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Necessary and sufficient conditions for
generalized convexity

by Janusz Krzyszkowski (Kraków)

Abstract. We give some necessary and sufficient conditions for an n−1 times differen-
tiable function to be a generalized convex function with respect to an unrestricted n-
parameter family.

1. Introduction. A family F of continuous real-valued functions ϕ de-
fined on an open interval (a, b) is said to be an n-parameter family on (a, b)
(see [1] and [5]) if for any distinct points x1, . . . , xn in (a, b) and any numbers
y1, . . . , yn there exists exactly one ϕ ∈ F satisfying

ϕ(xi) = yi, i = 1, . . . , n.

Throughout the paper we assume n ≥ 2.
Let F be an n-parameter family on (a, b). Following [5] we say that

a function ψ continuous on (a, b) is strictly F -convex (F -convex , strictly
F -concave, F -concave) on (a, b) if for any points a < x1 < . . . < xn < b
the unique ϕ ∈ F determined by

(1) ϕ(xi) = ψ(xi), i = 1, . . . , n,

satisfies the inequalities

(−1)n+iϕ(x) < (≤, >,≥) (−1)n+iψ(x), x ∈ (xi, xi+1),

for i = 0, 1, . . . , n, where x0 := a and xn+1 := b.
The above inequalities can be rewritten as

(2) sgn(ψ(x)− ϕ(x)) = sgn
( n∏
i=1

(x− xi)
)
, x ∈ (a, b),
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for strict convexity and

sgn(ψ(x)− ϕ(x)) = − sgn
( n∏
i=1

(x− xi)
)
, x ∈ (a, b),

for strict concavity.
A family F of Cn−1 functions on (a, b) is called an unrestricted n-para-

meter family (or briefly an Hn-family) on (a, b) (see [3]) if for any distinct
x1, . . . , xk∈(a, b), any positive integers λ1, . . . , λk such that λ1+. . .+λk = n,
and any numbers yµi

i , where i = 1, . . . , k, µi = 0, . . . , λi − 1, there exists
exactly one ϕ ∈ F satisfying

(3) ϕµi(xi) = yµi

i , i = 1, . . . , k, µi = 0, . . . , λi − 1,

where

ϕ0(x) := ϕ(x), ϕl(x) :
dlϕ(x)
dxl

for l = 1, 2, . . .

This notation will be used throughout the paper.
It is evident that any Hn-family on (a, b) is an n-parameter family on

(a, b). Therefore we may consider the generalized convexity with respect to
Hn-families. To begin with we introduce the following definitions:

Let F be an Hn-family on (a, b) and let ψ be n−1 times differentiable on
(a, b). Let i1, . . . , ik be positive integers such that i1+. . .+ik = n. The func-
tion ψ will be said to satisfy the condition Wn(i1, . . . , ik;F ) (resp. W̃n(i1, . . .
. . . , ik;F )) on (a, b) if for any a < x1 < . . . < xk < b,

sgn(ψ(x)− ϕ(x)) = sgn
( k∏
l=1

(x− xi)il
)
, x ∈ (a, b) (resp. x ∈ (x1, xk)),

where ϕ ∈ F is determined by

(4) ϕjl(xl) = ψjl(xl), l = 1, . . . , k, jl = 0, . . . , il − 1.

The function ψ will be said to satisfy the condition Kn(i1, . . . , ik;F )
(resp. K̃n(i1, . . . , ik;F )) on (a, b) if for any a < x1 < . . . < xk < b,

sgn(ψ(x)− ϕ(x)) = − sgn
( k∏
l=1

(x− xi)il
)
, x ∈ (a, b) (resp. x ∈ (x1, xk)),

where ϕ ∈ F is determined by (4).
We will use the symbol ϕ(xi11 , . . . , x

ik
k ;ψ; ·) to denote the function ϕ ∈ F

satisfying (4).
It is well known (see [3]) that ψ is strictly F -convex on (a, b) iff for any

a < x1 < . . . < xn < b the function ϕ determined by (1) satisfies (2) on
(x1, xn). This means that ψ satisfies the condition Wn(1(n);F ) on (a, b) iff
ψ satisfies the condition W̃n(1(n);F ) on (a, b). Here 1(n) stands for 1, . . . , 1︸ ︷︷ ︸

n

.
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It is of interest to know whether the conditions Wn(i1, . . . , ik;F ) are
equivalent to strict F -convexity.

The case n = 2 was considered by D. Brydak [2]. He has proved that if
F is an H2-family on (a, b) and ψ is differentiable on (a, b), then ψ is strictly
F -convex on (a, b) iff ψ satisfies W2(2;F ) on (a, b).

The case n = 3 was considered by the author in [4]. The theorem in
[4] reads as follows: Let F be an H3-family on (a, b) and let ψ be twice
differentiable on (a, b). Then the conditions

• ψ is strictly F -convex on (a, b);
• ψ satisfies W3(1, 2;F ) on (a, b);
• ψ satisfies W3(3;F ) on (a, b);
• ψ satisfies W3(2, 1;F ) on (a, b);

are equivalent.
We will prove the following two theorems: Let F be an Hn-family on

(a, b) and let ψ be n− 1 times differentiable on (a, b).

1. If ψ is strictly F -convex on (a, b), then for any positive integers
i1, . . . , ik such that i1 + . . .+ ik = n, ψ satisfies Wn(i1, . . . , ik;F ) on (a, b).

2. If ψ satisfies Wn(i1, . . . , ik;F ) on (a, b) for some i1, . . . , ik ∈ {1, 2, 3}
such that i1 + . . .+ ik = n, then ψ is strictly F -convex on (a, b).

2. Lemmas

Lemma 1. Let f and g be defined and k times differentiable in a neigh-
bourhood of a point x0 and let

f i(x0) = gi(x0), i = 0, 1, . . . , k − 1.

(i) If there exists a sequence {xn} such that xn → x+
0 and f(xn) ≥

g(xn) for n = 1, 2, . . . , then fk(x0) ≥ gk(x0).
(ii) If there exists a sequence {xn} such that xn → x−0 and f(xn) ≥

g(xn) for n = 1, 2, . . . , then (−1)kfk(x0) ≥ (−1)kgk(x0).
(iii) If there exists a sequence {xn} such that xn → x+

0 (or xn → x−0 )
and f(xn) ≥ g(xn) ≥ 0 for n = 1, 2, . . . , and f i(x0) = 0 for i = 0, 1, . . . , k,
then gk(x0) = 0.

We omit an easy proof.
The two lemmas below are easy consequences of the definitions of

Wn(i1, . . . , ik;F ) and Kn(i1, . . . , ik;F ).

Lemma 2. Let i1, . . . , ik be positive integers such that i1 + . . .+ ik = n.
Then the following conditions are equivalent :

• If G1 is an Hn-family on (a, b), ψ1 is n−1 times differentiable on (a, b)
and ψ1 is strictly G1-convex on (a, b), then ψ1 satisfies Wn(i1, . . . , ik;G1)
on (a, b).
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• If G2 is an Hn-family on (a, b), ψ2 is n−1 times differentiable on (a, b)
and ψ2 is strictly G2-concave on (a, b), then ψ2 satisfies Kn(i1, . . . , ik;G2)
on (a, b).

Lemma 3. Under the assumptions of Lemma 2 the following conditions
are equivalent :

• If G1 is an Hn-family on (a, b), ψ1 is n−1 times differentiable on (a, b)
and ψ1 satisfies Wn(i1, . . . , ik;G1) on (a, b), then ψ1 is strictly G1-convex
on (a, b).
• If G2 is an Hn-family on (a, b), ψ2 is n−1 times differentiable on (a, b)

and ψ2 satisfies Kn(i1, . . . , ik;G2) on (a, b), then ψ2 is strictly G2-concave
on (a, b).

The proofs of the next lemmas are not so simple.

Lemma 4. Let F be an Hn-family on (a, b) and let ψ be n − 1 times
differentiable on (a, b). If ψ satisfies W̃n(n − 1, 1;F ) and W̃n(1, n − 1;F )
on (a, b), then ψ satisfies Wn(n;F ) on (a, b).

P r o o f. We have to show that for any x0 ∈ (a, b),

sgn(ψ(x)− ϕ1(x)) = sgn((x− x0)n), x ∈ (a, b),

where ϕ1(x) := ϕ(xn0 ;ψ;x), x ∈ (a, b). We prove this equality on (x0, b); the
proof for (a, x0) is analogous.

It suffices to show that

ψ(x) > ϕ1(x), x ∈ (x0, b).

Assume that this inequality does not hold. Then two cases are possible:

1. ψ(x) ≥ ϕ1(x) for x ∈ (x0, b) and ψ(c) = ϕ1(c) for a c ∈ (x0, b);
2. ψ(c) < ϕ1(c) for a c ∈ (x0, b).

1. It is easily seen that ϕ(xn−1
0 , c1;ψ;x) = ϕ1(x) for x ∈ (a, b). Since ψ

satisfies W̃n(n − 1, 1;F ) on (a, b), this gives ψ(x) < ϕ1(x) for x ∈ (x0, c),
which contradicts 1.

2. Set
ϕ2(x) := ϕ(xn−1

0 , c1;ψ;x), x ∈ (a, b).

Since ψ satisfies W̃n(n− 1, 1;F ) on (a, b), we have

(5) ψ(x) < ϕ2(x), x ∈ (x0, c).

It follows from the definitions of ϕ1, ϕ2 and from ψ(c) < ϕ1(c) that

ϕi1(x0) = ϕi2(x0), i = 0, 1, . . . , n− 2,(6)
ϕ1(c) > ϕ2(c).(7)

We conclude from (6) and (7) that ϕ1(x) 6= ϕ2(x) for x 6= x0, because
ϕ1, ϕ2 ∈ F and F is an Hn-family on (a, b), whence ϕ1(x) > ϕ2(x) for
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x ∈ (x0, b), and finally, ψ(x) < ϕ2(x) < ϕ1(x) for x ∈ (x0, c), by (5). We
can rewrite the last inequalities as follows:

0 < ϕ1(x)− ϕ2(x) < ϕ1(x)− ψ(x), x ∈ (x0, c).

Applying Lemma 1 for f := ϕ1 − ψ, g := ϕ1 − ϕ2 and k := n − 1 we
get gn−1(x0) = 0, and consequently, ϕn−1

1 (x0) = ϕn−1
2 (x0). Combining this

with (6) we obtain

ϕi1(x0) = ϕi2(x0), i = 0, 1, . . . , n− 1.

Since F is an Hn-family on (a, b), ϕ1(x) = ϕ2(x) for x ∈ (a, b), contrary
to (7). This proves the lemma.

Lemma 5. Let F and ϕ be as in Lemma 4. If for every k ∈ {2, . . . , n}
and for any positive integers i1, . . . , ik such that i1 + . . .+ ik = n, ϕ satisfies
W̃n(i1, . . . , ik;F ) on (a, b), then for every k ∈ {1, . . . , n} and for any positive
integers i1, . . . , ik such that i1 + . . . + ik = n, ϕ satisfies Wn(i1, . . . , ik;F )
on (a, b).

P r o o f. It follows from Lemma 4 that ϕ satisfies Wn(n;F ) on (a, b).
Since ϕ satisfies W̃n(1(n);F ) on (a, b), it also satisfies Wn(1(n);F ) on (a, b).
This means that we need only consider k ∈ {2, . . . , n− 1}.

Fix k ∈ {2, . . . , n − 1} and positive integers i1, . . . , ik such that i1 + . . .
+ ik = n. We now prove that ϕ satisfies Wn(i1, . . . , ik;F ) on (a, b), i.e., for
any a < x1 < . . . < xk < b,

(8) sgn(ψ(x)− ϕ(xi11 , . . . , x
ik
k ;ψ;x)) = sgn

( k∏
j=1

(x− xj)ij
)

for x ∈ (a, b). Since ψ satisfies W̃n(i1, . . . , ik;F ) on (a, b), (8) holds on
(x1, xk). We now show (8) holds on (xk, b); the proof for (a, x1) is anal-
ogous. It suffices to prove that

(9) ψ(x) > ϕ(xi11 , . . . , x
ik
k ;ψ;x), x ∈ (xk, b).

Set ϕ1(x) := ϕ(xi11 , . . . , x
ik
k ;ψ;x), x ∈ (a, b).

Assume that (9) does not hold and consider, as in the proof of Lemma 4,
two cases:

1. ψ(x) ≥ ϕ1(x) for x ∈ (xk, b) and ψ(c) = ϕ1(c) for a c ∈ (xk, b);
2. ψ(c) < ϕ1(c) for a c ∈ (xk, b).

1. Let ik = 1 and ϕ2(x) := ϕ(xi11 , . . . , x
ik−1
k−1 , c

1;ψ;x) for x ∈ (a, b). Hence

(10) ψ(x) < ϕ2(x), x ∈ (xk−1, c),

because ψ satisfies W̃n(i1, . . . , ik−1, 1;F ) on (a, b). By the definitions of
ϕ1, ϕ2 and from the equality ψ(c) = ϕ1(c) we get
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ϕjl1 (xl) = ϕjl2 (xl), l = 1, . . . , k − 1, jl = 0, . . . , il − 1,
ϕ1(c) = ϕ2(c).

Therefore ϕ1(x) = ϕ2(x) for x ∈ (a, b). Combining this with (10) we obtain
ψ(x) < ϕ1(x) for x ∈ (xk, c), contrary to 1. If ik > 1, then considering the
function ϕ(xi11 , . . . , x

ik−1
k−1 , x

ik−1
k , c1;ψ;x) we get the same contradiction as

for ik = 1.
2. Let ik = 1. Then there is a p ∈ {1, . . . , k − 1} such that ip > 1. Set

ϕ3(x) := ϕ(xi11 , . . . , x
ip−1
p−1 , x

ip−1
p , x

ip+1
p+1 , . . . , x

ik
k , c

1;ψ;x), x ∈ (a, b).

Since ψ satisfies W̃n(i1, . . . , ik;F ) and W̃n(i1, . . . , ip−1, ip − 1, ip+1, . . .
. . . , ik, 1;F ) on (a, b), it follows that

ψ(x) < ϕ1(x), x ∈ (xk−1, xk),(11)
ψ(x) < ϕ3(x), x ∈ (xk, c).(12)

From the definitions of ϕ1 and ϕ3 and from the inequality ψ(c) < ϕ1(c), it
may be concluded that

ϕjl1 (xl) = ϕjl3 (xl), l ∈ {1, . . . , k} \ {p}, jl = 0, . . . , il − 1,

ϕ
jp
1 (xp) = ϕ

jp
3 (xp), jp = 0, . . . , ip − 2,

(13)

ϕ1(c) > ϕ3(c).(14)

We deduce from (13) and (14) that ϕ1(x) 6=ϕ3(x) for x ∈ (a, b)\{x1, . . . , xk};
hence and from (14) we have ϕ1(x) > ϕ3(x) for x ∈ (xk, b). Combining this
with (12) we obtain

(15) ψ(x) < ϕ3(x) < ϕ1(x), x ∈ (xk, c).

It follows from (11), (15) and from the equality ψ(xk) = ϕ1(xk) that
ψ1(xk) = ϕ1

1(xk). We can rewrite (15) as

0 < ϕ1(x)− ϕ3(x) < ϕ1(x)− ψ(x), x ∈ (xk, c).

Applying Lemma 1 for f := ϕ1 − ψ, g := ϕ1 − ϕ3, k := 1 and for x0 := xk
we get g1(xk) = 0. Hence ϕ1

1(xk) = ϕ1
3(xk). From this and from (13), we

conclude that ϕ1(x) = ϕ3(x) for x ∈ (a, b), which is impossible by (14).
Let ik > 1. Put

ϕ4(x) := ϕ(xi11 , . . . , x
ik−1
k−1 , x

ik−1
k , c1;ψ;x), x ∈ (a, b).

Analysis similar to that in the case where ik = 1 shows that

ψ(x) < ϕ4(x) < ϕ1(x), x ∈ (xk, c)

and ϕik−1
1 (xk) = ϕik−1

4 (xk), by Lemma 1. Hence, we have ϕ1(x) = ϕ2(x)
for x ∈ (a, b), which gives the same contradiction as for ik = 1. This ends
the proof.



Generalized convexity 83

Lemma 6. Let F and ψ be as in Lemma 4. Assume that for every
j ∈ {1, . . . , n−1} and for any points a < x1 < . . . < xk < b (k := n−j+1),

(16) sgn(ψ(x)− ϕ(xj1, x
1
2, . . . , x

1
k;ψ;x))

= sgn((x− x1)j(x− x2) . . . (x− xk))

for x ∈ (a, xk). Then for every i ∈ {1, . . . , n−1}, ψ satisfies Wn(i, 1(n−i);F )
on (a, b).

The proof is similar to the proof of Lemma 5 for ik = 1, so we omit it.

Lemma 7. Let F and ψ be as in Lemma 4. If ψ is strictly F -convex on
(a, b), then for every i ∈ {1, . . . , n}, ψ satisfies Wn(i, 1(n−i);F ) on (a, b).

P r o o f. The proof is by induction on n. It follows from Lemma 4 (cf. [2])
that the lemma holds for n = 2. Assume that it holds for n− 1 (n≥3). Let
F be an Hn-family on (a, b), let ψ be n − 1 times differentiable on (a, b),
and suppose that ψ is strictly F -convex on (a, b).

First we prove that ψ satisfies Wn(i, 1(n−i);F ) on (a, b) for i = 1, . . .
. . . , n− 1. To do this, it suffices to show that the assumptions of Lemma 6
hold. If j = 1, then k = n and for every a < x1 < . . . < xn < b, (16) holds
on (a, b), because ψ is strictly F -convex on (a, b). Fix j ∈ {2, . . . , n−1} and
a < x1 < . . . < xk < b (k = n− j + 1). We will prove (16) on (a, xk). Set

G1 := {ϕ|(a,xk) : ϕ ∈ F, ϕ(xk) = ψ(xk)}, ψ1 := ψ|(a,xk).

It is easy to check that G1 is an Hn−1-family on (a, xk) and ψ1 is strictly
G1-concave on (a, xk). Hence, from the inductive assumption and from
Lemma 2, we conclude that ψ1 satisfies Kn−1(j, 1(n−j−1);G1) on (a, xk).
This implies

(17) sgn(ψ1(x)− ϕ(x))
= − sgn((x− x1)j(x− x2) . . . (x− xk−1)), x ∈ (a, xk),

where ϕ ∈ G1 is determined by the conditions

ϕ l(x1) = ψl1(x1), l = 0, . . . , j − 1,
ϕ(xp) = ψ1(xp), p = 2, . . . , k − 1.

It follows from the definitions of G1, ψ1, and ϕ that

ϕ(x) = ϕ(xj1, x
1
2, . . . , x

1
k;ψ;x), x ∈ (a, xk),

ψ1(x) = ψ(x), x ∈ (a, xk).

Therefore, we can rewrite (17) as

sgn(ψ(x)− ϕ(xj1, x
1
2, . . . , x

1
k;ψ;x))

= − sgn((x− x1)j(x− x2) . . . (x− xk−1)), x ∈ (a, xk).

Combining this with x− xk < 0 for x ∈ (a, xk) we get (16) on (a, xk).
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The proof will be completed as soon as we can show that ψ satisfies
Wn(n;F ) on (a, b). To do this, it is sufficient, by Lemma 4 (we have already
proved that ψ satisfies Wn(n − 1, 1;F ) on (a, b)), to prove that ψ satisfies
W̃n(1, n− 1;F ) on (a, b). Let a < x1 < x2 < b. We have to show that

(18) sgn(ψ(x)− ϕ(x1
1, x

n−1
2 ;ψ;x))

= sgn((x− x1)(x− x2)n−1), x ∈ (x1, x2).

Define

G2 := {ϕ|(x1,b) : ϕ ∈ F, ϕ(x1) = ψ(x1)}, ψ2 := ψ|(x1,b).

Obviously, G2 is an Hn−1-family on (x1, b) and ψ2 is strictly G2-convex on
(x1, b). Hence, from the inductive assumption we deduce that ψ2 satisfies
Wn−1(n−1;G2) on (x1, b). An analysis similar to that used in the first part
of the proof shows that

sgn(ψ(x)− ϕ(x1
1, x

n−1
2 ;ψ;x)) = sgn((x− x2)n−1), x ∈ (x1, b).

Combining this with x−x1 > 0 for x ∈ (x1, b) we get (18), which completes
the proof of the lemma.

3. Main results. In this section we give necessary and sufficient con-
ditions for strict convexity with the use of the conditions Wn(i1, . . . , ik;F ).
First we prove that if ψ is strictly F -convex, then ψ satisfies every condition
Wn(i1, . . . , ik;F ).

Theorem 1. Let F be an Hn-family on (a, b) and let ψ be n − 1 times
differentiable on (a, b). If ψ is strictly F -convex on (a, b), then for any posi-
tive integers i1, . . . , ik such that i1+. . .+ik = n, ψ satisfies Wn(i1, . . . , ik;F )
on (a, b).

P r o o f. The proof is by induction on n. It follows from Lemma 4 (cf. [2])
that the statement holds for n = 2. Assume it holds for 2, . . . , n−1 (n ≥ 3).

Let F and ψ be as in the statement of the theorem. By Lemma 5, it
suffices to show that for every k ∈ {2, . . . , n} and for any positive integers
i1, . . . , ik such that i1 + . . . + ik = n, ψ satisfies W̃n(i1, . . . , ik;F ) on (a, b).
Since k ≥ 2, i1 ≤ n− 1. If i1 = n− 1, then k = 2 and i2 = 1. By Lemma 7,
ψ satisfies Wn(n − 1, 1;F ) on (a, b). Therefore we need only consider the
case i1 ≤ n− 2.

Fix k ∈ {2, . . . , n}, positive integers i1, . . . , ik such that i1 + . . .+ ik = n
and i1 ≤ n− 2, and points a < x1 < . . . < xk < b. If we prove that

(19) sgn(ψ(x)−ϕ(xi11 , . . . , x
ik
k ;ψ;x)) = sgn

( k∏
j=1

(x−xj)ij
)
, x ∈ (x1, xk),
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the assertion follows. Put
G1 := {ϕ|(x1,b) : ϕ ∈ F, ϕj(x1) = ψj(x1), j = 0, . . . , i1 − 1},
ψ1 := ψ|(x1,b).

It is easily seen that G1 is an Hn−i1-family on (x1, b). By Lemma 7,
ψ satisfies Wn(i1, 1(n−i1);F ) on (a, b). Consequently, ψ1 is strictly G1-convex
on (x1, b). Hence and from the inductive assumption we see that ψ1 satisfies
Wn−i1(i2, . . . , ik;G1) on (x1, b). This implies that

(20) sgn(ψ1(x)− ϕ(x)) = sgn
( k∏
j=2

(x− xj)ij
)
, x ∈ (x1, b),

where ϕ ∈ G1 is determined by the conditions

ϕjl(xl) = ψjl(xl), l = 2, . . . , k, jl = 0, . . . , il − 1.

It follows from the definitions of G1, ϕ and ψ1 that

ϕ(x) = ϕ(xi11 , . . . , x
ik
k ;ψ;x), x ∈ (x1, b),

ψ1(x) = ψ(x), x ∈ (x1, b).

Therefore, we can rewrite (20) as

sgn(ψ(x)− ϕ(xi11 , . . . , x
ik
k ;ψ;x)) = sgn

( k∏
j=2

(x− xj)ij
)
, x ∈ (x1, b).

Since (x− x1)i1 > 0 for x ∈ (x1, b), we get (19), which completes the proof.

Now we will be concerned with sufficient conditions for strict convexity.

Theorem 2. Let F and ψ be as in Theorem 1. If ψ satisfies Wn(i1, . . .
. . . , ik;F ) on (a, b) for some i1, . . . , ik ∈ {1, 2, 3} such that i1 + . . .+ ik = n,
then ψ is strictly F -convex on (a, b).

To prove this theorem we need the following

Lemma 8. Let G be an Hr-family on (c, d) (r ≥ 4) and let ψ be r − 1
times differentiable on (c, d). If ψ satisfies Wr(i1, . . . , ik;G) on (c, d), where
i1, . . . , ik ∈ {1, 2, 3}, i1 + . . . + ik = r, ik 6= 1 and Theorem 2 holds for
n = n1 := i2 + . . . + ik, then ψ satisfies Wr(i1, . . . , ik−1, ik − 1, 1;G) on
(c, d).

P r o o f. Fix c < x1 < . . . < xk < xk+1 < d and set

ϕ1(x) := ϕ(xi11 , . . . , x
ik−1
k−1 , x

ik−1
k , x1

k+1;ψ;x), x ∈ (c, d).

If we prove that

(21) sgn(ψ(x)− ϕ1(x)) = sgn
(

(x− xk)ik−1(x− xk+1)
k−1∏
l=1

(x− xl)il
)
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for x ∈ (c, d), the assertion follows. Put

F := {ϕ|(x1,d) : ϕ ∈ G, ϕj(x1) = ψj(x1), j = 0, . . . , i1 − 1},
ψ1 := ψ|(x1,d).

Obviously, F is an Hn1-family on (x1, d). The function ψ1 satisfies Wn1(i2, . . .
. . . , ik;F ) on (x1, d), because ψ satisfies Wr(i1, . . . , ik;G) on (c, d). Since
Theorem 2 was assumed to hold for n = n1, ψ1 is strictly F -convex on
(x1, d). By Theorem 1, ψ satisfies Wn1(i2, . . . , ik − 1, 1;F ) on (x1, d). It
follows that

(22) sgn(ψ1(x)− ϕ(x))

= sgn
(

(x− xk)ik−1(x− xk+1)
k−1∏
l=2

(x− xl)il
)
, x ∈ (x1, d),

where ϕ ∈ F is determined by the conditions

ϕjl(xl) = ψjl1 (xl), l = 2, . . . , k − 1, jl = 0, . . . , il − 1,

ϕjk(xk) = ψjk1 (xk), jk = 0, . . . , ik − 2,
ϕ(xk+1) = ψ1(xk+1).

By the definition of ϕ, ψ1 and F we have

ϕ(x) = ϕ1(x), ψ1(x) = ψ(x), x ∈ (x1, d).

Combining these with (22) we get (21) on (x1, d), because (x − x1)i1 > 0
for x ∈ (x1, d). We only have to show that (21) holds on (c, x1). To do this,
consider

ϕ2(x) := ϕ(xi11 , . . . , x
ik−1
k−1 , x

ik
k ;ψ;x), x ∈ (c, d).

Since ψ satisfies Wr(i1, . . . , ik;G) on (c, d),

(23) sgn(ψ(x)− ϕ2(x)) = sgn
( k∏
l=1

(x− xl)il
)
, x ∈ (c, d).

Hence

(24) (−1)rϕ2(x) < (−1)rψ(x), x ∈ (c, x1).

By the definition of ϕ1 we have ϕ1(xk+1) = ψ(xk+1), and ψ(xk+1) >
ϕ2(xk+1) from (23). Therefore

(25) ϕ1(xk+1) > ϕ2(xk+1).

From the definitions of ϕ1 and ϕ2 we get

ϕjl1 (xl) = ϕjl2 (xl), l = 1, . . . , k − 1, jl = 0, . . . , il − 1,

ϕjk1 (xk) = ϕjk2 (xk), jk = 0, . . . , ik − 2,
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and i1 + . . . + ik−1 + (ik − 1) = r − 1. Hence, from the definition of an
Hr-family (ϕ1, ϕ2 ∈ G) and from (25) we obtain

(−1)r−1ϕ1(x) > (−1)r−1ϕ2(x), x ∈ (c, x1),

which gives
(−1)rϕ1(x) < (−1)rϕ2(x), x ∈ (c, x1).

Combining this with (24) we see that

(−1)rϕ1(x) < (−1)rψ(x), x ∈ (c, x1),

which implies (21) on (c, x1) and the proof is complete.

P r o o f o f T h e o r e m 2. For n = 2 and n = 3 the theorem is true.
Assume that it holds for 2, 3, . . . , n− 1 (n ≥ 4).

Let F and ψ be as in the statement of the theorem. By Lemma 8, it
suffices to consider the case ik = 1.

If we prove that ψ satisfies W̃n(1(n);F ) on (a, b), the assertion follows.
Fix a < x1 < . . . < xn < b and let ϕ1(x) := ϕ(x1

1, . . . , x
1
n;ψ;x) for x ∈ (a, b).

We have to show that

(26) sgn(ψ(x)− ϕ1(x)) = sgn
( n∏
l=1

(x− xl)
)
, x ∈ (x1, xn).

Set
G := {ϕ|(a,xn) : ϕ ∈ F, ϕ(xn) = ψ(xn)}, ψ1 := ψ|(a,xn).

Obviously, G is an Hn−1-family on (a, xn). The function ψ1 satisfies
Kn−1(i1, . . . , ik−1;G) on (a, xn), because ψ satisfies Wn(i1, . . . , ik;F ) on
(a, b) and ik = 1. Hence, from the inductive assumption and from Lemma 3
we conclude that ψ1 is strictly G-concave on (a, xn). This implies that

(27) sgn(ψ(x)− ϕ1(x)) = − sgn
( n−1∏
l=1

(x− xl)
)
, x ∈ (a, xn).

Since x− xn < 0 for x ∈ (a, xn), (27) gives (26) and the proof is complete.

One may ask whether Theorem 2 is true if some ij > 3. We have not
been able to settle this question.

Theorems 1 and 2 may be summarized as follows:

Theorem 3. Let F and ψ be as in Theorem 1. If ψ satisfies Wn(i1, . . .
. . . , ik;F ) on (a, b) for some i1, . . . , ik ∈ {1, 2, 3} such that i1 + . . .+ ik = n,
then ψ satisfies Wn(i1, . . . , ik;F ) on (a, b) for any positive integers i1, . . . , ik
such that i1 + . . .+ ik = n.

Similar results can be obtained for strict concavity.
Using an analogous reasoning one can get similar results for convexity

and concavity.
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