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Effective formulas for complex geodesics
in generalized pseudoellipsoids with applications

by WLODZIMIERZ ZWONEK (Krakéw)

Abstract. We introduce a class of generalized pseudoellipsoids and we get formulas
for their complex geodesics in the convex case. Using these formulas we get a description
of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic
equivalence of convex complex ellipsoids without any sophisticated machinery.

1. Introduction. For any domain D C C", w,z € D we define
%D(w, z) = inf{p(A1, A2) : there is a holomorphic mapping
¢ : E — D such that p(A1) = w,o(N2) = 2},
cp(w, z) = sup{p(e(w),¢(z)) : ¢ : D — E is a holomorphic mapping},
kp is the largest pseudodistance on D not exceeding %D,
where F is the unit open disk in C and p is the Poincaré distance on E.

%D is called the Lempert function, and cp (respectively kp) is called the
Carathéodory (respectively Kobayashi) pseudodistance of D.

Since kp, kp, cp are often not very easy to handle we shall often use the
associated functions with the same properties: d}, = tanh(dp), where d is
k,k or c.

Below writing d we mean ¢, k or k.

DEerFINITION 1.1. For a domain D we say that a mapping ¢ : E — D is
a d-geodesic for D if dp(p(A1), ©(A2)) = p(A1, A2) for any A, Ay € E.

It is known that for any domain D C C™,
(1.1) cp < kp < kp.

If D is a convex domain, then we have equality:
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262 W. Zwonek

THEOREM 1.2 (see [L]). If D C C" is a convex domain, then
(12) Cp = %D-

Moreover, if D is additionally bounded, then for all (w,z) € D x D with
w # z there is a k-geodesic ¢ : E — D such that w,z € ¢(E) (certainly this

mapping is also a k- and c-geodesic).

In view of Theorem 1.2 we can introduce the notion of a complex geodesic
for convex domains because all the geodesics that we consider are in this
case identical.

Below we define a class of domains, which are in the scope of our in-
terest. Fix n € N,. Assume that mg is a positive natural number; for
Jj =1,...,mg consider numbers m; € N,. Next, we assume that we have

o, . m4 .
positive natural numbers {m;},”,, where j = 1,...,mp; and, generally,

mj,

for k < n — 1 we have {mjl,._,vjk}jk:’l”"jk’l C N.. Given a system of

m’s we consider a system of positive numbers given as follows: {p;}7,

. . Mgy, e —
{pjrtrl,, where j = 1,...,mo; and, generally, {pj, }ij:l1 k=1 where
k=1,...,n—1.

Let us define a generalized complex pseudoellipsoid £ by
mo M1, Jn—1 Iy ) Iy
2 J1s-In—1 J1
£ = {zZ(( Z |Zj1,...,jn|> ) <1},
ji=1 Jn=1

where m’s and p’s are as above.

Let us introduce the following convention: if in the sequel we have some
letter with a system of subscripts (j1,...,Jk), where k = 0, then we mean
the same letter with subscript 0. For a point z € CV, where

mjy

mo  Mi1.. In—2
N = E (( E mjly,,,ijl)...),
j1=1 IJn—1=1
writing z = (21, ..., 2m,) We mean z; = (2j,1,...,%jm,) for j = 1,...,mg
and generally Zj1sendk—1 — (Zj1,~~-,]'k—171""7Zj1y~~-,jk—1,mj1 ,,,,, jkil) for k =

2,...,nand z;, . ;, € C. Additionally, we put pj, . ;. :=1 and py = 1.
We also use the same convention for mappings going to CV. For conve-

nience set, for k = 1,...,n and fixed (j1,...,7k-1),
Jj17""jk71(z)
Mjy,..., Jk—1 Mjy,..., Jn—1

2 Pji,..., Jn—1 Pj1,.... ik
o— E § 2 .
* ct ‘ ]17""]'7L M Y

Jr=1 Jn=1
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for = € CN. Certainly,

J717-~~7jk—1(z) = Z Jj17-~~:jk(z)pj1 """ Ik

Note that for n = 1, £ is an mg-dimensional Euclidean ball, which we
denote by B,,,. If n = 2, then £ is a generalized complex ellipsoid considered
for instance in [KKM] and [DP] (if m; =1 for j = 1,...,mg, then we have
usual complex ellipsoids).

Below we only consider pseudoellipsoids such that

(1.3) Dirvegn -+ P = 1/2

for k=1,...,n—1 and all possible (ji,...,7n).

LEMMA 1.3. A generalized pseudoellipsoid € is convex iff € may be defined
by coefficients pj, .. ;. satisfying (1.3).

Pro of. To prove sufficiency we verify that for j; = 1,...,mg the func-
tion Jff ! is convex on C¥.

Pivrin s .
7k g convex for all ky (J1, ...

Using induction on k we prove that J;*" """
.., jr) and any system of p;, ;, with t =n,..., k satisfying (1.3).

If k=n—1, then

t

Pj1,.. dp— 20 .
T (2) = 2y [P

where the exponent is at least 1, which completes the first inductive step.

Assume that we have proved convexity for k, 2 < k < n—1, and consider
the case k — 1. For t € [0, 1] we have

My, Je—1 s ]
Pi1,.-.s Jk—1 o Pjy,..., ik J1oees Jk—1
S (tz+ (1 —t)w) = E S (tz 4+ (1 = t)w) .
Jr=1
Let us put
Pjryge = min {2p5,Goopg G b
Ins--Jk+1
Diryoea = min {2p;, 5 opj gt
InsesJk

. . . . 1/Bjr. s -
Ijsmg the inductive assumption for le/ffj’-;"““ , the fact that pj, ., Pjr....jn/
Diryejur and Py b Djy e, are at least 1 (so suitable functions are
convex) and the triangle inequality for the norm |[(z1,...,z5)|, =

(|19 + ... + |zs|)/9, where s = mj, . j, \» @ = Djr... jn_, (qis at least 1)
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we get
Mjy,..., Jk—
! Bt ]kpn ,,,,, JkPits--dk Piv,dk—1
> Tnl (t2+ (1= t)w)
Jr=1
Mgy, dkg_1 1
§ : Pjg,eees Jk
S(( (( MARTERRV ) (Z)+(1_t)
Jr=1
1 P,y i Pits-s Jk 1 B D
Pji,..., Jk ﬁle---rjlg71 13]1 _____ Jk—1 Pjq,..., Jk—1 FERERER) Je—1F315-- Jk—1
X J]lv 7]19 (w)) )
Mgy, dkg—1 hpjl ----- Jk
Pip,oes Jk—1
<(( X @ime
Je=1
Pj1, ik 1 P »
Piy,edf—1 Diy,..., 1 ) it Jk—1 T1oeee Te—1871--0s Jk—1
+ @ =t)J; T (w)
Mjq,..., Jk—1 1
Pi1,-- 0k Pi1s-edk—1
< (t< Z th Ik (Z)>
Jk=1
mjl ,,,,, jk_ ﬁ . p
_ pjl 77777 ik pJ1 ’’’’’ Jk—1 J1aeees Jk—1315-+> Jk—1
+(1 t)< Z le:-'w]k ( ))
Jr=1
ST ) (L= ) ()
- Il Jk—1 J1y-Jk—1 ’

which completes the proof of sufficiency.
Suppose now that £ is convex and cannot be defined by p’s satisfying

(1.3). Consequently, we can find (changing p’s if necessary) k € {1,...,n—1}

and (J1,...,Jn) such that

ps, s <1/2 and mg

15--5Jk

1.
7"'7;k—1 >

p;lv--w;n o
There is a subscript (Ji, ..., k—1,Jk,---,Jn) Of p, where ji # ji. Note that
the intersection of the linear subspace spanned by the (j1,...,J,)th and the
(715 -+ 3k—15 k> - - - , jn)th vectors from the standard vector base of CV with

£ is linearly isomorphic to
{()\17)\2) S (C2 : ‘)\1’2(]1 + ’/\2‘2112 < 1}7

where ¢ = ps s which

Jn C 'p]017~~-»;k’ 92 = p;lv‘“jkflvjk:v-najn c 'pjolv-na]okflv]'k’
is not convex—a contradiction.

In view of Lemma 1.3, for generalized pseudoellipsoids with (1.3) we
may consider complex geodesics. In the sequel, unless otherwise stated, we
always assume that & satisfies (1.3).
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In Chapter 2 we formulate and prove a theorem giving explicit formulas
for complex geodesics in convex generalized pseudoellipsoids. The idea of the
proof is identical to the one presented in [JPZ] (see also [JP]), where these
formulas are obtained for convex complex ellipsoids. Since, however, some
parts of the proof are a little more subtle and tedious than those presented
in the above mentioned works we give the whole proof. Let us remark here
that so far very few effective formulas for complex geodesics are known.
Besides the above mentioned works let us mention the papers [BFKKMP],
[P], [Ge], [DT] dealing with formulas for complex geodesics in special cases
of convex ellipsoids.

In Chapter 3 we prove a proposition which allows us to describe all
automorphisms of £ (however, not for all convex £). The proof is based
on the explicit formulas for complex geodesics and an extension theorem
for biholomorphic mappings between bounded complete Reinhardt domains
(see [JP], [B]).

Finally, in Chapter 4, we restrict our attention to a special case of £
and we solve the problem of biholomorphic equivalence of convex complex
ellipsoids by only using the formulas for complex geodesics but avoiding the
use of the theorem on holomorphic extension of biholomorphic mappings
between ellipsoids to their closures. This gives an answer to a question in
[JP]. Let us underline once more that in this proof we avoid the use of the
theory of the Bergman kernel (as in [JP]) or Lie theory (as in [KU] and [N]).

2. Explicit formulas for convex generalized pseudoellipsoids. As
already announced we assume in this chapter that £ satisfies condition (1.3).

LEMMA 2.1. Let ¢ : E — C¥ be a bounded, nonconstant, holomorphic
mapping such that ;. . ;. #Z 0 for all possible (j1,...,jn). Then ¢ is a
geodesic in € iff there are mappings hj, . ;. € HY(E,C) and ¢ : 0F — Rxq
such that

1) Shi ()

A\ T
= Q()‘)< H Pjiyidn—1 (']jl,...,jk71(90* ()‘)»pn 1111 ]k_1_1>(10}<1,...,jn( )
k=2
a.e. on OF,

(2.2) Jo(¢*(A\)) =1 a.e. onJE,
with the product equal to 1 if n = 1.

1 * *

Here H* denotes the Hardy space, ¢} and hZ . stand for non-

tangential boundary values.
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Proof. This follows from the fact that the unit outer normal vector
v(z) € CN to 9E at z € € N (C, )Y is given by the formula

n
Vjisesdn () = Q(Z)< HpJ'17~~~,J'k—1(Jj17~~~,jk_1(z))p]l yyyy R )Zj17-~'7jn7
k=2

with the product equal to 1 if n = 1, where g(z) > 0, and from Corol-
lary 8.4.5 of [JP].

THEOREM 2.2. A bounded holomorphic mapping ¢ : E — CN such that
©jr....in Z 0 for all possible (j1,...,jn) is a geodesic in & iff

. . Si1,es Jn
0, () = < A= QG >
J1s--+50n - — . .
L =@, 5,A

n o 1
1=, A Pjysedi  PiLsesin
X Q. . - JeyrtyJR
| | Juesdk \ 1@ T )
k=1 J1s-e5Jk—1

where sj, 5. € {0,1}, aj,.. ;. € Cy, oy, j, € E for all possible (j1,...
.y Jk), ao € E; if additionally Sj1,.jn = L, then oy, . ;. € E; moreover,
if |O‘j1y~~~,jk—1‘ =1, then Qjy,edne = Yy, for all g =1,.. < My,

Jk—1 k=17
also, the following relations hold for k=1,...,n:
mjl ,,,,, jk71
(2.3) Qjryecsf—1 = Z |aj17~~-7jk|2aj17~~-7jk’
Je=1
MG1,dpg—1
(2.4) Loy, g P= D ag a0+ gl
Jr=1
Finally, the case sj, .. j, =0 and o, . ;. = ao for all possible (j1,...,jk)

15 excluded.

Proof. First we prove that the above formulas are really formulas for
complex geodesics. For those A € E for which it makes sense, define

l — - .1, -
By TT (e (L Tasd Y
J1seeesdnsl T a]lv"'a]k 1_* i )\

k=1 a]lv"w]k—l

for I =1,...,n and, additionally, P}, . ;, o(A) := 1.
We also put

L Pi1,..-s gn Pt Ji41 _
th...,jl = Pj17~'~7jn7l forl—(),...,nfl.
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Since the right-hand side does not depend on the choice of (j;41,. .-, Jjn),
Qjy,....j, 1s well defined.

We have the following equality a.e. on OF:

P N (=l 0N I DR = OV

..... 1 .
1—a;, . . AP
Qs P Y 2 J1seesdn
1Qjeverjin—1 (V)] [Er— om, o

which in view of (2.3) and (2.4) equals |Qj, ... ;, _,(A)|?. For the same reason,
for almost all A € OF we have

le ~~~~~ Jn—Z(()O*(A))
M1,y Jn—2
= Y g Q)P
jn—l*l
M1,y Jn—2
- Z ’lea--~’jn—l(A)’2pj1 7777 In—1
jn—lzl
My, Jn—2 _
I1—-aj,,.., A2
‘QJI ----- Jn—Q()\)‘z Z ’a'_]l ----- jn_1’2‘1 _ajl .?n 1)\‘2
Jn—1=1 J1seees In—2

= |Qj17-~~7jn72(>\)|27
and generally, for almost all A € OF,
(2.5) Tjtseniia (7 (V) = 1@y (V)P
foril=1,...,n. For [ =1 we thus get (2.2). To prove (2.1), define

— (]‘ - &jl,-u,jn >\)2
le ~~~~~ Jnan()\)

I=sj1,...4 n
« A— Qj1,.gin " ] ) ’a, 12
1 —a. Y YZVEIN 1% O SR 8
J1 k=1

h;

for A € F and
o(\) :=|1 —agA|? for \ € OE.
€ H®(E). We

n

In view of the assumptions on «;,, . and (1.3), hj, ;
want to prove that a.e. on OF we have
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1—s, ; n
A — o . 150 Jn
— 2 J1se-5n 2
(1 - ajl7"'7jn)\) ( | | pj17~-~ajk|ajl7~--7jk’
k=1

=@, . A

> =

\ — ] Si1se-0dn ,
(Pt ) iR O

By (2.5) this is equivalent to

1 B n
(26) (A —aG, A = ) 112 ilai. sl
k=1

But in view of the definition of P;, . ;. & and Qj, . ;. the exponent of the

expression
s ) ( 1 _Oéjl,---,jk/\ >‘
G1seesTk p
1- ajlww:jk—lA

for k=1,...,n — 1 on the right-hand side of (2.6) is

2 + 2(pj1:---:jk - 1)
Djrsecgn -+ - Pirsesiin Djrsein
+ 2(pj17~--»jk+1 - 1) 4ot 2(pj17-~~7jn71 - 1) :
Pjsr,..kPi1,e o drsr Pii,gi o Pirsedn—

which equals 2. One can also easily see that the exponent is the same for
k = n. Therefore, (2.6) reduces to

1. IR (R A P W
TA = T VA =gy g,) = (1= ao\’ [ 1 —ajjl--. jZ:)‘ ’
k=1 s
i.e.
1 _ _ 2
A= g AN =gy g,) = 1=, g, Al

A

which is obviously true for A € OF.

To prove the converse implication one can take hj, . ;. asin Lemma 2.1.
In view of Lemma 8.4.6 of [JP] (see also [Ge]) we get, for A € E,

2.7 g My N =1y A=y ) (=@ G, A),
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My, dg—1 Mjq,..., Jn—1
(2.8) ) YR N OV L RN Y
Jr=1 Jn=1

= rjlv---ajk—l(A - ajlv---vjk—l)(l - ajlv---vjk—l)\)7

where k = 1,...,m; 15, .5, > 0, aj, .5, € E for p = 0,...,n and all
possible (j1,...,7p); if ¢j,,.. j, has a root in E, then we put s;, . ;. =1,
otherwise s;, . ; = 0.

We see that if s;, ;. =1, then aj,, ; € E. From (2.7) and (2.8)
we get

Mjy,..., Jk—1
(2'9) Ti1sedh—1 Y1, i1 = Z Tty dn Qgnyeesins
Jr=1
My, ik —1
(2.10) ley--~7jk71(1 + |O[j1,~~~,jk71 |2) = Z Tj17~--7jk(1 + |aj1,-~~7jk- |2)’
Jre=1

for k =1,...,n and all possible (ji,...,jr—1)-
From (2.9) and (2.10) we conclude that a.e. on JF we have

Mijq,..., Jk—1 o 2
(2 11) § : Tj1, ik 1 - O[jl»“-yjk)\ -1
= Thegeea |1 Qe A
Hence we easily see that
(2'12) if |O‘j17--~,jk71| =1, then Qj1,ege = Yyenin_a

for jy =1,... y Mgkt
in particular,
(2.13)  if |ag| = 1, then Qjr,.jp — QO

for p=1,...,n and all possible (j1, ..., jp).

In view of (2.7) and Lemma 2.1 we see that a.e. on OF,

= ‘h’;fl,.‘.,jn ()\)(pjl,,]n ()\)‘ = lev"'vjn’l - aj17'~-7jn)\’2'

Summing now the left-hand side of (2.14), for (ji,...,Jn—1) fixed, with
respect to j, from 1 to M. i, , we get a.e. on OF (we also
1 1
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use (2.8))

% Pi1,.-.s Jn_1
X Djrngns (D |5 VF)
j'nzl
Mg1sndn—1 n
= Q(A) Z (( Hpjlv---vjk—l
jn=1 k=2
* i i —1 *
X (St (@O s (P?)
MG1,edn—1
= ‘ Z h;17"'7j'rb(A)gpjl""ujn(}\)‘
jnzl

—_— . . v . . 2
- T]lw“v]ﬂ—l |1 - a]17~~-7]n—1)\| .

Using again this procedure (this time summing the left-hand side of the
previous equality w.r.t. j,—1 with (j1,...,jn—2) fixed) we get

X pjlv“-vjan(ley'“vjan((p* ()\)))pjl ’’’’ In=2
Miy,ein—2 My,ein—1 P; ;
1oeees n—1
(X s (X WP )
jn—lzl jnzl
Mj1sin—2 M1, dn—1 n
= Q(A) Z Z (( H Pjs,. g1
jn—lzl jnzl k=2
X (Tjseiis (PP s (V)2)
MG1,edn—2 Mi1,-dn_1
| XX w0
jn71:1 anl

Titvoinoall = @y g o |
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n—2
SQ(A)<Hpj1 ..... s (T (@7 (A))) P jk_l_l)
k=2

TSRS TN O/ N (2 0Y))

And, generally,
l 1
2:15) o) TL #rveiics i ("))
k=2
X Py T P+ Pienive i (97 ()P
..... |
< o) (TT Povvenics i i (7 Q)P0
k=2

X Pyt . InaJ}I{Jr {pj17~~~7jn . 'pj1,~-~7jl+1}(Jj1,~--7jl(90*(/\)))”1 """ I,

for [ = 2,...,n and moreover,

(216)  pjye(N) min {py,. i} (U (0T (0)

Myeeey

S e AL e (G G i

and

(217)  o(A) min {pj __j.---Pi}
= o) min {pj ;. i }(Jo(¢"(A))
< 7oL = @A < o(N) max {pjy....g, - ps} (o™ (V)
= 0o(A) max {pj,._.j, P}

Set

l
le:--~7jl—1()\) = Q()‘) Hpjl;--ﬂk—l(Jj17-~~7jk—1(90*(>‘)))pj1 """ i~
k=2

for A € OF a.e., l = 2,...,n, and additionally Ry(A) := p(A). Then it is
clear that

(218) Ry i) =Ry (Npjag(Tjr gy (07 (V)P =
fori=1,...,n—1. From (2.15) and (2.16) we get

(2'19) Rj1 ----- Ji—1 ()\)pj17~~~7jl f m12+1{pj1 ~~~~~ Jn 'pj17-~-7jz+1}
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< LTI |1 - d]’l7~--7jl/\|2
< Ry i (NP
X max {Pj,gn e Pirsigr J(Jin,g (97 (A))F00

j7L?"'7]l+1
so in other words,

le,---7j1|1 — ajlv---,jz)‘P . 1
Ry s MNPinege M
v =ay, AP 1
< Tiy oy (@F (NPt < ot Gyt M
Tt Rj1>~~~7jl—1()\)pjly~~~7jl A/}17~~-,jz

for I = 1,...,n — 1, where M, _j (respectively Nj, ;) is the maxi-
mum (respectively minimum) from the earlier formula; Mg (respectively Ny)
equals max (respectively min) with respect to ji,...,J, and Mj, ;=
'/\[j17~"1j'rz. = 1'

From (2.14) and (2.18) we get, a.e. on OF,

(2.20)

)

|SO;<1 ]n ()\)|2 — le»'”:jn’l B ajlv'“vjn)\’2
" Rj,...ijna(A)

N le,-.anfz (A)pjlw.wjnfl (th-..,jn—l (90* (A)))ph 1111 dn-1 =1

where we put M jrregn = 1; in view of (2.20) the last expression is at least

T4 i —
150 Jn | = . |2
|l . A
J15--dnPit,-in

Rjy s (NP, g
X(Mj1,‘..,jn_lpjl,...,jn_lle,...,jn_z(A)) Fits i1
1 )
(Tj1,‘..,jn—1 |1 - aj1,..~,jn—1A|2) A

where we put

v {Njh...,jk i pjige 2 1,
’ Mg D < L

We define /\7]1“ by the same formula, but with the conditions inter-
changed (so it equals Nj, ., if p;,. ;. < 1). In other words, we have

1
T§1,0dn |1_a_ . >\|2 Pj1,.dn
M, inPj1s. j JAserdn
|(p;17,,,’j"()\)‘2 Z ;‘ilajaznill =

Y . ) |1 _aj17~--ajn—l)\|2
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G100 Jn—1 1 _ 9 — L .
y — Oy G )\ G153 dnPit1sees n—1
Mjl »»»»» Jn—1Pi1, -, jn71’ J1se-3In—1 ’
Pj1seeinPiteedn—1 Pitse-rin—1
R‘]l""y]n72(A)pjl7...7jn pjl:"':jnfl
Repeating this procedure, in view of (2.18) and (2.20) we get
* 2
(221) 15, .5, (V)]
1
le ,,,,, Ik 1 o 2 Py . L..p N
o Y — Oy, A JLseees In T seees Jk
> H Mt iw Pty i ‘ J1557k ‘
- Ti1seees Jk—1 1 _ 5
- . T
ke=i+1 My, dk—1Pi1dk—1 ’ Il Jk—1 ‘
T 1
515501 1—o. Y Pig. . o Pit 7
Mjl vvvvvv i1 Pi1,.os it ‘ MARIERV]) ‘
. . Pji1,..s gn P, it 2T ,
R]h“”]lil()\)pjlv sIn p]l, “oJl
forl=1,...,n—1
In view of (2.17) (remember that Ry = o),
* 2
(2'22) ‘(pjlv-”vjn ()‘)|
1
7’]1 ..... Jk 1 2 5 —
n Qs L )\ VAREERE) in G1sees Jk
> H Mle-kale ,,,,, gk ’ J15--50k ‘
- 7’7'1? ''''' Jk—1 1 . 5
= v — Qe A
k=1 My i 1Pty dip—1 | J1yee)k—1 ‘

1 pjla«-w]’n"'p]'l
X - - - - .
Dj1,s..in Py Pjq
p]l,--~7.7n "'pjl

We can also estimate ¢;, ;. from above analogously to (2.21) and (2.22);

we get the same bound with M;, ; replaced by Nj, .

Note that if for some I € {1,...,n — 1}, p;, . is independent of the
choice of (ji,...,jk) for any k € {{ + 1,...,n}, then in (2.21) we have
equality. More precisely, a.e. on 0F,

(223) ¢}, (VP
_ < ﬁ < rjl,--.,jk‘]‘ _ajl,--.,jk)\P )pjlv ----- dn o Phg, 7k>
k=I+1 rj17~--,]'k71‘1 _aj1,-~-,jk71)"2

X < Tj1yeesdit |1 - O‘j17~--7jl)‘| > Pitsesdn = Pirdy
Rjy i NPy -+ P

Note also that in view of (2.14) and (2.22), a.e. on 0F,

15, ] <

le“:jn
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If aj, .., € E for all possible (ji,...,jk) (or |ag| =1 and then see (2.13)),
then hj, . j;, € H®(E). Butif |oj, ., | =1 for some k and o, ;. , € E,
then (see (2.12))

(2.24) Bjyooga WL =@y A) Piein i = € H(B).

In particular, hj, . ; € H>®(E) (see (1.3)).
Consider now the special case

pjlv"'ajl :al forlzl,...,n.

In this case we have a.e. on OF (see (2.23) for | = l—remember that
RoGi---Qn = 0q1 - .- Gn = 10|l — apA|? in view of (2.17))

1
* 2 - Tj17~-~7jk|]‘ _aj17~~~>jk)\|2 Pt eosdn Pits ik
|(pj17~--7jn()\)‘ = H :

o —a. . 2
he1 Tjtseegiot 1L = Qi egia Al

Since

is an outer function, the decomposition theorem (see [Ga]) implies that for
AEFE,

(2.25)  @ji,.g. (N) = By, 5. (A)

- 1-a AN\ o
1153 Tk MAREEEE) Jn - Pi1,.-., ik
X<H“J‘1 o ( J“) )Sjl ey
T 1—a; A seerdin
k=1 J1s--

Jk—1

where

r o\ /2
Jise5Jk
laj, . .| = ( ) fork=1,...,n,

Tj1di—1

A—aj,
J1s--5dn : _
if Sitsedn = L,

le,---,jn ()‘) = 1- @j1,~-~7jn)‘
1 if Si1eeiin = 0,
re? A
Sj17~~~7jn(>\) = exp < - f m d0j17~~-7jn (9)>7

where o, ;. is a singular nonnegative Borel measure.

n

It is sufficient to prove that o;, . ; =0, because then, in view of (2.13),
if |ag| = 1, then oy, j, = o and s, ;, = 0 for all possible (j1,. .., ji),
which implies that ¢ is constant—a contradiction; so g € E. Moreover,
(2.9) and (2.10) yield (2.3) and (2.4).
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To prove that o;, . ; = 0 note that in view of (2.25), (2.7) and the fact
that hj, ;. € H®(E) we get

elN—ay, g Il —ay, g, AP

151, gn (M) =

f[ 1 _ajl»-“:jk)\ P
A

k=1

1 - ajlﬂ"‘hjk*l

for A € E and some € > 0. But
S: o (A)=0 foroy,  j -almost all A € OF.

J1s--5dn

From these two conditions together with (2.12) we deduce, in view of the
fact that the function

1—|A]2
EaA—>|A—1\ﬁexp(b Al

’)\_1|2), BeR, b>0,

is unbounded, that o;, . ; =0.

Now consider the general case. We use induction. The previous case is
the first inductive step. Assume that we have already proved the formulas
for pj, .. =qr for k=m,... L.

Assume now that for [ < n,

Djr,jr = Q@ for k=mn,... 14+ 1.
We may write (compare (2.23))

(2.26) @55, (A)
= Bj,....j.(N)

n _ 2
X < H ( Tj1,05k ( L—aj,,. . A > >2Pj1,---,jn~-4’j1 ,,,,, a’k)
k=Il+1 r‘jl""’jk_l 1 - ajlv"~7jk—1)\

X Dji,. (V)

for A € E, where rj, ;. , 0, ;. are asin (2.7) and (2.8) and Bj, . ;, is
the Blaschke product of ¢;, . ;. .

In view of (2.23) it is clear that ¢} . (\)| is independent of the choice
of (ji+1,---,Jn) a.e. on OF and (2.20) implies additionally that

(2.27) Vjr,ojn € HZ(E).
Define

Dirvin 1= Djrrgn for k#1,

Djrvejs = @ := max {pj, .}
]17""]l
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Let us also put

(2.28) @y (N
=B, . (A

n — 2\ 5o — .
X ( H ( Tj1,esd ( 1 - O‘jl,---,jk/\ ) )2"31 ’’’’’ Jn"'PJL»«-«Jk)
k=I+1 Tj1,edb—1 1— ajl:---:jkflA

and

(2.29) B = W o Piredn

1y--3Jn J1s--5dn
Pj1,...50 Pj1sesin

_ s ) wl—le,...,jl/liz
- . eI Y g, T )
Pjr,eii

where hj, . ;. is chosen from Lemma 2.1 as before.

By (2.27), hj,....j, € H'(E) (even more, it is in H>(E)—see (2.24)).
In view of (2.9), (2.10), (2.26) and the fact that [¢F . (A)| does not
depend on (ji41,---,jn), we have a.e. on OF,

Titseina ") = D0 195 P

jnzl

=¥, 5. (VP

My,ein—1 n
x ( Z ( H < Tj1,e Tk
G k=i+1 Tj1sedn—1
1

X |1 _ajh...,jk)“Q ) Pirsodn—1""Pi1,- ik >>
|1 _ajlv---,jk71)"2

1
’1 — aj17-..,jk)\‘2 ) Pitseosin—1""Pi1,- ik >

’1 - aj17--~7jk71)"2

% Z Th1yend ‘1 _ajl,---,jk)‘P
7 . ‘1 — O . )\’2
Gn=1 J1se-5Jk—1 Il Jk—1
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=¥, 5. VP

n-l o 2 — —
(T (2 BBt i)
. A 2 :
p=ig1 Ndtendka 1=, g Al

Moreover, if n — 1 > 141,
lew-'ajan (90*()‘))

Jn—1=1

= 05, (Vs
1

n—2 = 2 — ——
X H (lev-'-vjk ‘1_aj17...7jk>\| >pJ1«~wﬂn2'“pJ1 ,,,,, Ik
T
k=Il+1

15 dk—1 ‘1 _ajly---vjk71>\|2

Generally, if s +1 > 1+ 1, then
(2.30)  Jjyga (97 (V) = [, g, ()PP Prnedony

S = 2 o . .D. .
X H < P10k |1 _aj17--~7jk>“ )p“ """ s PiLsedk
k=i+1

N 2
Titvegnor 11— Qe Al
In particular, we have (for s = 1)

231) T (0" N) = [, (VPP P
Note that for s < [,

Tjrrnda (7 (N)

Mjy,ds—1 MG1,.di—1 .y ] s )
o pjl """ il % VAREERE) Jl—1 JLse-s Js
- X ( ( ST TR (V) .
Jjs=1 Ji=1

But

B/l 00) L L O T e A g V) T
where J is an analogue to J with p; in place of p;, . ; (the formulas anal-
ogous to (2.30) and (2.31) with @D?j}.":”‘jf/ql in place of 9, .. ;. also hold for
J and ¢). This implies that

(2:32) T N) = i1, (07 (V)

for any s < [. In particular,

Jo(3*(A\) =1 ae. on OFE.

To prove that ¢ is a geodesic in an ellipsoid with ¢; in place of p;, . ;
(note that in view of the definition of g; the new pseudoellipsoid satisfies
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(1.3)) we verify that

1 ~% 7 *
X‘le,...,jn ()‘)hjl,...,jn ()

= o) (TT Psris s @ Q)P = )35, (V)2
k=2

a.e. on OF. By (2.29) we have

1. ~ q 1
f(p"fl L A h"fl L ) = fgp"fl L A h"fl L by ,
)\ Ji, v]n( ) Ji, ’]n( ) pjh...,jl )\ Ji, ’Jn( ) J1s 7]n( )

which, in view of Lemma 2.1 applied to ¢, is equal to

(2.33) —2L—p(\)
DPjiyi

From (2.30) we get

i d v
L o) (T Pircniics i s (" )P0
Pj1,. i k=Il+1

X125 NP

e O 1 Y O

k=Il+1

k-1 = 2 L. —
X H < Tjryensde ‘1 — O‘j1,...,jt/\| >p11 """" Jk—1""Pi1se it >>
— . , 2
r 1=y, i Al

P L O P

<05, . (VI

X H ( r‘jl"'w]k . ajl,...,]k > JLdm I Ik
. . v 2
k=I+1 rjl,...,]k,1 ‘1 a]ly )\|

o TT (ol g, P/ it

k=I+1

Pji1sees Jk—1"

k-1 = 2 —— —

X H < Tjryende |1 _ ajl,...,jt)\| ) Pirssd—1"""Pi1s it >)
. . v . 2
t=I+1 LT P |1 a]17~~-7]t—1)‘|

X W5, g (AP 2
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n 1—& K 75 - _1__p. -
% H ( T510eeesdne ) ‘ — Oy, gk | > J1sesdnPirsdg
k=l+1

‘ . = . 2
(OO PR § s o N MDY

= o) TT Fovrosos Girries @ P ) 35,
k=Il+1

The last but one equality is a consequence of the fact that

n
Z 22]71 ce ak(pj1,~~-,jk—1 - 1) +2
k=l+1

n
- Divvit + oPirsi
= > 2 GGy — 1) g Bl
k=i+1 q q

Together with (2.32) and (2.33), this completes the proof of the fact that
¢ is a geodesic in a suitable ellipsoid. In view of the inductive assumption
applied to @ and because of the form of ¢ and @, h and h the proof of

the inductive step is complete. For | = n — 1 we obtain the assertion of
Theorem 2.2.

Remark 2.3.1If ¢ is a geodesic and ¢, . j, = 0 for some (j1,...,/jn),
then the mapping ¢ : E — CY~! all of whose components but (ji,...,jn)
are equal to the components of ¢ and the (j1,. .., j,) component is omitted,
is a geodesic in a suitable pseudoellipsoid in C !, which is naturally convex
if £ is convex.

Remark 24.Incasen =2, m; =1for j =1,...,mg, Theorem 2.2
has been proved in [JPZ] (see also [JP]). Moreover, those works show the
uniqueness of the geodesics, up to automorphisms of E; for strictly convex
bounded domains this uniqueness is a general property (see [D]) and the
complex ellipsoids are convex and not strictly convex if p; > 1/2 for j =
1,...,mo and #{j : p; = 1/2} > 1.

Remark 2.5. The formulas of Theorem 2.2 show that the geodesics
extend continuously to the boundary. In many cases one can get more in-
formation about the regularity of the extension. Moreover, it is a relatively
rare phenomenon that the extensions of all geodesics are holomorphic on
some neighbourhoods of E. This is so, for instance, when all the products
in (1.3) are 1 or 1/2 (see also the proof of Proposition 3.2).

Remark 2.6. From Theorem 2.2 it is clear that if |ae o | = 1 for

] 7"'7]
some k € {1,...,n — 1}, then ao o for i Sk (the a’s

ETIRS N TR TR TR
are as in the formulas for complex geodesics in € in Theorem 2.2).
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3. Automorphisms of convex generalized pseudoellipsoids

LEMMA 3.1. Assume that ¢ and & are as in Theorem 2.2. Fiz (ji,...,Jx)
with k € {1,...,n—1}. If ag s g =1forjep=1,...,ms s then
g = 1

Proof. From Theorem 2.2 we get

mo o mo o
NARTEED Ik I Tk
Qo o = |ao o . ‘2(}0 o . = |ao o . 2,
J1y--Jk Z J1se+5JksJk+1 J1se0ksJ k41 Z J1s-e0ksJ k41
Jrr1=1 Jk+1=1
Moreover,
mo o
MARTEED Ik
2 _ 2 2 2
1+ a_?l,-ujk =1+ |a;17~-~7;k| - Z |a§1a~-~7§)kvjk+1| (1 + |O[§17--~7;k7jk+l’ )
Jek+1=1
mo o
NAREEED Ik
= 2 ‘(]/o o . ’2 = 2040 o .,
Z Il JkysJk+1 J1seeesJk
Jr+1=1

The last equality completes the proof.

Let £ be a generalized pseudoellipsoid as before, but, additionally, we
assume that we may present it in the following way:

my

Ji=1 In=
2 2
1P+ [z 2 < 1},
where r is largest possible. We may assume without loss of generality that

if =0, then mg > 1.
Assume that £ ¢ CV, where N = N; +r.

PROPOSITION 3.2. Let @ : D — £ be a biholomorphic mapping, where D
is a bounded convexr complete Reinhardt domain. Assume that the coefficients
p in the definition of £ satisfy

(3.1)  Pjrrin e Djrin > 1/2
for any possible (j1,...,jn) and k=1,... n.
If #(0) = b, where
(3.2) D1 = - - = bygsr = 0,
then b = 0.

Proof. Werestrict our attention to the case dim £ > 1, keeping in mind
that @ extends to a biholomorphism between some neighbourhoods of D
and & (see [B], also [JP]).
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Suppose that b # 0. Then Ny > 0. In other words, there is (J1,...,7n)
such that

(3.3) bs s #0.

Changing p’s if necessary so that they define the same pseudoellipsoid
€ and satisfy (3.1) we may assume that there are k € {1,...,n — 1} and
(71, -+, Jn) such that

o

(3.4) 2 N ERRY S A # 1 and if k > 2, then 2 ERRY -
e =Dg s 'pj1 =1 and m;l:---jk—l >1
For z € 0D define ¢, : E 5 A\ — Az € D, which is a geodesic in D
(see [JP]).
In view of (3.4) there is a point w € € such that
(3'5) W e = 0 and WS, k1. ?é 0

for ji # jk. Moreover, there is always at least one ji with this property (by
the assumptions on € and the fact that mg o > 1if k> 2).

Since the extension of @ is a homeomorphism between D and &£, there is
¢ such that 1 := @ o ¢, is a geodesic in £ joining b to w (we now treat v
as a mapping on F) and even more precisely

(3.6) $(0)=b,  P(1) =w.

Since (by (3.3)) Vs o # 0, in view of the form of geodesics in &
(or if some of the components are identically 0, in some lower dimensional
pseudoellipsoid, see Remark 2.3) together with (3.5) and (3.6) we get

(3.7) ag e =1,

and for the same reasons,

(3'8) if w§1,~~-,;k7jk+1,~~~,jn % 0, then a]°17~--7;k,jk+17~--7jn =1
We claim that

(3.9) |a;1,~~~,3k—1| < 1.

Since |ap| < 1, we are done in case k = 1. Suppose that (3.9) does not hold
for k > 2. This means, in view of the form of the geodesics in £ and (3.7),
that |oz;1 | = 1 and consequently for all possible (j,...,jn) we get
_ =0. This implies that (see (3.4))

o
seenJk—1

Qo o . . = ]_ or o o . .
Iy Jk—15Jks - 5In ¢]17,.,7]k71’jk7”.’j

(3'10) w;l:---jk—lajkv---ajn ()\)

k—2 —
. . I—A 1- a;1,~~-31>\
i () N (=5)

with the product equal to 1 if & = 2.
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Remark 2.6 together with (3.10) implies that (remember that ag € E)

WS, o Sk 1Tk w;la“-».?k—lzjkw“:jn(1) =0

for all possible (j, ..., jn), which, however, contradicts (3.5) and the remark
following it.

In view of (3.7), (3.8) and Lemma 3.1 applied repeatedly (if necessary
to some lower dimensional pseudoellipsoid) we get

oo o = 1.

-----

with the product equal to 1 if £ = 1.

Since ¢, extends holomorphically to a neighbourhood of 1, so does

Ve o, but since ps o ...ps o is not 1 and is larger than 1/2 we

get a contradiction with (3.11). This completes the proof of Proposition 3.2.

LEMMA 3.3. Let € be as in Proposition 3.2. Let a’ € B, and ¥ € Aut B,
so that W(a') = 0. Define @ : £ — CN by setting for (2/,w') € &, where
2= (21, 2Zm,) € CN and w' € By,

1
1= |2\ Toan7ar
B ) = 2 (s

Pk (2,0 = (W) fork=1,... 1.
Then @ € Aut €.

Proof (asin [JP]). If » = 0 or N; = 0, then we are done. In the
remaining cases, one can easily see that @ is holomorphic and injective. We
know that

1@ (w")|| = cj, (0,%(w))
“a 12)1 = 1l 112) /2
) = (1_ (L —la’]I*)(A — [Jw’]] ))

— *
_cBT(a,w 1= (a2

for w’ € B, (see the formulas for c; in [JP]).

So for (2/,w') € € we get
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mo Mgy

3 (S )Y
i (25
Ji=1 Jn=1
T
+ ) P e (2, w0
t=1

_ 1P
=)

mo mjy

(= (X b))

Ji=1 In=

T
= wif?) + 1,
t=1
which finishes the proof.

Cartan’s theorem implies that any holomorphic automorphism of £ which
preserves the origin is linear. Therefore in view of Proposition 3.2 and
Lemma 3.3 we get a description of all holomorphic automorphisms of £.

4. Biholomorphic equivalence of convex complex ellipsoids. In
this section we restrict our attention to the case of complex ellipsoids. We
write £(p) := {|z1]?P* +...+|2,]?P» < 1} C C", where p = (p1,...,p,) With
p; > 0. From now on assume that n > 1.

In [JP] the following theorem was proved:

THEOREM 4.1. £(p) is biholomorphically equivalent to E(q) iff p = q up
to a permutation.

It was also suggested that the proof could be simplified, at least in the
convex case, by using the formulas for complex geodesics from Theorem 2.2.

Below we prove this theorem in the convex case utilizing the formulas
from Theorem 2.2 and avoiding the use of the theory of the Bergman kernel
(as in [JP]) or Lie theory (see the results in [KU] and [N]). The key fact in
the proof is

THEOREM 4.2. Let @ : £(p) — £(q) be a biholomorphic mapping, where
pj.q; > 1/2 for j =1,...,n. Then ® extends to a homeomorphism between
the closures of the ellipsoids.

This is proved just using the complex geodesics.

It is worth mentioning that it would be desirable to find a theorem
analogous to Theorem 2.2 valid for all complex ellipsoids, not necessarily
convex. A difficulty arising here is that we do not have just one notion
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of complex geodesic (see Theorem 1.2). Therefore we should try to prove
that the mappings defined in Theorem 2.2 describe, in the general case, all
d-geodesics, where d is k, k or c. If this were the case, then Theorem 4.2
and consequently Theorem 4.1 without the assumption that pj;,q; > 1/2
could be proven without any change in the proof. Indeed, the assumption
Pj,q; > 1/2is only used in order to show that every biholomorphic mapping
maps the image of a mapping as in Theorem 2.2 onto an image of the same
form. And this holds for any d-geodesics.

Since in the proof of Theorem 4.1 we shall need the explicit formulas
for complex geodesics, let us reformulate Theorem 2.2 in the special case of
convex ellipsoids in order to have simpler formulas.

THEOREM 2.2’ (see [JP] and Theorem 2.2). A bounded holomorphic map-
ping ¢ = (Y1,...,¢n) : E— C" is a geodesic for £(p) with p; > 1/2 if and
only if either

A—a; 7 (1—aa\ P
4.1 \) = a; J J
( ) 80.7()\) aj(l—OZJA> (1—(10)\) )
or
(4.2) @j(A) =0,

where in the case (4.1)
r; €{0,1} and a; € C, for j=1,...,n, ap € E,
aj € E for j such that rj = 1,a; € E for j such that r; =0,
and (in the case (4.2) we put a; :=0,a; :=0,r; :=0),

n n
a0 =Y la;Pay, 1+ ]aol = lag[? (14 |ay ),
j=1 =1

where the case such that for any j = 1,...,n the mapping p; is either of
the form (4.2) or of the form (4.1) with r; =0 and a; = g is excluded and
the branches of powers are taken so that 1'/7i = 1.

Before we prove Theorem 4.2 let us formulate and prove the following
LEMMA 4.3. Let o, 0 : E — E fork =1,2,... be mappings of the form
A — o Tk(l—ak)\>1/m
4.3 A)=a — ork=0,1,...,
ay am-a(i) (555) 4

where m > 0, i € {0,1}, ax € Cy, Bx € E, and 1Vm =1 ap€ Eifry =1,
ar € E if r, =0. Assume that

(4.4) ©r(0) = ¢o(0) and @ — @o locally uniformly on E.

Moreover, if g is constant (sgro =0, ag = fo), then assume that B, — So.
Then o, — @o uniformly on E and B — Bo.
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Proof. First we prove that

(4.5) ar — ao, Bk — Po,
and, additionally,

(i) if ro = 1, then ry = 1 for k sufficiently large and ay — ay,
(ii) if 7o = 0 and || < 1, then 7 = 0 and ay = ag for k sufficiently
large,
(iii) if 7o = 0, |ap| = 1 and r = 0, then ag = ay,
(iv) if 1o = 0, |ap| = 1 and r, = 1, then —agay = aop.

Consider case (i). The Hurwitz theorem implies that ¢ has a root for k
sufficiently large. So

A—op [(1—apA /m
) = a ,
©r(A) akl—ak)\<1—ﬁk)\>

with o — ag.
Note that

(4.6) there is M < oo such that |ax| < M,

otherwise ¢ (x) would be unbounded for x € E with oy # =z, which contra-
dicts the fact that |¢x(z)] < 1.
In view of (4.4),

vr(0) = —arar = —app.
In case ap # 0 this implies that (together with the convergence ay — ag)
ar — ag and consequently Gr — (p. So assume that ag = 0. Suppose that
ax does not tend to ag or G does not tend to By. Taking subsequences we
can assume that ay — z, Oy — y and © # ag or y # [p and |y| < 1 (we may
choose such a subsequence because |5;| < 1 and (4.6)). But this implies that
a suitable subsequence

TA
A .
or(d) — (1 —gA)t/m
and consequently, in view of (4.4),
A agA

(=g~ (1= BoA)/m
for A € E, which gives x = a¢ and y = (y. That gives a contradiction.
Consider now cases (ii)—(iv). Below for brevity we also write (¢y) for
some subsequence of (¢y).
Consider the subsequence

1— ak)\> 1/m

or(A) = ay (1—/319\
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Then in view of (4.4), ar = ap and we get o, — ag and G — (o, otherwise
we would choose subsequences of ¢ such that ap — = and G — y with
y # Bo or x # «p, again leading to a contradiction after making use of the
convergence of the subsequence ¢y, (note that if ¢ is constant, then x = «y
and in the other case ag # ().

So we are left with the subsequence

A — oy l—ak)\>1/m

4.7 A)=a = ,

(@.7) o) = gt (1222

which, in view of ¢;(0) = —arar = ag = ¢o(0), can be written in the form
1— L) 1 —ap) 1/m

48 )\ =a Sk — )

(45) o) = =25 (1252

First note that |ax| — 1. Otherwise we could choose some subsequence
of ¢y, such that o, — 2 with |z| < 1 but in view of (4.8) we get ¢i(x) — 0
(remember that |G|, |ax| < 1), which contradicts (4.4) (because po(x) # 0).

We want to prove that ap — «ap (it will imply that |ag| = 1, too).
Assume otherwise; then we can assume that for some subsequence oy —
x # ap, |x| = 1 and additionally §; — y. Consequently, in view of (4.8),

) 1—La/1—mn\Ym -2\ "
— pr—
ok T T\ 19 “\1T - ’

and the limit has to equal

1-— Oéo)\> L/m
1 — BoA '
This proves that x = o and y = [y, which settles cases (ii)—(iv).

Before we complete the proof of Lemma 4.3 let us make an auxiliary
remark.

o) = o

Consider the mapping
1 — By
whereﬁE (8,7) is a closed disk in C with center $ € E and radius r > 0 such
that B(8,r) C E.

¥ is continuous, so ¥ (D) is compact. Since Re(1 —Bj)\) > 0 and Re(1 —
BoA) > 0, we get (D) C C\ (—00,0).

Together with (4.5) this shows that

1—a 1/m 1—a@ 1/m -
(4.9) (ak)\) — < ao)\> uniformly on FE.
1= BpA 1= BoA

¥:D:=Fx B(3,r) x E>(8},80,\) — eC,
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Consequently, we get the uniform convergence of ¢y, to ¢y on E if ro=1 or
ro = 0 with |ap| < 1, and the same convergence of the subsequence of ¢y,
such that 7, = 0 if ro = 0 and || = 1. We only need to prove that ¢ with
r, = 1 tends to @g uniformly on E, if 79 = 0 and |ap| = 1.

We want to prove (see (4.8)) that

1_L)\ 1_— 1/m 1_* l/m
(4.10) ag—2% < “’“A> —>a0< aoA) :
T—apA\1 -6\ 1 — BoA
uniformly on E.
Set
_L)\ 1-a 1/m
frN) = ——=~, gk()‘):< O‘“) for k=1,2,...,
1 —arA 1— B\
(4.11)
fo(0) = 1 ) _<1—a0)\>1/m
0 =14 go = 1_50)\ .

In view of (4.9),
(4.12) gr — go  uniformly on E.
For 1/2 < |aj| and |A| <1 we have

A — |ou)?
(4.13) [fr(A) = fo(N)| = |‘ak| ' \11 —|a:|)\\’

and, consequently,

(4.14) |fr(N) — fo(N)] §2(1_|0‘k‘)(1+’ak’)

1 —Jag|[Al

< 4.

To prove (4.10), i.e. that |frgx — fogo| — O uniformly on E, observe that

(4.15) |frgr — fogol < |fx — follgrl + [ follgr — gol-

In view of (4.12) it is sufficient to show that the first summand in (4.15) is
arbitrarily small for Ok, i close enough to Gy, ag.

Fix ¢ > 0. There is a neighbourhood V of a in E such that |gi(\)| < /4
for A € V (by (4.12), the continuity of go, and the equality go(ap) = 0) but
Il fx — follz < 4 (see (4.14)) so on V the first summand of (4.15) behaves
well. For ay, Ok close enough to ag, By we get ||gkllz < M < oo in view
of (4.12). On the other hand, there is 6 > 0 such that |1 —apA| > § for
A€ E\V and for oy close to a. Therefore, if we take ay, close enough to
ag, then in view of (4.13),

[ fi — follgyv < e/M,

which completes the proof of (4.10) and, consequently, the proof of Lem-
ma 4.3.
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Proof of Theorem 4.2. For any z € 90&(p) define ¢.(\) = Az,
which is a complex geodesic. For z € 9&(p) the mapping ¢, := Po ¢, is a
complex geodesic for £(q). Moreover, in view of Theorem 2.2’, we can extend
1, continuously to E. We denote the extension also by 1.. Now we define

= &(z) for z € E(p),
P:E(p)32— {wz(l) for z € OE(p).
Below we prove that @ is the extension we are looking for.
Note that for z € 9E(p),
(4.16) 1,(0) = @(0) = constant.

Moreover, ¢, — ¢, as z — zp, 2 € 0E(p), uniformly on E. Consequently,
for zp € OE(p),

(4.17) Yy, — ., as z — zg, z € 0E(p), locally uniformly on E.
We prove more, namely, that for zg € 9E(p),
(4.18) V., — 1, asz — 29, z € 0E(p), uniformly on F.

To prove (4.18) it is sufficient to prove the uniform convergence on E of
the components of the geodesics. In view of Theorem 2.2’ the components
have the form as in Lemma 4.3 (or are identically 0), therefore we are done in
the cases when ()., ), is not constant. Take 1 < jy, < n such that (¢, );, =
for some A € E. There is certainly 1 < j; < n such that (¢,,);, is not
constant. Since, in view of Theorem 2.2’, we have for z close to zg,

A—ay .\t (1= A\ Y
i () = a; . J1,% J1,% ’
(Q,Z) )]1( ) ale (1_aj1,z)\) <1_a07z)\)
where r;, . € {0,1} and the remaining coefficients are as in Theorem 2.2',

in view of (4.17) and Lemma 4.3 we get o, — o2, as z — 2o, 2 € 0E(p),
which implies that

(4.19) lap .| <0 <1 for z close to zp.

Consider the case A = 0.
Considering only the points z # 2o with (¢.);, # 0 we have as above

A=\ (1 —a, A\
4.2 Do) = a0 [ Sz %oz )
a2 a0 —a(fs) ()
We claim that
(4.21) aj,- — 0 asz— 2, z € 0E(p).

Note first that r;, . = 1, otherwise we would have a;, . = 0 (see (4.16)).
Also, in view of (4.16), cj,. = 0. One easily sees that taking « € E,, the
convergence (¢,(z));, — 0 implies (4.21). Finally, in view of (4.19), (4.21)
and the fact that a;, . = 0 we get the desired convergence.
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If A #£ 0, then we put

(00 s = a0

Since ap . — v z,, Lemma 4.3 settles this case.
This completes the proof of (4.18).

Considering neighbourhoods of zy in £(p) of the type
(4.22) V., ={¢.(t) for 1 >t >s, z€ IE(p),

z in some neighbourhood of 2y},

1 - ajo,zo)‘ Y ddo
1-— 50720)\ )

for some s > 0, we see that for any neighbourhood U of &(z) in £(q) there
is a set V of the type (4.22) such that ®(V) C U (use (4.18)).

Consequently, @ is continuous. Compactness of @ and % implies the
surjectivity of P,

AE\p/lying the same reasoning to ~! we get the continuity of the exten-
sion @—1. The injectivity of & (and simultaneously of #—1) is a consequence
of continuity.

In the proof of Theorem 4.1 we shall need the following technical lemma:

LEMMA 4.4. Assume that for some fized a,b,c,d € C and 1 # s > 0 we

have
a+bx [ A—a\ [1-a\
c+dxs  \1—a\ 1 -8\

for X from some nonempty open set in E, where o € E, 3 € E, t > 0 and
the functions appearing in the equality are not constant. Then t = s and
a=06=0.

Proof. Differentiate both sides of the assumed equality, then eliminate
the powers of expressions which are not monomials; comparing the coeffi-
cients of the powers of A gives the desired result. We omit the tedious but
elementary calculations.

Proof of Theorem 4.1 in the convex case. Let & : E(p) —
€(q) be a biholomorphic mapping, which in view of Theorem 4.2 extends
to a homeomorphism between the closures of the ellipsoids. Therefore there
are open domains () # Uy C E(p), 0 # Uz C E(q) such that Uy (respectively
Us) is the intersection of some Euclidean ball in C™, not lying entirely in
E(p) (respectively £(q)), with E(p) (respectively £(q)), Uy and U, do not
intersect any axis in the respective ellipsoids and @¢(U;) C Us. Moreover,
there are domains () # (71, (72 C B,, such that the mappings

(423) 22 U1 32— (2,...,2P") e U, 22: U3 2 — (20,...,20) € U,

are biholomorphic.
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Denote the inverse mappings to zP and z? by 2z'/? and 2'/? and set
(4.24) Fi=21000z"" onU.

Then F' is a biholomorphic mapping onto the image, which extends to a
homeomorphism between the closures such that the extension maps a part
of the boundary lying in 9B,, into 0B,,.

Rudin’s theorem (obtained in [R] with relatively simple tools, owing to
which our proof avoids any sophisticated methods) implies that

(4.25)  F'is a restriction of a holomorphic automorphism of B, to (71,
which, in view of (4.24), gives
(4.26) 2M10F oz =& on Uy, where F € Aut B,,.

Consider now the geodesics (see Theorem 2.2') for £(p) of the type
(4.27) PlioArysAn)(A) 1= (A1, oy g1, Ao A Aoty -5 An),s
where 1 < jo < n and (A;,...,4,) € 0(p) is taken from some nonempty
open set in OE(p) chosen so that
(4.28) ©ljo,Ar,...A,) (V) C U for some open set ) #V C E.

Note that A; # 0 for j = 1,...,n and we can take (A;,..., A
from some open set in E(p1,...,Djps---,Pn)-
We consider two cases depending on the form of F":

(429) F=CoF,, where0#b¢€ B, and
_ 1 [BlP(zy/1 — [IBlI? — b) + (2, b)b(1 — /1 — [[b]]?)
Fp(2) = I ,
6]l 1—(z,b)

where (-, ) is the standard scalar product in C", or

(4.30) F=0C,

where in both cases C' = [cg1]1<k,1<n Is @ unitary mapping.

Below we prove that in both cases the following property holds:

(4.31)  if pj, # 1, then there is 1 < kg < n such that g, = pj,; for jo # j1
with pj, = pj, # 1 there are 1 < kg, k1 < n such that kg # k1 and
dko = qky = Pjo-

Note that if we assume (4.31), then applying the same reasoning to ¢!
we get p = q, up to a permutation.
Therefore, it is sufficient to prove (4.31) in the cases (4.29) and (4.30).
In view of (4.26) we have
(4.32)  Fo(pgo,ar,...an M) =210 8(p(jo a,,.,4,) () forAeV.
Fix jo such that pj;, # 1.

- An)

jO"'
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In the case (4.29), for j # jo,
(433) (Fb(gp(jo,Al,...,An)()‘)p))j
_ 1 ( 157[1 (A5 /1 — [[b]|2 = bj)
1612 \ 1 — Zl;ﬁjo APy — A?go b, APio
 Cran A ATy T
1 Zl;éjo A;;?z b — A?(J]o bjo \Pio

and

(4.34)  (Fo(Lo,Ar,.,a) (NP0
! <||62||<A§5°Apfo =TI - b,)
1012\ 1 =37, APbr — A0 bj, AP

(310 AP By + AT APio )bji (1 — /T — ||bu2>>

+ = —
1= 37 Al"b — AJ7bj, APio
Consequently, for £k =1,...,n we have
1 Dl)\ij —|—D2
4.35 F(pg; MNP e = . — — ,
( ) ( (@(Jo,Ah...,An)( ) ))k ||bH2 ]-_Zl#jo A;;)lbl —A?gobjo)\pjo
where
Dy = (3 ensby ) (%8 (1~ /T 12 + cuo DI A% /T T2,
J
Dy = [[b]* > exs (AP /T =[] = bs) — crjo |1b]|°b5,
J#jo
+ (2 APB) Y bjens(1 = VI=THIP).
1#jo J

The properties of ¢, a,,...,4,) and Theorem 2.2" imply that & o
$(jo,Ar,...,A,) 18 @ complex geodesic of the form

)\ — O(k Thdk 1 — ak)\
4. Doy (X)) = af*
(4.36) (P o @(jo, A1, 4k (A) = ay (1 _ ak}\> 1—aor )’

where 7, oy, ag, a have the properties as in Theorem 2.2’.

Comparing the expressions and the exponents in (4.35) and (4.36) we
see in view of Lemma 4.4 that (®o ‘P(jo,Al,...,An))Zk can be nonconstant only
for k such that

(4.37) qr =Dpj, Wwithry=1,a;=ag=0.
We then have b;, = 0 and also
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(4.38) D1 # 0 and Dy = 0 for k such that (@ o ¢, a,,.. 4,))¢ is not
constant, Dy = 0 for k such that g # pj,.

From (4.38) we conclude that

(4.39)  crj, # 0 for k with (Do @, a,....,4,))F nonconstant and cyj, =0
for k with qi # pj,-
Hence for any j with p; # 1 we have
(4.40) bj =0 and ci; =0 whenever g # p;.
Since F' o ©(jy.4,,...,4,) is not a constant mapping for any (Ay,...,A,),
°0

there is ko such that (& o ‘P(jo,A1,~~~,An))Zz

Aj., ..., Ay,) from some open set in E(p1,...,Pjy,---,Pn)). Then (4.38) im-
plies that

(441) 3 ena (IPIRAY VT =0 ~ b))
J#Jo
+(DArm)b0 - VI=P) =0

l#jo

is not constant for (Ay,...,

for (Ay,...,A;,,...,A,) from an open set. (4.41) is in view of (4.40) equiv-
alent to
Yo cnsllblP AT /1T b]?
J#do
Qry=p;7#1

+ 27 et (0174, V/T= TP ~ b))

7
+ (32 Ab)b - VT=TBR)) =0
I#350
pi=1

for the numbers A; as above, which implies that

Z CkoijHQA?j 1 — ||6]|?> = constant
J#jo
QkOZPj?él

for 0 £ A?j with p; = qi,,J # jo, taken from some nonempty set.
Therefore
(4.42) Chojo 70 and  cpy; =0 for j # jo with qx, = p; = pj,-

For jo # ji1 with p;, = pj, # 1 we see, in view of (4.42), that there are
ko # k1 such that qr, = qx, = pj,-
This completes the case (4.31).
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In the case (4.30) we have
(4.43) (F (0o Armt) VD = D exj AT + g AT Ao
J#jo
As before (4.43) has to equal (4.36), which implies that (see Lemma 4.4)
(4.43) is not constant only for k such that

(4.44) g =Dpj, and rp=1a=ay=0.
Take ko as before such that (4.43) is not constant for (Ay,..., A4 ,,...
., Ay) from a nonempty open set in £(p1,...,Pj,,--.,Pn). Then we easily
conclude that
> riAy =0,
J#jo

which implies that ci,; = 0 for j # jo, so ci,j, 7 0, which in view of the
fact that C' is unitary completes the proof of (4.31).
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