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Necessary and sufficient conditions for
generalized convexity

by JANUSzZ KRzYSZKOWSKI (Krakdéw)

Abstract. We give some necessary and sufficient conditions for an n—1 times differen-
tiable function to be a generalized convex function with respect to an unrestricted n-
parameter family.

1. Introduction. A family F' of continuous real-valued functions ¢ de-
fined on an open interval (a, b) is said to be an n-parameter family on (a,b)
(see [1] and [5]) if for any distinct points x1, ..., z, in (a,b) and any numbers
Y1, -- ., Yn there exists exactly one ¢ € F satisfying

olz) =y, i=1,...,n.

Throughout the paper we assume n > 2.

Let F' be an n-parameter family on (a,b). Following [5] we say that
a function ¢ continuous on (a,b) is strictly F-convex (F-convex, strictly

F-concave, F-concave) on (a,b) if for any points a < x1 < ... <z, <b
the unique ¢ € F' determined by
(1) (@) =), i=1,...,n,

satisfies the inequalities
(—1)"Fo(z) < (<,>,2) (-1)"(z), € (25, 2i11),

for i =0,1,...,n, where zo := a and x,41 :=b.
The above inequalities can be rewritten as

(2

@) sen(v(z) - o(@) = sen ([[@—2)), =€ (a),
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for strict convexity and

sen(v(x) = ¢(@) = —sgn ([[@ =), =€ (@),

i=1

for strict concavity.

A family F of C"~! functions on (a,b) is called an unrestricted n-para-
meter family (or briefly an H,,-family) on (a,b) (see [3]) if for any distinct
x1,...,Tk € (a,b), any positive integers A1, ..., Ak such that \y+...4+ X = n,

and any numbers y!"*, where ¢ = 1,....k, u; = 0,...,\; — 1, there exists
exactly one ¢ € F satisfying
(3) oli(m) =yl =100k i =0,...,0 — 1,
where
d'p(x)

O(x) = p(x), o'(x): - forl=1,2,...
This notation will be used throughout the paper.

It is evident that any H,-family on (a,b) is an n-parameter family on
(a,b). Therefore we may consider the generalized convexity with respect to
H,-families. To begin with we introduce the following definitions:

Let F' be an H,,-family on (a, b) and let ¢ be n—1 times differentiable on
(a,b). Let iy,...,1ix be positive integers such that i;+...4ix = n. The func-
tion ¢ will be said to satisfy the condition Wy, (i1, ..., ix; F') (resp. W, (i1,...
coyii; F)) on (a,b) if for any a <z < ... <z <D,

k
sen((r) — (@) =sen ([[e—2)"), € (a.b) (resp. & € (wr,2)),
=1
where ¢ € F' is determined by

(4) O (v) = (my), 1=1,....k ji=0,...,9— L
The function ¢ will be said to satisfy the condition K, (iy,...,ix; F)
(resp. K,(i1, .. ik F)) on (a,b) ifforany a <zy < ... <z <b,

k
sen(v(z) — o) = —sgn ([ —2)"), @€ (a,0) (vesp. € (w1,24)),
=1
where ¢ € F' is determined by (4).
We will use the symbol go(:cil, e ,a:?j ;1;+) to denote the function ¢ € F
satisfying (4).
It is well known (see [3]) that 1) is strictly F-convex on (a,b) iff for any
a <z <...<uzy < b the function ¢ determined by (1) satisfies (2) on
(z1,2,). This means that 1 satisfies the condition W, (1(); F) on (a,b) iff
1) satisfies the condition WN/n(l(”); F) on (a,b). Here 1(™ stands for 1,...,1.
——

n
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It is of interest to know whether the conditions W, (i1,...,ix; F') are
equivalent to strict F-convexity.

The case n = 2 was considered by D. Brydak [2]. He has proved that if
F is an Hy-family on (a, b) and 1 is differentiable on (a, b), then 1) is strictly
F-convex on (a,b) iff ¢ satisfies W5(2; F) on (a, b).

The case n = 3 was considered by the author in [4]. The theorem in
[4] reads as follows: Let F' be an Hjz-family on (a,b) and let ¢ be twice
differentiable on (a,b). Then the conditions

e 1 is strictly F-convex on (a,b);
e 1) satisfies W5(1,2; F') on (a,b);
o 1) satisfies W3(3; F) on (a,b);

e 1) satisfies W3(2,1; F') on (a,b);

are equivalent.
We will prove the following two theorems: Let F' be an H,-family on
(a,b) and let ¢ be n — 1 times differentiable on (a,b).

1. If 9 is strictly F-convex on (a,b), then for any positive integers
i1,...,0 such that iy + ...+ ix = n, ¢ satisfies W,, (i1, ...,ix; F') on (a,b).

2. If ¢ satisfies W), (i1,...,ik; F) on (a,b) for some iy,...,i; € {1,2,3}
such that i1 + ...+ ix = n, then ® is strictly F-convex on (a,b).

2. Lemmas

LEMMA 1. Let f and g be defined and k times differentiable in a neigh-
bourhood of a point xy and let

Fi(zo) = g'(z0), i=0,1,....k—1.

(i) If there ewists a sequence {z,} such that x, — z§ and f(x,) >
g(z,) form=1,2,..., then f¥(x0) > g*(x0).
(i) If there exists a sequence {x,} such that x, — xy and f(x,) >
g(z,) form=1,2,..., then (—1)* f¥(xq) > (=1)%g* ().
(iii) If there exists a sequence {x,} such that z, — xf (or z, — xy)
and f(zn) > g(x,) >0 forn=1,2,..., and f'(zg) =0 fori=0,1,...,k,
then g*(zo) = 0.

We omit an easy proof.

The two lemmas below are easy consequences of the definitions of
Wn<i1, cee ,ik; F) and Kn<i1, e ,’ik; F)

LEMMA 2. Let iq,...,%4, be positive integers such that i1 + ...+ ix = n.
Then the following conditions are equivalent:

o If Gy is an Hy,-family on (a,b), Y1 is n—1 times differentiable on (a,b)
and 1y is strictly G1-convex on (a,b), then 1 satisfies W, (i1, ..., ik; G1)
on (a,b).
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o If Gy is an Hy-family on (a,b), 1o is n—1 times differentiable on (a, b)
and g s strictly Go-concave on (a,b), then 1o satisfies K, (i1, ..., ix; G2)
on (a,b).

LEMMA 3. Under the assumptions of Lemma 2 the following conditions
are equivalent:

o If Gy is an Hy-family on (a,b), 1y is n—1 times differentiable on (a,b)
and 1 satisfies Wy, (i1, ...,i5; G1) on (a,b), then ¢y is strictly G1-convex
on (a,b).

o If Gy is an Hy,-family on (a,b), 1o is n—1 times differentiable on (a, b)
and o satisfies Ky (i1,...,i; G2) on (a,b), then 1y is strictly Ga-concave
on (a,b).

The proofs of the next lemmas are not so simple.

LEMMA 4. Let F be an H,-family on (a,b) and let ¥ be n — 1 times
differentiable on (a,b). If v satisfies W, (n —1,1; F) and W,(1,n — 1; F)
on (a,b), then v satisfies W,,(n; F') on (a,b).

Proof. We have to show that for any z¢ € (a,b),

sgn(v(z) — p1(z)) =sgn((z — z0)"), =€ (a,b),
where ¢1(z) := o(z{;¢; ), © € (a,b). We prove this equality on (xg, b); the
proof for (a,z() is analogous.
It suffices to show that

v(x) > ¢1(x), x € (0,b).
Assume that this inequality does not hold. Then two cases are possible:

1. ¥(x) > ¢1(x) for x € (x9,b) and (c) = p1(c) for a ¢ € (x,b);

2. Y(c) < ¢1(c) for a ¢ € (xg,b).

1. Tt is easily seen that p(zf ', ¢l 2) = @1 (z) for x € (a,b). Since 1
satisfies Wi, (n — 1,1; F) on (a,b), this gives ¢(x) < ¢1(z) for € (zo,c),
which contradicts 1.

2. Set

pa(w) = plag ™ chipiz), @€ (a,b).
Since 1 satisfies Wy, (n — 1,1; F) on (a,b), we have

(5) Y(z) < @2(x),  x € (20,0).

It follows from the definitions of ¢1, 2 and from 1(c) < ¢1(c) that
(6) ¢i(z0) = ¥h(wo), i=0,1,...,n -2,

(7) p1(c) > p2(c).

We conclude from (6) and (7) that ¢1(z) # @2(z) for  # z0, because
1,2 € F and F is an H,-family on (a,b), whence ¢i(x) > @2(x) for
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x € (zo,b), and finally, ¥ (z) < p2(z) < ¢1(x) for z € (xo,c), by (5). We
can rewrite the last inequalities as follows:

0 <p1(z) —p2(2) <p1(z) —¥(x), € (20,0).
Applying Lemma 1 for f := o1 — ¢, g == 1 — g and k 1= n — 1 we
get " 1(z0) = 0, and consequently, " *(2¢) = ¢5 (2¢). Combining this
with (6) we obtain

9011(1’0):@12(.%0), 1=0,1,...,n—1.

Since F' is an H,-family on (a,b), ¢1(x) = @2(x) for = € (a,b), contrary
to (7). This proves the lemma.

LEMMA 5. Let F and ¢ be as in Lemma 4. If for every k € {2,...,n}
and for any positive integers iy, ..., i such that i1 +...+1i, = n, p satisfies
Wy (i1, ..., ik F) on (a,b), then for every k € {1,...,n} and for any positive
integers iy, ...,i such that iy + ...+ ix = n, ¢ satisfies Wy (i1, ..., ig; F)

n (a,b).

Proof. It follows from Lemma 4 that ¢ satisfies W,,(n; F') on (a,b).
Since ¢ satisfies W, (1) F) on (a,b), it also satisfies W,,(1(™); F) on (a, b).
This means that we need only consider k € {2,..., n —1}.

Fix k € {2,...,n — 1} and positive integers i1, ..., such that i; + ...
+ i = n. We now prove that ¢ satisfies W, (i1,...,ix; F') on (a,b), i.e., for
any a < x1 <...<xp <b

(8) sgn(y(x) — (i, ... 2l 2)) = sgn (ﬁ (x — ;) )

for z € (a,b). Since v satisfies Wy (i1,...,ix; F) on (a,b), (8) holds on
(x1,xr). We now show (8) holds on (zy,b); the proof for (a,z;) is anal-
ogous. It suffices to prove that

9) P(x) > go(w’f,...,:cg‘;w;x), x € (zk,b).

Set 1 (2) := @(zl!, ..., 295 2), © € (a,b).
Assume that (9) does not hold and consider, as in the proof of Lemma 4,
two cases:

1. ¥(x) > ¢1(x) for x € (xk,b) and ¥(c) = p1(c) for a ¢ € (zg,b);
2. Y(c) < ¢1(c) for a c € (xg,b).

1. Let iy, = 1 and @o(x) := @(zi, .. xk i) for o € (a,b). Hence
(10) P(x) < @2(z), =z € (Th-1,0),

because 1 satisfies Wn(il,...,ik_l,l;F) on (a,b). By the definitions of
©1, P2 and from the equality ¥ (c) = ¢1(c) we get
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@{l(gpl)zgpgl('@l), lzla"'ak_lv leOa---ail_]-a
p1(c) = p2(c).

Therefore @1 (z) = 2(x) for x € (a,b). Combining this with (10) we obtain
Y(z) < p1(z) for x € (x,c), contrary to 1. If i > 1, then considering the

function p(z7,... ,mzkjll,a:;’“_l,cl;w;x) we get the same contradiction as
for i, = 1.
2. Let i, = 1. Then there isa p € {1,...,k — 1} such that 4, > 1. Set

w3(z) == (... ,x;”__f,x;f’_l,x;’ff, - ,ka,cl;i/);x), x € (a,b).

Since 1) satisfies Wn(il,...,ik;F) and I/Tfn(z'l,...,z'p_l,ip — Lipt,. ..
.eoyik, 13 F) on (a,b), it follows that
(11) V(@) <e¢i(z), z€ (Tp-1,7k),
(12) () <@s(x), @€ (zp,0).

From the definitions of ¢ and 3 and from the inequality ¥ (c) < p1(c), it
may be concluded that

(p{l(xl) :(pgl(xl)v le {1,...,]€}\{p}, Ji=0,...,4 —1,

(13) } A

@{p($p) = @ép(l‘p)’ jp = 07"'3,5.17 _27
(14)  ¢1(e) > @3(c).
We deduce from (13) and (14) that ¢1(x) # ps(z) for z € (a,b)\{z1,..., 2% };
hence and from (14) we have ¢ (x) > p3(z) for © € (2, b). Combining this
with (12) we obtain
(15) (@) < p3(z) <@i(z), € (zk,0).
It follows from (11), (15) and from the equality ¢ (zx) = ¢1(zk) that
Yl (xy) = pl(zk). We can rewrite (15) as

0 < o1(e) — ps(x) < pa(a) — (), 7 € (a.c).

Applying Lemma 1 for f := o1 — 4, g := p1 — 3,k := 1 and for x¢ :=

we get g'(zx) = 0. Hence o1(zx) = @i(zx). From this and from (13), we

conclude that ¢ (z) = ¢3(z) for x € (a,b), which is impossible by (14).
Let i, > 1. Put

p4(x) := cp(x'f, . ,ac:“:f,xzk_l,cl; v;x), x € (a,b).
Analysis similar to that in the case where i = 1 shows that

() < pa(z) <@i(z), € (x,0)

ip—1

and @ !(xy) = ¢! (x), by Lemma 1. Hence, we have ¢1(z) = @o(z)
for z € (a,b), which gives the same contradiction as for i, = 1. This ends
the proof.
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LEMMA 6. Let F and ¢ be as in Lemma 4. Assume that for every
je{l,...,n=1} and for any pointsa < x1 < ... <z <b (k:=n—j+1),

(16)  sgn(y(z) — p(af, 3, ..., 243 ;7))
=sgn((x —x1)/(x — z2) ... (x — xx))
forx € (a,z). Then for everyi € {1,...,n—1}, ¢ satisfies Wy, (i,17"~9; F)
on (a,b).
The proof is similar to the proof of Lemma 5 for i, = 1, so we omit it.
LEMMA 7. Let F' and 1 be as in Lemma 4. If 1 is strictly F'-convex on
(a,b), then for every i € {1,...,n}, ¢ satisfies W, (i,1"=9: F) on (a,b).

Proof. The proof is by induction on n. It follows from Lemma 4 (cf. [2])
that the lemma holds for n = 2. Assume that it holds for n — 1 (n>3). Let
F be an H,-family on (a,b), let ¢ be n — 1 times differentiable on (a,b),
and suppose that v is strictly F-convex on (a,b).

First we prove that ¢ satisfies W,,(i,1®=%; F) on (a,b) for i = 1,...
...,n— 1. To do this, it suffices to show that the assumptions of Lemma 6
hold. If j = 1, then k = n and for every a < x; < ... < x, < b, (16) holds
on (a,b), because v is strictly F-convex on (a,b). Fix j € {2,...,n—1} and
a<x)<...<x<b(k=n-—j+1). We will prove (16) on (a,xj). Set

Gy = {90|(a,xk) tp €F, p(ar) = ¥(xr)}, ¢y = ¢|(a,xk)‘

It is easy to check that G; is an H,_i-family on (a,zj) and 1 is strictly
Gi-concave on (a,zy). Hence, from the inductive assumption and from
Lemma 2, we conclude that 1, satisfies K,_1(j,1»7=Y:G1) on (a,zy).
This implies
(17)  sgn(¢i(z) —p(z))
=—sgn((z —z1)(x —x2)...(x —xk-1)), x€ (a,zr),
where @ € G is determined by the conditions
@l(ﬂjl):@bi(xl), lZO,...,j—l,
D(zp) =1(zp), p=2,...,k—1.
It follows from the definitions of G1, 1, and @ that
B() = p(ad,ab, .. obibiz), @ € (a,m),
bi(2) = (@), v € (a,71).
Therefore, we can rewrite (17) as

sgn(v(z) — (2], 23, ..., 2} viz))

=—sgn((z —z1)(x —x2)...(x —xk_1)), z € (a,z).

Combining this with = — z, < 0 for x € (a,xy) we get (16) on (a,zy).
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The proof will be completed as soon as we can show that 1 satisfies
W, (n; F) on (a,b). To do this, it is sufficient, by Lemma 4 (we have already
proved that v satisfies W,,(n — 1,1; F') on (a,b)), to prove that 1) satisfies

W,(l,n—1;F) on (a,b). Let a < 1 < z2 < b. We have to show that

(18)  sgn(v(z) — p(a1, 257 595 2))
=sgn((z —z1)(x —22)" ), € (21,79).

Define
Gy = {<p|(z1,b) tp €F, (p(ajl) = 1/)(1‘1)}, o 1= ¢|($17b)'

Obviously, G is an H,,_1-family on (z1,b) and 1)y is strictly Ga-convex on
(z1,b). Hence, from the inductive assumption we deduce that 1), satisfies
Wyp—1(n—1;G3) on (z1,b). An analysis similar to that used in the first part
of the proof shows that

sgn((e) — (et 237 59s2)) =sgn((z —22)" 1), @ € (x1,0).

Combining this with  — 21 > 0 for = € (z1,b) we get (18), which completes
the proof of the lemma.

3. Main results. In this section we give necessary and sufficient con-
ditions for strict convexity with the use of the conditions W, (i1, ..., ix; F).
First we prove that if 4 is strictly F-convex, then 1 satisfies every condition
Wn<i1, e ,’ik; F)

THEOREM 1. Let F' be an H,-family on (a,b) and let 1) be n — 1 times
differentiable on (a,b). If ¢ is strictly F-convex on (a,b), then for any posi-
tive integers iy, . .., i such that iy+...4+ix = n, ¥ satisfies Wy, (i1, ..., ix; F)
on (a,b).

Proof. The proof is by induction on n. It follows from Lemma 4 (cf. [2])
that the statement holds for n = 2. Assume it holds for 2,...,n—1 (n > 3).

Let F and @ be as in the statement of the theorem. By Lemma 5, it
suffices to show that for every k € {2,...,n} and for any positive integers
1,...,1g such that iy + ...+ ix = n, @ satisfies Wn(il, coyig; F) on (a,b).
Since k> 2,4y <n—1. If iy =n—1, then Kk =2 and i, = 1. By Lemma 7,
1 satisfies W, (n — 1,1; F') on (a,b). Therefore we need only consider the
case 11 < n— 2.

Fix k € {2,...,n}, positive integers i1, ..., such that i1 +...+ix =n
and i1 < n — 2, and points a < x1 < ... <z < b. If we prove that

k
(19) sen(¥(@)—p(at,....aftvse) =sen ([[(a—2,)"), @€ (@),

Jj=1
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the assertion follows. Put

Gl = {w‘(zl,b) HINS F7 ‘P]<371) = w](x1)7 .] = 07 v 7i1 - 1}7

V1= Y| (z,.0)-
It is easily seen that Gp is an H,_; -family on (z1,b). By Lemma 7,
Y satisfies W, (i1, 1"~%); F) on (a, b). Consequently, v, is strictly G';-convex
on (z1,b). Hence and from the inductive assumption we see that v, satisfies
Wi—i, (i2,...,ix; G1) on (x1,b). This implies that

k
(20)  sen(va(e) —e@) =sen ([[@—a,)"), @€ (@b),

j=2
where ¢ € (G is determined by the conditions

O (xy) = (zy), 1=2,....k 51 =0,...,4 — 1.
It follows from the definitions of Gy, ¢ and ; that

(,0($) = Qp(l‘lfv cee 7x2k;¢;x)a T e (xlab)v
P1(x) = Y(x), x € (x1,b).

Therefore, we can rewrite (20) as
sgn(v(x) — (..., 2}k x) —sgn(H T —xj) ), x € (x1,b).

Since (z — x1)" > 0 for z € (x1,b), we get (19), which completes the proof.
Now we will be concerned with sufficient conditions for strict convexity.

THEOREM 2. Let F and 1) be as in Theorem 1. If 1 satisfies Wy, (i1, ...
i F) on (a,b) for some iy,... i, € {1,2,3} such that iy +...+ i, =n,
then 1 is strictly F-convex on (a,b).
To prove this theorem we need the following

LEMMA 8. Let G be an H,-family on (c,d) (r > 4) and let i) be r — 1
times differentiable on (c,d). If v satisfies W, (i1, ..., ix; G) on (¢,d), where
i1,y € {1,2,3}, 41 4+ ... +ix = 7, ix # 1 and Theorem 2 holds for
n =ny := iy + ...+ i, then ¥ satisfies W, (i1,...,ik—1,9 — 1,1;G) on
(c,d).

Proof Fixe<z <... <z < 211 < d and set

Tk—1 ir—1

Qpl(‘r) = 90(33?’ .. -’Ek 1 ,xk xllc+1;¢;x)a WS (Ca d)
If we prove that
k—1

(21)  sen(v(@) - o1 (@) = sen (- 2)" o —axn) [J (@ = 2)")

=1



86 J. Krzyszkowski

for x € (¢, d), the assertion follows. Put

F = {w|(z1,d) tpE G7 ‘P](wl) = wj(xl)a ,] = 07 v 7i1 - 1}7
V1= Y|(zy,4)-

Obviously, F'is an H,,,-family on (21, d). The function 1, satisfies W,,, (ia, ...
«ooyig; F) on (z1,d), because 1 satisfies W,.(i1,...,ik;G) on (¢, d). Since
Theorem 2 was assumed to hold for n = nq, ;1 is strictly F-convex on
(x1,d). By Theorem 1, v satisfies W, (i2,...,ix — 1,1; F) on (x1,d). It
follows that

(22)  sgn(¥a(z) —@(z))
k—1

— sen <(a: — ) N — o) [[ (2 - xl)il), z € (z1,d),

1=2
where p € F' is determined by the conditions
Px) =y (),  1=2,...k—1, 51 =0,...,0 —1,
Pr(en) = (wk), Gk =0,k — 2,
P(zr41) = Y1(Tp41)-
By the definition of ©, 1 and F' we have

(@) = ei(x), Yi(x) =2(x), € (21,d).

Combining these with (22) we get (21) on (x1,d), because (x — x1)" > 0
for x € (x1,d). We only have to show that (21) holds on (¢, z1). To do this,
consider

pa(x) := go(xil,...,xik:f,xzk; ;x),  x € (cd).

Since 9 satisfies W,.(iy,...,ix; G) on (¢, d),

k
(23)  sen(¥(@) —pa() = sen ([J@—a0)"),  we(ea).

=1
Hence

(24) (=1)"p2(z) < (=1)"(z), 2z € (¢21).

By the definition of ¢; we have p1(xp+1) = ¥(zg41), and Y(zp41) >
pa2(xgy1) from (23). Therefore

(25) ©1(Tr+1) > P2(Tht1)-

From the definitions of ¢ and ¢s we get
(p{’(xl) = go%”(xl), Il=1,....k—=1, 5,=0,...,4 — 1,
P (o) = @ (1), G =0, ik — 2,
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and i1 + ... +ix_1 + (ix — 1) = r — 1. Hence, from the definition of an
H,-family (¢1, 92 € G) and from (25) we obtain

(=) tor(z) > (1) pa(x),  w€ (¢,m1),
which gives

(=D)"p1(z) < (=1)"¢2(x), @ € (c,1).
Combining this with (24) we see that

(=D)"¢1(z) < (=1)"(x), € (¢, 1),
which implies (21) on (¢, z1) and the proof is complete.

Proof of Theorem 2. For n = 2 and n = 3 the theorem is true.
Assume that it holds for 2,3,...,n —1 (n > 4).

Let F and 9 be as in the statement of the theorem. By Lemma 8, it
suffices to consider the case iy = 1.

If we prove that ¢ satisfies W,,(10"; F) on (a,b), the assertion follows.
Fixa <z < ... <z, <bandlet ¢;(z) := (zi,...,2L;9;2) for z € (a,b).
We have to show that

(26)  sen((e) = @1(@) =sen ([[(e—a0). =€ (@r,20).

=1
Set

G:= {@|(a,xn) tp €F, So(xn) = w(xn)}a P = ¢|(a,xn)'
Obviously, G is an H,_;-family on (a,z,). The function ; satisfies
K,_1(i1,..., ik—1;G) on (a,zy,), because 1 satisfies W,,(i1,...,ix; F) on
(a,b) and i, = 1. Hence, from the inductive assumption and from Lemma 3
we conclude that 1) is strictly G-concave on (a,x, ). This implies that

n—1
@7 sen(a) —e1@) = —sen ([J@—m), @€ (@)
1=1
Since & — x,, < 0 for z € (a,x,), (27) gives (26) and the proof is complete.

One may ask whether Theorem 2 is true if some i; > 3. We have not
been able to settle this question.
Theorems 1 and 2 may be summarized as follows:

THEOREM 3. Let F and 1) be as in Theorem 1. If 1 satisfies Wy, (i1, ...
coyigy F) on (a,b) for some iy, ... i, € {1,2,3} such that iy +...+ip =n,
then i satisfies W, (i1, ..., ig; F') on (a,b) for any positive integers iy, . .., i
such that i1 + ...+ 1 = n.

Similar results can be obtained for strict concavity.

Using an analogous reasoning one can get similar results for convexity
and concavity.
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