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Starlikeness of functions satisfying a differential inequality

by Rosihan M. Ali (Penang),
S. Ponnusamy (Madras) and Vikramaditya Singh (Kanpur)

Abstract. In a recent paper Fournier and Ruscheweyh established a theorem related
to a certain functional. We extend their result differently, and then use it to obtain a
precise upper bound on α so that for f analytic in |z| < 1, f(0) = f ′(0) − 1 = 0 and
satisfying Re{zf ′′(z)} > −λ , the function f is starlike.

1. Introduction and statement of results. Let U be the unit disk
|z| < 1, and let H be the space of analytic functions in U with the topol-
ogy of local uniform convergence. The subclasses A and A0 of H consist of
functions f ∈ H such that f(0) = f ′(0) − 1 = 0 and f(0) = 1 respectively.
By S, C, St and K we denote, respectively, the well known subsets of A
of univalent, close-to-convex, starlike (with respect to origin) and convex
functions. Further, for β < 1, we introduce

Pβ = {f ∈ A0 : Re f(z) > β, z ∈ U}

and

Pβ = {f ∈ A : ∃α ∈ R such that Re[eiα(f ′(z)− β)] > 0, z ∈ U}.

If f and g are in H and have the power series

f(z) =
∞∑
k=0

akz
k, g(z) =

∞∑
k=0

βkz
k,

the convolution or Hadamard product of f and g is defined by

h(z) = (f ∗ g)(z) =
∞∑
k=0

akbkz
k.
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For V ⊂ A0 the dual V ∗ of V is the set of functions g ∈ A0 such that
(f ∗ g)(z) 6= 0 for every f ∈ V , and V ∗∗ = (V ∗)∗.

We define functions hT in A by

hT (z) =
1

1 + iT

[
iT

z

1− z
+

z

(1− z)2

]
, T ∈ R,

and the subclass Vβ of A0 by

Vβ =
{

(1− β)
1− xz
1− yz

+ β : |x| ≤ 1, |y| ≤ 1, β < 1
}
.

We refer to [2, 3] for results in duality theory.
For a suitable Λ : [0, 1]→ R define

LΛ(f) = inf
z∈U

1∫
0

Λ(t)
[

Re
f(tz)
tz
− 1

(1 + t)2

]
dt, f ∈ C,

and

LΛ(C) = inf
f∈C

LΛ(f).

In a recent paper [1] Fournier and Ruscheweyh have established the following

Theorem A. Let Λ be integrable on [0, 1] and positive on (0, 1). If
Λ(t)/(1− t2) is decreasing on (0, 1) then LΛ(C) = 0.

The functions

Λc(t) =
{

(1− tc)/c, −1 < c ≤ 2, c 6= 0,
log(1/t), c = 0,

satisfy the conditions of Theorem A.
It is clear that Theorem A can be extended to the case of tΛ(t) integrable

on [0, 1], positive on (0, 1), and tΛ(t)/(1− t2) decreasing on (0, 1). Indeed,
1∫

0

Λ(t) Re
{
hT (tz)
tz

− 1
(1 + t)2

}
dt

=
1∫

0

tΛ(t) Re
{

1
1 + iT

[
iTz

1− tz
+
z(2− tz)
(1− tz)2

]
+

2 + t

(1 + t)2

}
dt,

which shows that integrability of tΛ(t) is enough for the existence of the
integral. Further, if tΛ(t)/(1−t2) is decreasing, so is Λ(t)/(1−t2) and hence
the treatment in [1] gives the result. Thus the functions

Λc(t) = (1− tc)/c, −2 < c ≤ −1,

satisfy the above conditions.
In the present paper we extend Theorem A in the following form.
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Theorem 1. For Λ not integrable on [0, 1], let tΛ(t) be integrable on
[0, 1], positive on (0, 1), and suppose

Λ(t)/(1− t2) is decreasing on (0, 1).

Then LΛ(C) = 0.

We use the theorem to establish the following:

Theorem 2. Suppose α : [0, 1]→ R is non-negative with
∫ 1

0
α(t) dt = 1,

Λ(t) =
1∫
t

α(t)
t2

dt

satisfies the conditions of Theorem 1 and for λ > 0, define

(1) Vα(f) = z
1∫

0

(
1 +

λz

1− tz

)
α(t) dt ∗ f(z), f ∈ A.

Then for λ given by

(2) 2λ
1∫

0

α(t)
1 + t

dt = 1

we have Vα(P0) ⊂ S, and

Vα(P0) ⊂ St⇔ LΛ(C) = 0.

For any larger value of λ there exists an f ∈ P0 with Vα(f) not even locally
univalent.

As a special case of the above theorem we obtain a result which is inter-
esting enough to be stated as a theorem.

Theorem 3. If λ > 0 and f ∈ A satisfies the differential inequality

(3) Re zf ′′(z) > −λ,
then f ∈ St if

(4) 0 < λ ≤ 1/ log 4.

For any larger value of λ, a function f ∈ A satisfying (3) need not even be
locally univalent.

Theorem 4. Let α : [0, 1]→ R be non-negative with
∫ 1

0
α(t) dt = 1 and

suppose Λ(t) = α(t)/t satisfies the conditions of Theorem 1. If Vα(f) is
defined by (1), then

Vα(P0) ⊂ K ⇔ LΛ(C) = 0
and λ is given by

2λ
1∫

0

2 + t

(1 + t)2
α(t) dt = 1.
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2. Proof of Theorem 1. For a fixed f ∈ C and z ∈ U let

tg(t) = Re
f(tz)
tz
− 1

(1 + t)2
.

Then g is analytic in t. Let

Λn(t) =


Λ(t), 1/n ≤ t ≤ 1,
(1− t2)Λ(1/n)

1− 1/n2
, 0 ≤ t ≤ 1/n.

From Theorem A we get

0 ≤ n2

n2 − 1
Λ

(
1
n

) 1/n∫
0

(1− t2)tg(t) dt+
1∫

1/n

tΛ(t)g(t) dt = Hn +Gn.

Now

|Hn| ≤
Λ(1/n)

2(n2 − 1)
M1 → 0 as n→∞.

Let χn(t) be the characteristic function of [1/n, 1]. For each n,

|tΛ(t)g(t)χn(t)| ≤M2tΛ(t).

Since tΛ(t) is integrable, it follows that

lim
n→∞

Gn = lim
n→∞

1∫
0

tΛ(t)g(t)χn(t) dt =
1∫

0

tΛ(t)g(t) dt.

Hence LΛ(f) ≥ 0 for z ∈ U . This completes the proof.

We are thankful to Prof. S. Ruscheweyh for his help with the proof of
Theorem 1.

3. Proof of Theorems 2 and 3. For f ∈ P0 let F (z) = Vα(f). We
then have

F ′(z) =
1∫

0

(
1 +

λz

1− zt

)
α(t) dt ∗ f ′(z), f ∈ P0.

Since V ∗0 = P1/2 and V ∗∗0 = {f ′ : f ∈ P0}, F ′(z) 6= 0 if and only if

(5)
1
2
< Re

1∫
0

(
1 +

λz

1− zt

)
α(t) dt.

This gives

λ
1∫

0

α(t)
1 + t

dt ≤ 1
2
.

Further, because Re eiαf ′(z) > 0, (5) also ensures that Re eiαF ′(z) > 0 and
hence F is univalent.
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For starlikeness we use the easily verifiable property that F ∈ A is in St
if and only if

(6)
1
z

(F ∗ hT )(z) 6= 0, T ∈ R, z ∈ U.

This gives

0 6=
1∫

0

(
1 +

λz

1− tz

)
α(t)dt ∗ hT (z)

z
∗ f(z)

z

=
1∫

0

[
1 +

λ

t

{
1
z

z∫
0

(
h(tw)
tw

− 1
)
dw

}]
α(t) dt ∗ f ′(z), f ∈ P0.

This implies that F ∈ St if and only if

1
2
< Re

1∫
0

[
1 +

λ

t

{
1
z

z∫
0

(
h(tw)
tw

− 1
)
dw

}]
α(t) dt.

On substituting the value of λ from (2) in the above inequality, we obtain

0 < Re
1∫

0

α(t)
t2

{
1
z

z∫
0

(
h(tw)
w
− t

1 + t

)
dw

}
dt.

This is similar to the last equation in [1]. Hence we need

Λ(t) =
1∫
t

α(t)
t2

dt

in order to use Theorem A. This completes the proof.

For the proof of Theorem 3 we take α(t) ≡ 1. Then Λ(t) = 1/t − 1
satisfies the conditions of Theorem 1 and F satisfies (3). For α(t) ≡ 1 the
value of λ obtained from (2) gives (4).

Notice that in (3), λ = 0 only if f(z) ≡ z. Thus functions of the form

%z + (1− %)f(z), % < 1,

where f satisfies (3), are in St for (1− %)λ ≤ 1/ log 4.
Further, if f ∈ A satisfies (3), then for a non-negative α satisfying∫ 1

0
α(t) dt = 1, the functions

φ(z) =
1∫

0

α(t)
t
f(tz) dt

also satisfy (3) and hence are starlike for the same value of λ.
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4. Proof of Theorem 4. We need to prove that zF ′(z) ∈ St, F (z) =
Vα(f). Hence (6) gives

0 6= F ′(z) ∗ hT (z)
z

=
1∫

0

(
1 +

λz

1− tz

)
α(t) dt ∗ hT (z)

z
∗ f ′(z)

=
1∫

0

[
1 +

λ

t

(
h(tz)
tz
− 1
)]
α(t) dt ∗ f ′(z), f ∈ P0.

This holds if and only if

1
2
< Re

1∫
0

[
1 +

λ

t

(
h(tz)
tz
− 1
)]
α(t) dt.

Substitution of the value of λ in the theorem gives

0 < Re
1∫

0

[
h(tz)
tz
− 1

(1 + t)2

]
α(t)
t

dt.

Hence with Λ(t) = α(t)/t, Theorem 1 gives the result.
The choice of α(t) = 2(1 − t) gives the result of Theorem 3 with λ

replaced by 2λ.

References

[1] R. Fourn ier and S. Ruscheweyh, On two extremal problems related to univalent
functions, Rocky Mountain J. Math. 24 (1994), 529–538.

[2] S. Ruscheweyh, Duality for Hadamard products with applications to extremal prob-
lems for functions regular in the unit disc, Trans. Amer. Math. Soc. 210 (1975),
63–74.

[3] —, Convolution in Geometric Function Theory , Les Presses de l’Université de Mont-
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