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A topological version of Bertini’s theorem

by ARTUR Pi1gko0sz (Krakdéw)

Abstract. We give a topological version of a Bertini type theorem due to Abhyankar.
A new definition of a branched covering is given. If the restriction my : V' — Y of the
natural projection w : Y X Z — Y to a closed set V C Y X Z is a branched covering
then, under certain assumptions, we can obtain generators of the fundamental group
m (Y x Z)\ V).

Introduction. In his book [1, pp. 349-356], Abhyankar proves an inter-
esting theorem called by him a “Bertini theorem” or a “Lefschetz theorem”.
The theorem expresses a topological fact in complex analytic geometry. The
purpose of this paper is to restate this theorem and its proof in purely
topological language. Our formulation reads as follows:

THEOREM 1. Let Z be a connected topological manifold (without bound-
ary) modeled on a real normed space E of dimension at least 2 and let Y be
a stmply connected and locally simply connected topological space. Suppose
that V is a closed subset of Y X Z and m:Y X Z —'Y denotes the natural
projection. Assume that my = 7|V : V. — Y is a branched covering whose
regular fibers are finite and whose singular set A = A(wy) does not discon-
nect Y at any of its points. Set X = (Y x Z)\'V and L = {p} x Z, where
p € Y \ A. If there exists a continuous mapping h : Y — Z whose graph is
contained in X, then the inclusion i : L\'V — X induces an epimorphism
i* : 7T1(L \ V) — 7T1(X).

We have adopted the following definition. For any topological spaces Y
and Y, a continuous, surjective mapping ¥ : Y* — Y is a (topological)
branched covering if there exists a nowhere dense subset A of Y such that
PlY*\ = HA) : Y*\p~1(A) — Y \ A is a covering mapping. Notice that
the singular set A of the branched covering v is not unique, but there is a
smallest A(7)) among such sets. Clearly, A() is a closed subset of Y. Thus
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the set Y\ A(¢) of regular points is open. Topological branched coverings
are studied in [2] .

The assumption in Theorem 1 that the set A does not disconnect Y at
any point of A means that for each y € A and every connected neighborhood
U of y in Y there exists a smaller neighborhood W of y for which W'\ A is
connected.

2. An equivalent version and a straightening property

THEOREM 2 (cf. [1, (39.7)]). Suppose the assumptions of Theorem 1 are
satisfied. Then, for every connected covering ¢ : X* — X (i.e. X* is con-
nected), the set ¢~ 1(L\ V) is connected.

Theorems 1 and 2 are equivalent due to the following simple but useful
observation.

LEMMA 1 (cf. [1, (39.3)]). Let a topological space A as well as its sub-
space B be connected and locally simply connected. Then the following are
equivalent:

(1.1) the induced homomorphism w1 (B) — w1 (A) is an epimorphism,
(1.2) if n: A* — A is any connected covering, then n~*(B) is connected,
(1.3) if n: A* — A is the universal covering, then n~1(B) is connected.

While Abhyankar deals with the second version (Theorem 2), we pre-
fer to prove Theorem 1 directly. We will use the following lemmas from
Abhyankar’s proof.

LEMMA 2 (cf. [1, (39.2")]). Let B be the closed unit ball centered at 0
i any real normed space and let B and S be the corresponding open ball
and sphere. Assume that | : [0,1] — B is a continuous mapping such that
1(0) = 0. Then there exists a homeomorphism 7 : [0,1] x B — [0,1] x B such
that BoT = 3, 7/([0,1] x S)U ({0} x B) =id and 7(graphl) = [0,1] x {0},

where B :[0,1] x B — [0, 1] is the natural projection.

Proof. Take (t,b) € [0,1] x B. If b # I(t) then we can find a unique
positive number e(t, b) such that ||e(t, b)b+(1—e(t,b))I(t)|| =1. The mapping
E : ([0,1] x B) \ graphl > (t,b) — e(t,b) € [1,00) is locally bounded and its
graph is closed, so it is continuous. We define

(t.0) { (¢,0) if b=1(t),
T\, = —e(t,b .
(t: b+ SE5200) i b # 1),
1

The inverse mapping 77" is
TNt D) = (6, b+ (1= [[bDI(?)).

Clearly, 7 is the desired homeomorphism.
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COROLLARY. Let B,B and S be as in Lemma 2. Assume that | :
[a,b] — B, where a < b, is a continuous mapping and take ¢ € [a,b].
Then there exists a homeomorphism T : [a,b] x B — [a,b] x B such that
Bor =0, 7|([a,b] x S)U ({c} x B) = id and 7(graphl) = [a,b] x {l(c)},

where B :[0,1] x B — [0, 1] is the natural projection.

LEMMA 3 (cf. [1,(39.2)]). Every manifold M (without boundary) modeled
on any real normed space E has the following straightening property: For
each set J C [0,1] x M such that the natural projection (3 : [0,1] x M — [0, 1]
restricted to J is a covering of finite degree, there exists a homeomorphism
7:]0,1] x M — [0,1] x M which satisfies the following three conditions:

(2.1) BoT =4,

(2.2) 7|{0} x M =1id,

(2.3) 7(J) =[0,1] x a(J N ({0} x M)), where o : [0,1] x M — M s the
natural projection.

Remark. Such a homeomorphism 7 will be called a straightening
homeomorphism. The segment [0, 1] can be replaced by any other segment
[a, b], where a < b.

Proof of Lemma 3. Let d denote the degree of the covering 3|J.
Notice that J = U;l:1 graphl;, where [; : [0,1] — M are continuous map-
pings with pairwise disjoint graphs. For each t € [0, 1], choose a family
Uit,...,Ugy of neighborhoods of I1(t),...,la(t), respectively, and a family
of homeomorphisms f;; from U ; onto the closed unit ball B in E such that
the sets Uj+ (j = 1,...,d) are pairwise disjoint and f;+(U;;) = int B = B.
For every t € [0, 1] there exists 6(¢f) > 0 such that [;(t') € U;, for every
j=1,...,dand t' € [0,1]N(t—0(t),t+d(t)). Set V; = [0, 1]N(t—0(t), t+5(¢)).
Take a finite set {t1,...,%,} such that {V; }7, covers [0, 1] and a finite se-
quence 0 =ty < ... < t, = 1 such that Iy = [tg_1,tx] C V;,. Thus,
lj(Iy) CUjz, fork=1,...,nand j =1,...,d.

For every k = 1,...,n, we define a straightening homeomorphism 7 :
I, x M — I x M using the Corollary on each U;z (j = 1,...,d) and
setting 73 (t,m) = (t,m) for m € M\U?:1 U;z,- Let H, = [0,t;]. For every

k=1,...,n, we can define a straightening homeomorphism ( : Hp x M —
Hj;, x M as follows:
1) Cl =T1,

2) if (x—1 is defined then ( = (p—1 U ((id X&) o 7%), where & : M >
m— (ao(x_1)(tg—1,m) € M and « is the natural projection on M.

It is easy to check that 7 = (,, is the desired straightening homeomor-
phism.
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3. Proof of Theorem 1. Clearly, X is a connected and locally simply
connected space. Let j: L\V — X\ (Ax Z)and k: X\ (Ax Z) — X be
the inclusions. Then the proof falls naturally into two parts.

Part 1. The mapping j. : m(L\V) — m (X \ (A x Z)) is an epimor-
phism.

Let u=(f,9):[0,1] = X\ (A x Z) be any loop at (p, h(p)). We define
a new loop w = (f,g9) : [0,1] - X \ (A x Z) by

w(t) = u(2t) for 0 <t <1/2,
L (f(2=2t),h(f(2—2t))) for1/2<t<1.
Since Y is simply connected, we have [w] = [u]. Define

A:[0,1] 3t (t,g(t) € 0,1] x Z,
Q:00,1] x Z > (t,2) — (f(t),z) €Y x Z.

The restriction 3[£271(V) of the natural projection 8 : [0,1] x Z — [0,1] is
a covering of finite degree. By Lemma 3, it has a straightening homeomor-
phism 7: [0,1] x Z — [0,1] x Z. Set t = 1/2 — [t —1/2| and 7 = (o T)(t, ),
where « : [0, 1]x Z — Z is the natural projection. We can assume that 7, = 7;
because f(t) = f(f) The homotopy H (t,s) = (f(t1 —3)), (75?11—5) oT0g)(t))
joins the loop w = H(-,0) to the loop H(-,1) whose image is in L\ V. Notice
that H(0,s) = H(1,s) = (p,h(p)) for every s € [0,1]. This implies that
[u] = [H(-,1)] € ju(m1(L\V)) and completes the proof of Part 1.

Part 2. The mapping k. : m (X \(AxZ)) — m1(X) is an epimorphism.

Let u = (f,g) : [0,1] — X be any loop at (p, h(p)). For every t € [0,1],
there exists a neighborhood U; x W; of u(t), where Uy and W; are simply
connected and U; x W; C X. The family V; = u=Y(U; x W3) (t € [0,1]) is
an open covering of [0,1]. Choose a finite subcover Vi, (k=1,...,n) and a
sequence 0 =ty < ... < t, = 1 such that [ty_1,tx] C Vi (k=1,...,n). Let
Vi = u= (U x Wy,) for every k.

The arc component Cy of UyNUy41 which contains f(tx) is open in Y.
Since A N C} is nowhere dense in CY, there is a point pi in Cj \ A for
k=1,...,n—1. Let pg = p, = p. For every k, there exists an arc vy :
[tk—1,tx] — Uk \ A which joins px_1 to pg, because Uy is a connected and
locally arcwise connected space with a closed, nowhere dense and nowhere
disconnecting subspace Uy N A (see [1, (14.5)]). Similarly, there exist arcs
¢ 2 [0,1] = Ck \ A joining ¢, (0) = f(tx) to cx(l) =px for k=1,...,n— 1.
Let cp = ¢, : [0,1] 2t — p e (UiNU,) \ A. For every k, there exists a
hOHlOtOpy Hk . [0, 1] X [tk—17tk] — Uk joining Hk(O,t) = f(t) to Hk(l,t) =
v (t) which satisfies Hy(s,tk—1) = cx—1(s) and Hy(s,tr) = cix(s). Set v =
Up—qvk : [0,1] = Y\ Aand H = J,_, Hi : [0,1] x [0,1] — Y. Then the
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homotopy H(s,t) = (H(s,t),g(t)) joins the loop H(0,t) = u(t) to the loop

H(1,t) = (v(t), g(t)) whose image is in X \ (A x Z). Since the image of H
isin X and H(s,0) = H(s,1) = (p, h(p)), [u] € kx(m (X \ (A x 2))).
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