣∣∂F∂x (t, x, y)− ax− by
∣∣∣∣/√x2 + y2 → 0 as |x|+ |y| → ∞;∣∣∣∣∂F∂y (t, x, y)− bx− dy
∣∣∣∣/√x2 + y2 → 0 as |x|+ |y| → ∞

uniformly in t;
(ii) F (t, x, y) = Φ(t, x, y) + φ(t, x), where Φ is convex in (x, y) for any

fixed t, and Φ, φ are C1-smooth and 2π-periodic in t.

If −a/d 6∈ {0, 12, 22, . . .}, then (3.1) has at least one 2π-periodic weak
solution u, i.e.

〈T (u), v〉 =
2π∫
0

(
∂F

∂x
(t, u, u′)v +

∂F

∂y
(t, u, u′)v′

)
dt = 0

for each v in

H =
{
u : R→ R

∣∣∣u is 2π-periodic, |u|2 =
2π∫
0

(u2 + (u′)2) dt <∞
}
.

Here T (u) ∈ H∗ = H.

P r o o f. We apply Theorem 2.1 by setting

〈Lu, u〉 =
2π∫
0

(au2 + d(u′)2) dt,

g(u) =
2π∫
0

(
F (t, u, u′)− au2 + d(u′)2

2

)
dt.

We see that Lv = 0 if av = dv′′, v ∈ H. Since −a/d 6∈ {0, 12, 22, . . .} we
obtain v = 0. Hence the assumption (i) of Theorem 2.1 is satisfied.

Furthermore, the condition (i) of the present theorem implies for any
r > 0 the existence of a constant C(r) such that
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∣∣∣∣ ≤ r√x2 + y2 + C(r),∣∣∣∣∂F∂y (t, x, y)− bx− dy
∣∣∣∣ ≤ r√x2 + y2 + C(r),

for all t, x, y ∈ R. Note that

Dg(u)v =
2π∫
0

((
∂F

∂x
(t, u, u′)−au−bu′

)
v+
(
∂F

∂y
(t, u, u′)−bu−du′

)
v′
)
dt.

By the Cauchy–Schwarz inequality we obtain

|Dg(u)v| ≤
√

2
2π∫
0

(r
√
u2 + (u′)2 + C(r))

√
v2 + (v′)2 dt

≤
√

2(r|u|+
√

2πC(r))|v|.
This gives

|grad g(u)| ≤
√

2(r|u|+
√

2πC(r)),

and the assumption (ii) of Theorem 2.1 holds.
The pseudomonotony of grad f follows from the decomposition F (t, x, y)

= Φ(t, x, y) +φ(t, x), where Φ is convex in (x, y) for any fixed t, by using [6,
Theorem 3.3.42]. Note that the conditions (3.1.3), (3.1.4) and (3.3.37) of [6,
Theorem 3.3.42] are satisfied for our case with p = 2. The proof is finished.

Theorem 3.2. Suppose that the condition (i) of Theorem 3.1 holds and

(ii) ∂F
∂y (t, x, y) is nondecreasing in y for each t, x.

(Note that the assumption (ii) of Theorem 3.1 clearly implies the present
assumption (ii).) Moreover , assume F is C2-smooth at (0, 0) and

F (t, x, y) = px2 + 2sxy + qy2 + o(|x|2 + |y|2) near x = y = 0.

If q > 0, −p/q 6∈ {0, 12, 22, . . .}, −a/d 6∈ {0, 12, 22, . . .} and

#{n ∈ {0, 1, 2, . . .} | n2 < −p/q} 6= #{n ∈ {0, 1, 2, . . .} | n2 < −a/d},

then (3.1) almost has a nonzero solution (see Theorem 2.3). Here #A means
the number of elements of a finite set A.

P r o o f. We apply Theorem 2.3 and Remark 2.16. We have

D2f(0)(v1; v2) = 2
2π∫
0

(pv1v2 + s(v1v
′
2 + v1v

′
2) + qv′1v

′
2) dt

= 2q
2π∫
0

(
p

q
v1v2 + v′1v

′
2

)
dt.
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Hence
index Hess f(0) = #{n∈{0} | n<− p/q}+2#{n ∈ {1, 2, . . .} | n2<− p/q},

indexL = #{n ∈ {0} | n<− a/d}+2#{n∈{1, 2, . . .} | n2<− a/d}.

We see that the conditions (i)–(ii) of Theorem 2.3 are satisfied. Finally, the
quasimonotony of grad f holds again by [6, Theorem 3.3.42]. The proof is
finished.

R e m a r k 3.3. If the assumption (ii) of Theorem 3.1 is weakened to
the assumption (ii) of Theorem 3.2, then (3.1) almost has a solution (see
Remark 2.16).

If the assumption (ii) of Theorem 3.2 is strengthened to

∂F

∂y
(t, x, y) is increasing in y for each t, x,

then by [6, Theorem 3.3.42] the operator grad f of Theorem 3.2 has the
property S+. Then we know that f also satisfies the P.S. condition, and so
(3.1) has a nonzero solution. This result is well known (see [1, 4]).

Theorem 3.4. Assume that

(i) there are positive constants M , d satisfying∣∣∣∣∂F∂x (t, x, y)
∣∣∣∣ < M,

∣∣∣∣∂F∂y (t, x, y)− dy
∣∣∣∣ < M ∀(t, x, y);

(ii) ∂F
∂y (t, x, y) is increasing in y for each t, x;

(iii) F is C2-smooth at (0, 0) and

F (t, x, y) = px2 + 2sxy + qy2 + o(|x|2 + |y|2) near x = y = 0;

(iv) there are continuous functions γ : R → R, f± : R → R and α :
R× R→ R, where f±, α are 2π-periodic in t, such that

lim
x→±∞

α(t, x) = f±(t) uniformly in t, lim
x→+∞

γ(x) = 0,∣∣∣∣∂F∂x (t, x, y)− α(t, x)
∣∣∣∣ ≤ γ(|x|)(|y|+ 1) ∀(t, x, y),∣∣∣∣∂F∂y (t, x, y)− dy

∣∣∣∣ ≤ γ(|x|)(|y|+ 1) ∀(t, x, y).

If q > 0, p < 0, −p/q 6∈ {0, 12, 22, . . .} and
2π∫
0

f−(t) dt < 0,
2π∫
0

f+(t) dt > 0,

then (3.1) has a nonzero solution.
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P r o o f. We apply Theorem 2.6 in the framework of Theorems 3.1 and
3.2. It is clear that

〈Lu, v〉 =
2π∫
0

du′v′ dt ∀u, v ∈ H

kerL = {constant functions}, {v ∈ kerL | |v| = 1} = {±1/
√

2π},

H1 =
{
v ∈ H

∣∣∣ 2π∫
0

v(t) dt = 0
}
.

Note that

Dg(u)v =
2π∫
0

(
∂F

∂x
(t, u, u′)v +

(
∂F

∂y
(t, u, u′)− du′

)
v′
)
dt.

By using the assumption (iv), we see that ω(±1/
√

2π) = Kf± for this case,
where Kv is defined by the identity

2π∫
0

(Kv)u dt+
2π∫
0

(Kv)′u′ dt =
2π∫
0

vu dt ∀u ∈ H.

So we have

〈ω(±1/
√

2π),±1/
√

2π〉 =
2π∫
0

ω(±1/
√

2π)(±1/
√

2π) dt

= ± 1√
2π

2π∫
0

Kf±(t) dt = ± 1√
2π

2π∫
0

f±(t) dt.

The assumption (v) of Theorem 2.5 is satisfied (see Remark 2.17). Further-
more, we have

D2f(0)(v1; v2) = 2
2π∫
0

(pv1v2 + s(v1v
′
2 + v1v

′
2) + qv′1v

′
2) dt

= 2q
2π∫
0

(
p

q
v1v2 + v′1v

′
2

)
dt.

Hence 0 is a nondegenerate critical point of f and

index Hess f(0) = #{n∈{0} | n<− p/q}+2#{n∈{1, 2, . . .} | n2<− p/q}
> 0 = indexL.

By Remark 3.3, the operator grad f has the property S+. Summarizing we
see that all assumptions of Theorem 2.6 hold. The proof is finished.
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Theorem 3.5. If the assumptions (i), (iv) of Theorem 3.4 and (ii) of
Theorem 3.1 hold and

2π∫
0

f−(t) dt < 0,
2π∫
0

f+(t) dt > 0,

then (3.1) has a solution.

P r o o f. Apply Theorem 2.5 in the framework of Theorem 3.4.

R e m a r k 3.6. If ∂Φ
∂y (·, ·, 0) = 0, Φ(·, ·, 0) = 0, φ(t, x) = φ(x) in the as-

sumption (ii) of Theorem 3.1 and there are only a finite number of roots
of φ′(x) = 0, then each of these roots is a solution of (3.1). By applying
Theorem 2.14, we can find a nonconstant solution of (3.1) under additional
assumptions.

The higher-dimensional cases can be solved similarly. For instance, let
us consider the equation

−
n∑
i=1

∂

∂xi
(fi(x,∇u)) + g(x, u) = 0, x ∈ Ω ⊂ Rn,(3.2)

u(x) = 0, x ∈ ∂Ω, u : Ω → R,

where fi(x, y) = ∂F̄
∂yi

(x, y), F ∈C2(Rn×Rn,R), g∈C0(Rn×R,R) and Ω is an
open bounded subset of Rn with a smooth boundary ∂Ω. Note the inner
product on Rn is denoted by (·, ·)n.

Theorem 3.7. Assume that

(i) (Hessy F (·, ·)v, v)n≥0 for all v∈Rn, where Hessy F=[∂2F/∂yi∂yj ] is
a symmetric matrix ;

(ii) there is a constant c ∈ R and a symmetric positive definite matrix
B : Rn → Rn such that

grady F (x, y) = By +O(1), g(x, z) = cz +O(1)

as |y|, |z| → ∞ uniformly in x;
(iii) c 6∈ σ(∆B with the Dirichlet condition), where we have set ∆Bu =∑n
i=1

∑n
j=1 bij∂

2u/∂xi∂xj and B = [bij ].

Then (3.2) has at least one weak solution u ∈ H1
0 (Ω), i.e.∫

Ω

( n∑
i=1

fi(x,∇u)
∂w

∂xi
+ g(x, u)w

)
dx = 0, ∀w ∈ H1

0 (Ω).
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P r o o f. We apply Theorem 2.1 as in the proof of Theorem 3.1 by putting

〈u, v〉=
∫
Ω

(∇u,∇v)n dx, 〈Lu, v〉 =
∫
Ω

(B∇u,∇v)n dx+ c
∫
Ω

uv dx,

f(u) =
∫
Ω

F (x,∇u) dx+
∫
Ω

G(x, u) dx, G(x, z) =
z∫

0

g(x, s) ds.

Since the verification of the assumptions of Theorem 2.1 for this case is the
same as for Theorem 3.1, the proof is finished.

Acknowledgments. I thank the referee for helpful comments and sug-
gestions.
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