A topological version of Bertini's theorem

by Artur Piekosz (Kraków)

Abstract. We give a topological version of a Bertini type theorem due to Abhyankar. A new definition of a branched covering is given. If the restriction $\pi_V: V \to Y$ of the natural projection $\pi: Y \times Z \to Y$ to a closed set $V \subset Y \times Z$ is a branched covering then, under certain assumptions, we can obtain generators of the fundamental group $\pi_1((Y \times Z) \setminus V)$.

Introduction. In his book [1, pp. 349–356], Abhyankar proves an interesting theorem called by him a "Bertini theorem" or a "Lefschetz theorem". The theorem expresses a topological fact in complex analytic geometry. The purpose of this paper is to restate this theorem and its proof in purely topological language. Our formulation reads as follows:

Theorem 1. Let Z be a connected topological manifold (without boundary) modeled on a real normed space E of dimension at least 2 and let Y be a simply connected and locally simply connected topological space. Suppose that V is a closed subset of $Y \times Z$ and $\pi: Y \times Z \to Y$ denotes the natural projection. Assume that $\pi_V = \pi|V:V\to Y$ is a branched covering whose regular fibers are finite and whose singular set $\Delta = \Delta(\pi_V)$ does not disconnect Y at any of its points. Set $X = (Y \times Z) \setminus V$ and $L = \{p\} \times Z$, where $p \in Y \setminus \Delta$. If there exists a continuous mapping $h: Y \to Z$ whose graph is contained in X, then the inclusion $i: L \setminus V \hookrightarrow X$ induces an epimorphism $i_*: \pi_1(L \setminus V) \to \pi_1(X)$.

We have adopted the following definition. For any topological spaces Y and Y^* , a continuous, surjective mapping $\psi:Y^*\to Y$ is a (topological) branched covering if there exists a nowhere dense subset Δ of Y such that $\psi|Y^*\setminus\psi^{-1}(\Delta):Y^*\setminus\psi^{-1}(\Delta)\to Y\setminus\Delta$ is a covering mapping. Notice that the singular set Δ of the branched covering ψ is not unique, but there is a smallest $\Delta(\psi)$ among such sets. Clearly, $\Delta(\psi)$ is a closed subset of Y. Thus

1991 Mathematics Subject Classification: 57M12, 55Q52. Key words and phrases: fundamental group, branched covering.

the set $Y \setminus \Delta(\psi)$ of regular points is open. Topological branched coverings are studied in [2].

The assumption in Theorem 1 that the set Δ does not disconnect Y at any point of Δ means that for each $y \in \Delta$ and every connected neighborhood U of y in Y there exists a smaller neighborhood W of y for which $W \setminus \Delta$ is connected.

2. An equivalent version and a straightening property

Theorem 2 (cf. [1, (39.7)]). Suppose the assumptions of Theorem 1 are satisfied. Then, for every connected covering $\varphi: X^* \to X$ (i.e. X^* is connected), the set $\varphi^{-1}(L \setminus V)$ is connected.

Theorems 1 and 2 are equivalent due to the following simple but useful observation.

Lemma 1 (cf. [1, (39.3)]). Let a topological space A as well as its subspace B be connected and locally simply connected. Then the following are equivalent:

- (1.1) the induced homomorphism $\pi_1(B) \to \pi_1(A)$ is an epimorphism,
- (1.2) if $\eta: A^* \to A$ is any connected covering, then $\eta^{-1}(B)$ is connected,
- (1.3) if $\eta: A^* \to A$ is the universal covering, then $\eta^{-1}(B)$ is connected.

While Abhyankar deals with the second version (Theorem 2), we prefer to prove Theorem 1 directly. We will use the following lemmas from Abhyankar's proof.

LEMMA 2 (cf. [1, (39.2')]). Let \overline{B} be the closed unit ball centered at 0 in any real normed space and let B and S be the corresponding open ball and sphere. Assume that $l:[0,1]\to B$ is a continuous mapping such that l(0)=0. Then there exists a homeomorphism $\tau:[0,1]\times\overline{B}\to[0,1]\times\overline{B}$ such that $\beta\circ\tau=\beta,\,\tau|([0,1]\times S)\cup(\{0\}\times\overline{B})=\mathrm{id}$ and $\tau(\mathrm{graph}\,l)=[0,1]\times\{0\},$ where $\beta:[0,1]\times\overline{B}\to[0,1]$ is the natural projection.

Proof. Take $(t,b) \in [0,1] \times \overline{B}$. If $b \neq l(t)$ then we can find a unique positive number e(t,b) such that ||e(t,b)b+(1-e(t,b))l(t)||=1. The mapping $E:([0,1] \times \overline{B}) \setminus \operatorname{graph} l \ni (t,b) \mapsto e(t,b) \in [1,\infty)$ is locally bounded and its graph is closed, so it is continuous. We define

$$\tau(t,b) = \begin{cases} (t,0) & \text{if } b = l(t), \\ \left(t,b + \frac{1 - e(t,b)}{e(t,b)}l(t)\right) & \text{if } b \neq l(t). \end{cases}$$

The inverse mapping τ^{-1} is

$$\tau^{-1}(t,b) = (t, b + (1 - ||b||)l(t)).$$

Clearly, τ is the desired homeomorphism.

COROLLARY. Let B, \overline{B} and S be as in Lemma 2. Assume that $l: [a,b] \to B$, where $a \leq b$, is a continuous mapping and take $c \in [a,b]$. Then there exists a homeomorphism $\tau: [a,b] \times \overline{B} \to [a,b] \times \overline{B}$ such that $\beta \circ \tau = \beta$, $\tau|([a,b] \times S) \cup (\{c\} \times \overline{B}) = \operatorname{id}$ and $\tau(\operatorname{graph} l) = [a,b] \times \{l(c)\}$, where $\beta: [0,1] \times \overline{B} \to [0,1]$ is the natural projection.

LEMMA 3 (cf. [1, (39.2)]). Every manifold M (without boundary) modeled on any real normed space E has the following straightening property: For each set $J \subset [0,1] \times M$ such that the natural projection $\beta: [0,1] \times M \to [0,1]$ restricted to J is a covering of finite degree, there exists a homeomorphism $\tau: [0,1] \times M \to [0,1] \times M$ which satisfies the following three conditions:

- (2.1) $\beta \circ \tau = \beta$,
- (2.2) $\tau | \{0\} \times M = id$,
- (2.3) $\tau(J) = [0,1] \times \alpha(J \cap (\{0\} \times M))$, where $\alpha : [0,1] \times M \to M$ is the natural projection.

Remark. Such a homeomorphism τ will be called a *straightening homeomorphism*. The segment [0,1] can be replaced by any other segment [a,b], where $a \leq b$.

Proof of Lemma 3. Let d denote the degree of the covering $\beta|J$. Notice that $J=\bigcup_{j=1}^d \operatorname{graph} l_j$, where $l_j:[0,1]\to M$ are continuous mappings with pairwise disjoint graphs. For each $t\in[0,1]$, choose a family $U_{1,t},\ldots,U_{d,t}$ of neighborhoods of $l_1(t),\ldots,l_d(t)$, respectively, and a family of homeomorphisms $f_{j,t}$ from $\overline{U}_{j,t}$ onto the closed unit ball \overline{B} in E such that the sets $\overline{U}_{j,t}$ $(j=1,\ldots,d)$ are pairwise disjoint and $f_{j,t}(U_{j,t})=\operatorname{int} \overline{B}=B$. For every $t\in[0,1]$ there exists $\delta(t)>0$ such that $l_j(t')\in U_{j,t}$ for every $j=1,\ldots,d$ and $t'\in[0,1]\cap(t-\delta(t),t+\delta(t))$. Set $V_t=[0,1]\cap(t-\delta(t),t+\delta(t))$. Take a finite set $\{\overline{t}_1,\ldots,\overline{t}_n\}$ such that $\{V_{\overline{t}_i}\}_{i=1}^n$ covers [0,1] and a finite sequence $0=t_0<\ldots< t_n=1$ such that $I_k=[t_{k-1},t_k]\subset V_{\overline{t}_k}$. Thus, $l_j(I_k)\subset U_{j,\overline{t}_k}$ for $k=1,\ldots,n$ and $j=1,\ldots,d$.

For every $k=1,\ldots,n$, we define a straightening homeomorphism $\tau_k:I_k\times M\to I_k\times M$ using the Corollary on each $\overline{U}_{j,\overline{t}_k}$ $(j=1,\ldots,d)$ and setting $\tau_k(t,m)=(t,m)$ for $m\in M\setminus\bigcup_{j=1}^d\overline{U}_{j,\overline{t}_k}$. Let $H_k=[0,t_k]$. For every $k=1,\ldots,n$, we can define a straightening homeomorphism $\zeta_k:H_k\times M\to H_k\times M$ as follows:

- 1) $\zeta_1 = \tau_1$,
- 2) if ζ_{k-1} is defined then $\zeta_k = \zeta_{k-1} \cup ((\mathrm{id} \times \xi_k) \circ \tau_k)$, where $\xi_k : M \ni m \mapsto (\alpha \circ \zeta_{k-1})(t_{k-1}, m) \in M$ and α is the natural projection on M.

It is easy to check that $\tau = \zeta_n$ is the desired straightening homeomorphism.

3. Proof of Theorem 1. Clearly, X is a connected and locally simply connected space. Let $j: L \setminus V \hookrightarrow X \setminus (\Delta \times Z)$ and $k: X \setminus (\Delta \times Z) \hookrightarrow X$ be the inclusions. Then the proof falls naturally into two parts.

Part 1. The mapping $j_*: \pi_1(L \setminus V) \to \pi_1(X \setminus (\Delta \times Z))$ is an epimorphism.

Let $u = (f, g) : [0, 1] \to X \setminus (\Delta \times Z)$ be any loop at (p, h(p)). We define a new loop $w = (\widetilde{f}, \widetilde{g}) : [0, 1] \to X \setminus (\Delta \times Z)$ by

$$w(t) = \begin{cases} u(2t) & \text{for } 0 \le t \le 1/2, \\ (f(2-2t), h(f(2-2t))) & \text{for } 1/2 < t \le 1. \end{cases}$$

Since Y is simply connected, we have [w] = [u]. Define

$$\begin{split} A:[0,1]\ni t\mapsto (t,\widetilde{g}(t))\in [0,1]\times Z,\\ \varOmega:[0,1]\times Z\ni (t,z)\mapsto (\widetilde{f}(t),z)\in Y\times Z. \end{split}$$

The restriction $\beta|\Omega^{-1}(V)$ of the natural projection $\beta:[0,1]\times Z\to [0,1]$ is a covering of finite degree. By Lemma 3, it has a straightening homeomorphism $\tau:[0,1]\times Z\to [0,1]\times Z$. Set $\widehat{t}=1/2-|t-1/2|$ and $\tau_t=(\alpha\circ\tau)(t,\cdot)$, where $\alpha:[0,1]\times Z\to Z$ is the natural projection. We can assume that $\tau_t=\tau_{\widehat{t}}$ because $\widetilde{f}(t)=\widetilde{f}(\widehat{t})$. The homotopy $H(t,s)=(\widetilde{f}(\widehat{t}(1-s)),(\tau_{\widehat{t}(1-s)}^{-1}\circ\tau_t\circ\widetilde{g})(t))$ joins the loop $w=H(\cdot,0)$ to the loop $H(\cdot,1)$ whose image is in $L\setminus V$. Notice that H(0,s)=H(1,s)=(p,h(p)) for every $s\in[0,1]$. This implies that $[u]=[H(\cdot,1)]\in j_*(\pi_1(L\setminus V))$ and completes the proof of Part 1.

Part 2. The mapping $k_*: \pi_1(X \setminus (\Delta \times Z)) \to \pi_1(X)$ is an epimorphism.

Let $u=(f,g):[0,1]\to X$ be any loop at (p,h(p)). For every $t\in[0,1]$, there exists a neighborhood $U_t\times W_t$ of u(t), where U_t and W_t are simply connected and $U_t\times W_t\subset X$. The family $V_t=u^{-1}(U_t\times W_t)$ $(t\in[0,1])$ is an open covering of [0,1]. Choose a finite subcover V_k $(k=1,\ldots,n)$ and a sequence $0=t_0<\ldots< t_n=1$ such that $[t_{k-1},t_k]\subset V_k$ $(k=1,\ldots,n)$. Let $V_k=u^{-1}(U_k\times W_k)$ for every k.

The arc component C_k of $U_k \cap U_{k+1}$ which contains $f(t_k)$ is open in Y. Since $\Delta \cap C_k$ is nowhere dense in C_k , there is a point p_k in $C_k \setminus \Delta$ for $k = 1, \ldots, n-1$. Let $p_0 = p_n = p$. For every k, there exists an arc v_k : $[t_{k-1}, t_k] \to U_k \setminus \Delta$ which joins p_{k-1} to p_k , because U_k is a connected and locally arcwise connected space with a closed, nowhere dense and nowhere disconnecting subspace $U_k \cap \Delta$ (see [1, (14.5)]). Similarly, there exist arcs $c_k : [0,1] \to C_k \setminus \Delta$ joining $c_k(0) = f(t_k)$ to $c_k(1) = p_k$ for $k = 1, \ldots, n-1$. Let $c_0 = c_n : [0,1] \ni t \mapsto p \in (U_1 \cap U_n) \setminus \Delta$. For every k, there exists a homotopy $H_k : [0,1] \times [t_{k-1}, t_k] \to U_k$ joining $H_k(0,t) = f(t)$ to $H_k(1,t) = v_k(t)$ which satisfies $H_k(s,t_{k-1}) = c_{k-1}(s)$ and $H_k(s,t_k) = c_k(s)$. Set $v = \bigcup_{k=1}^n v_k : [0,1] \to Y \setminus \Delta$ and $H = \bigcup_{k=1}^n H_k : [0,1] \times [0,1] \to Y$. Then the

homotopy $\widetilde{H}(s,t) = (H(s,t),g(t))$ joins the loop $\widetilde{H}(0,t) = u(t)$ to the loop $\widetilde{H}(1,t) = (v(t),g(t))$ whose image is in $X \setminus (\Delta \times Z)$. Since the image of \widetilde{H} is in X and $\widetilde{H}(s,0) = \widetilde{H}(s,1) = (p,h(p)), [u] \in k_*(\pi_1(X \setminus (\Delta \times Z)))$.

Acknowledgements. The author wishes to express his gratitude to W. Pawłucki for suggesting the problem. He also thanks W. Pawłucki and S. Lojasiewicz for stimulating comments.

References

- [1] S. S. Abhyankar, *Local Analytic Geometry*, Academic Press, New York and London, 1964.
- [2] A. Piękosz, Basic definitions and properties of topological branched coverings, to appear.

INSTITUTE OF MATHEMATICS CRACOW UNIVERSITY OF TECHNOLOGY WARSZAWSKA 24 31-155 KRAKÓW, POLAND

Reçu par la Rédaction le 11.4.1994