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Effective formulas for complex geodesics
in generalized pseudoellipsoids with applications

by W lodzimierz Zwonek (Kraków)

Abstract. We introduce a class of generalized pseudoellipsoids and we get formulas
for their complex geodesics in the convex case. Using these formulas we get a description
of automorphisms of the pseudoellipsoids. We also solve the problem of biholomorphic
equivalence of convex complex ellipsoids without any sophisticated machinery.

1. Introduction. For any domain D ⊂ Cn, w, z ∈ D we define

k̃D(w, z) = inf{p(λ1, λ2) : there is a holomorphic mapping
ϕ : E → D such that ϕ(λ1) = w,ϕ(λ2) = z},

cD(w, z) = sup{p(ϕ(w), ϕ(z)) : ϕ : D → E is a holomorphic mapping},
kD is the largest pseudodistance on D not exceeding k̃D,

where E is the unit open disk in C and p is the Poincaré distance on E.
k̃D is called the Lempert function, and cD (respectively kD) is called the

Carathéodory (respectively Kobayashi) pseudodistance of D.
Since k̃D, kD, cD are often not very easy to handle we shall often use the

associated functions with the same properties: d∗D = tanh(dD), where d is
k̃, k or c.

Below writing d we mean c, k or k̃.

Definition 1.1. For a domain D we say that a mapping ϕ : E → D is
a d-geodesic for D if dD(ϕ(λ1), ϕ(λ2)) = p(λ1, λ2) for any λ1, λ2 ∈ E.

It is known that for any domain D ⊂ Cn,

(1.1) cD ≤ kD ≤ k̃D.

If D is a convex domain, then we have equality:

1991 Mathematics Subject Classification: Primary 32H15.
Key words and phrases: complex geodesics, generalized pseudoellipsoids, biholomor-

phic equivalence of ellipsoids.

[261]



262 W. Zwonek

Theorem 1.2 (see [L]). If D ⊂ Cn is a convex domain, then

(1.2) cD = k̃D.

Moreover , if D is additionally bounded , then for all (w, z) ∈ D × D with
w 6= z there is a k-geodesic ϕ : E → D such that w, z ∈ ϕ(E) (certainly this
mapping is also a k̃- and c-geodesic).

In view of Theorem 1.2 we can introduce the notion of a complex geodesic
for convex domains because all the geodesics that we consider are in this
case identical.

Below we define a class of domains, which are in the scope of our in-
terest. Fix n ∈ N∗. Assume that m0 is a positive natural number; for
j = 1, . . . ,m0 consider numbers mj ∈ N∗. Next, we assume that we have
positive natural numbers {mj,k}

mj

k=1, where j = 1, . . . ,m0; and, generally,
for k ≤ n − 1 we have {mj1,...,jk}

mj1,...,jk−1
jk=1 ⊂ N∗. Given a system of

m’s we consider a system of positive numbers given as follows: {pj}m0
j=1,

{pj,k}
mj

k=1, where j = 1, . . . ,m0; and, generally, {pj1,...,jk}
mj1,...,jk−1
jk=1 , where

k = 1, . . . , n− 1.
Let us define a generalized complex pseudoellipsoid E by

E :=
{
z :

m0∑
j1=1

(
. . .
(mj1,...,jn−1∑

jn=1

|zj1,...,jn |2
)pj1,...,jn−1

. . .
)pj1

< 1
}
,

where m’s and p’s are as above.
Let us introduce the following convention: if in the sequel we have some

letter with a system of subscripts (j1, . . . , jk), where k = 0, then we mean
the same letter with subscript 0. For a point z ∈ CN , where

N =
m0∑
j1=1

(
. . .
(mj1,...,jn−2∑

jn−1=1

mj1,...,jn−1

)
. . .
)
,

writing z = (z1, . . . , zm0) we mean zj = (zj,1, . . . , zj,mj ) for j = 1, . . . ,m0

and generally zj1,...,jk−1 = (zj1,...,jk−1,1, . . . , zj1,...,jk−1,mj1,...,jk−1
) for k =

2, . . . , n and zj1,...,jn ∈ C. Additionally, we put pj1,...,jn := 1 and p0 = 1.
We also use the same convention for mappings going to CN . For conve-

nience set, for k = 1, . . . , n and fixed (j1, . . . , jk−1),

Jj1,...,jk−1(z)

:=
mj1,...,jk−1∑

jk=1

(
. . .
(mj1,...,jn−1∑

jn=1

|zj1,...,jn |2
)pj1,...,jn−1

. . .
)pj1,...,jk

,
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for z ∈ CN . Certainly,

Jj1,...,jk−1(z) =
mj1,...,jk−1∑

jk=1

Jj1,...,jk(z)pj1,...,jk .

Note that for n = 1, E is an m0-dimensional Euclidean ball, which we
denote by Bm0 . If n = 2, then E is a generalized complex ellipsoid considered
for instance in [KKM] and [DP] (if mj = 1 for j = 1, . . . ,m0, then we have
usual complex ellipsoids).

Below we only consider pseudoellipsoids such that

(1.3) pj1,...,jn . . . pj1,...,jk ≥ 1/2

for k = 1, . . . , n− 1 and all possible (j1, . . . , jn).

Lemma 1.3. A generalized pseudoellipsoid E is convex iff E may be defined
by coefficients pj1,...,jk satisfying (1.3).

P r o o f. To prove sufficiency we verify that for j1 = 1, . . . ,m0 the func-
tion J

pj1
j1

is convex on CN .

Using induction on k we prove that J
pj1,...,jk
j1,...,jk

is convex for all k, (j1, . . .
. . . , jk) and any system of pj1,...,jt with t = n, . . . , k satisfying (1.3).

If k = n− 1, then

J
pj1,...,jn−1
j1,...,jn−1

(z) = ‖zj1,...,jn−1‖
2pj1,...,jn−1 ,

where the exponent is at least 1, which completes the first inductive step.
Assume that we have proved convexity for k, 2 ≤ k ≤ n−1, and consider

the case k − 1. For t ∈ [0, 1] we have

J
pj1,...,jk−1
j1,...,jk−1

(tz + (1− t)w) =
(mj1,...,jk−1∑

jk=1

J
pj1,...,jk
j1,...,jk

(tz + (1− t)w)
)pj1,...,jk−1

.

Let us put

p̃j1,...,jk := min
jn,...,jk+1

{2pj1,...,jn . . . pj1,...,jk+1},

p̃j1,...,jk−1 := min
jn,...,jk

{2pj1,...,jn . . . pj1,...,jk}.

Using the inductive assumption for J
1/p̃j1,...,jk
j1,...,jk

, the fact that p̃j1,...,jkpj1,...,jk/
p̃j1,...,jk−1 and p̃j1,...,jk−1pj1,...,jk−1 are at least 1 (so suitable functions are
convex) and the triangle inequality for the norm ‖(x1, . . . , xs)‖q :=
(|x1|q + . . .+ |xs|q)1/q, where s = mj1,...,jk−1 , q = p̃j1,...,jk−1 (q is at least 1)
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we get(mj1,...,jk−1∑
jk=1

J
1

p̃j1,...,jk
p̃j1,...,jk

pj1,...,jk

j1,...,jk
(tz + (1− t)w)

)pj1,...,jk−1

≤
((mj1,...,jk−1∑

jk=1

((tJ
1

p̃j1,...,jk
j1,...,jk

(z) + (1− t)

× J
1

p̃j1,...,jk
j1,...,jk

(w))
p̃j1,...,jk

pj1,...,jk
p̃j1,...,jk−1 )p̃j1,...,jk−1

) 1
p̃j1,...,jk−1

)p̃j1,...,jk−1pj1,...,jk−1

≤
((mj1,...,jk−1∑

jk=1

(tJ

pj1,...,jk
p̃j1,...,jk−1
j1,...,jk

(z)

+ (1− t)J
pj1,...,jk

p̃j1,...,jk−1
j1,...,jk

(w))p̃j1,...,jk−1

) 1
p̃j1,...,jk−1

)p̃j1,...,jk−1pj1,...,jk−1

≤
(
t
(mj1,...,jk−1∑

jk=1

J
pj1,...,jk
j1,...,jk

(z)
) 1

p̃j1,...,jk−1

+ (1− t)
(mj1,...,jk−1∑

jk=1

J
pj1,...,jk
j1,...,jk

(w)
) 1

p̃j1,...,jk−1

)p̃j1,...,jk−1pj1,...,jk−1

≤ tJ
pj1,...,jk−1
j1,...,jk−1

(z) + (1− t)J
pj1,...,jk−1
j1,...,jk−1

(w),

which completes the proof of sufficiency.
Suppose now that E is convex and cannot be defined by p’s satisfying

(1.3). Consequently, we can find (changing p’s if necessary) k ∈ {1, . . . , n−1}
and (◦1, . . . , 

◦
n) such that

p◦1,...,
◦
n
. . . p◦1,...,

◦
k
< 1/2 and m◦1,...,

◦
k−1

> 1.

There is a subscript (◦1, . . . , 
◦
k−1, jk, . . . , jn) of p, where jk 6= ◦k. Note that

the intersection of the linear subspace spanned by the (◦1, . . . , 
◦
n)th and the

(◦1, . . . , 
◦
k−1, jk, . . . , jn)th vectors from the standard vector base of CN with

E is linearly isomorphic to

{(λ1, λ2) ∈ C2 : |λ1|2q1 + |λ2|2q2 < 1},
where q1 = p◦1,...,

◦
n
. . . p◦1,...,

◦
k
, q2 = p◦1,...,

◦
k−1,jk,...,jn

. . . p◦1,...,
◦
k−1,jk

, which
is not convex—a contradiction.

In view of Lemma 1.3, for generalized pseudoellipsoids with (1.3) we
may consider complex geodesics. In the sequel, unless otherwise stated, we
always assume that E satisfies (1.3).
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In Chapter 2 we formulate and prove a theorem giving explicit formulas
for complex geodesics in convex generalized pseudoellipsoids. The idea of the
proof is identical to the one presented in [JPZ] (see also [JP]), where these
formulas are obtained for convex complex ellipsoids. Since, however, some
parts of the proof are a little more subtle and tedious than those presented
in the above mentioned works we give the whole proof. Let us remark here
that so far very few effective formulas for complex geodesics are known.
Besides the above mentioned works let us mention the papers [BFKKMP],
[P], [Ge], [DT] dealing with formulas for complex geodesics in special cases
of convex ellipsoids.

In Chapter 3 we prove a proposition which allows us to describe all
automorphisms of E (however, not for all convex E). The proof is based
on the explicit formulas for complex geodesics and an extension theorem
for biholomorphic mappings between bounded complete Reinhardt domains
(see [JP], [B]).

Finally, in Chapter 4, we restrict our attention to a special case of E
and we solve the problem of biholomorphic equivalence of convex complex
ellipsoids by only using the formulas for complex geodesics but avoiding the
use of the theorem on holomorphic extension of biholomorphic mappings
between ellipsoids to their closures. This gives an answer to a question in
[JP]. Let us underline once more that in this proof we avoid the use of the
theory of the Bergman kernel (as in [JP]) or Lie theory (as in [KU] and [N]).

2. Explicit formulas for convex generalized pseudoellipsoids. As
already announced we assume in this chapter that E satisfies condition (1.3).

Lemma 2.1. Let ϕ : E → CN be a bounded , nonconstant , holomorphic
mapping such that ϕj1,...,jn 6≡ 0 for all possible (j1, . . . , jn). Then ϕ is a
geodesic in E iff there are mappings hj1,...,jn ∈ H1(E,C) and % : ∂E → R>0

such that

(2.1)
1
λ
h∗j1,...,jn(λ)

= %(λ)
( n∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)
ϕ∗j1,...,jn(λ)

a.e. on ∂E,

(2.2) J0(ϕ∗(λ)) = 1 a.e. on ∂E,

with the product equal to 1 if n = 1.

Here H1 denotes the Hardy space, ϕ∗j1,...,jn and h∗j1,...,jn stand for non-
tangential boundary values.
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P r o o f. This follows from the fact that the unit outer normal vector
ν(z) ∈ CN to ∂E at z ∈ ∂E ∩ (C∗)N is given by the formula

νj1,...,jn(z) = %̃(z)
( n∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(z))pj1,...,jk−1−1
)
zj1,...,jn ,

with the product equal to 1 if n = 1, where %̃(z) > 0, and from Corol-
lary 8.4.5 of [JP].

Theorem 2.2. A bounded holomorphic mapping ϕ : E → CN such that
ϕj1,...,jn 6≡ 0 for all possible (j1, . . . , jn) is a geodesic in E iff

ϕj1,...,jn(λ) =
(
λ− αj1,...,jn
1− αj1,...,jnλ

)sj1,...,jn

×
( n∏
k=1

(
aj1,...,jk

(
1− αj1,...,jkλ

1− αj1,...,jk−1λ

)) 1
pj1,...,jk

...pj1,...,jn

)
,

where sj1,...,jn ∈ {0, 1}, aj1,...,jk ∈ C∗, αj1,...,jk ∈ E for all possible (j1, . . .
. . . , jk), α0 ∈ E; if additionally sj1,...,jn = 1, then αj1,...,jn ∈ E; moreover ,
if |αj1,...,jk−1 | = 1, then αj1,...,jk = αj1,...,jk−1 for all jk = 1, . . . ,mj1,...,jk−1 ;
also, the following relations hold for k = 1, . . . , n:

αj1,...,jk−1 =
mj1,...,jk−1∑

jk=1

|aj1,...,jk |2αj1,...,jk ,(2.3)

1 + |αj1,...,jk−1 |2 =
mj1,...,jk−1∑

jk=1

|aj1,...,jk |2(1 + |αj1,...,jk |2).(2.4)

Finally , the case sj1,...,jn = 0 and αj1,...,jk = α0 for all possible (j1, . . . , jk)
is excluded.

P r o o f. First we prove that the above formulas are really formulas for
complex geodesics. For those λ ∈ E for which it makes sense, define

Pj1,...,jn,l(λ) :=
l∏

k=1

(
aj1,...,jk

(
1− αj1,...,jkλ

1− αj1,...,jk−1λ

)) 1
pj1,...,jk

...pj1,...,jn

for l = 1, . . . , n and, additionally, Pj1,...,jn,0(λ) := 1.
We also put

Qj1,...,jl := P
pj1,...,jn ...pj1,...,jl+1
j1,...,jn,l

for l = 0, . . . , n− 1.
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Since the right-hand side does not depend on the choice of (jl+1, . . . , jn),
Qj1,...,jl is well defined.

We have the following equality a.e. on ∂E:

Jj1,...,jn−1(ϕ∗(λ)) =
mj1,...,jn−1∑

jn=1

|ϕ∗j1,...,jn(λ)|2

= |Qj1,...,jn−1(λ)|2
mj1,...,jn−1∑

jn=1

|aj1,...,jn |2
|1− αj1,...,jnλ|2

|1− αj1,...,jn−1λ|2
,

which in view of (2.3) and (2.4) equals |Qj1,...,jn−1(λ)|2. For the same reason,
for almost all λ ∈ ∂E we have

Jj1,...,jn−2(ϕ∗(λ))

=
mj1,...,jn−2∑
jn−1=1

(Jj1,...,jn−1(ϕ∗(λ)))pj1,...,jn−1

=
mj1,...,jn−2∑
jn−1=1

|Qj1,...,jn−1(λ)|2pj1,...,jn−1

= |Qj1,...,jn−2(λ)|2
mj1,...,jn−2∑
jn−1=1

|aj1,...,jn−1 |2
|1− αj1,...,jn−1λ|2

|1− αj1,...,jn−2λ|2

= |Qj1,...,jn−2(λ)|2,

and generally, for almost all λ ∈ ∂E,

(2.5) Jj1,...,jl−1(ϕ∗(λ)) = |Qj1,...,jl−1(λ)|2

for l = 1, . . . , n. For l = 1 we thus get (2.2). To prove (2.1), define

hj1,...,jn(λ) :=
(1− ᾱj1,...,jnλ)2

Pj1,...,jn,n(λ)

×
(

λ− αj1,...,jn
1− αj1,...,jn−1λ

)1−sj1,...,jn n∏
k=1

pj1,...,jk |aj1,...,jk |2

for λ ∈ E and

%(λ) := |1− α0λ|2 for λ ∈ ∂E.

In view of the assumptions on αj1,...,jk and (1.3), hj1,...,jn ∈ H∞(E). We
want to prove that a.e. on ∂E we have
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1
λ

(1− αj1,...,jnλ)2

(
λ− αj1,...,jn
1− αj1,...,jnλ

)1−sj1,...,jn n∏
k=1

pj1,...,jk |aj1,...,jk |2

= %(λ)
( n∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

×
(
λ− αj1,...,jn
1− αj1,...,jnλ

)sj1,...,jn

|Pj1,...,jn,n(λ)|2.

By (2.5) this is equivalent to

(2.6)
1
λ

(1− αj1,...,jnλ)(λ− αj1,...,jn)
n∏
k=1

pj1,...,jk |aj1,...,jk |2

= %(λ)
( n∏
k=2

pj1,...,jk−1 |Qj1,...,jk−1(λ)|2(pj1,...,jk−1−1)
)
|Pj1,...,jn,n(λ)|2.

But in view of the definition of Pj1,...,jn,k and Qj1,...,jk the exponent of the
expression ∣∣∣∣aj1,...,jk( 1− αj1,...,jkλ

1− αj1,...,jk−1λ

)∣∣∣∣
for k = 1, . . . , n− 1 on the right-hand side of (2.6) is

2
pj1,...,jk . . . pj1,...,jn

+
2(pj1,...,jk − 1)

pj1,...,jk

+
2(pj1,...,jk+1 − 1)
pj1,...,jkpj1,...,jk+1

+ . . .+
2(pj1,...,jn−1 − 1)

pj1,...,jk . . . pj1,...,jn−1

,

which equals 2. One can also easily see that the exponent is the same for
k = n. Therefore, (2.6) reduces to

1
λ

(1− αj1,...,jnλ)(λ− αj1,...,jn) = |1− α0λ|2
n∏
k=1

∣∣∣∣ 1− αj1,...,jkλ
1− αj1,...,jk−1λ

∣∣∣∣2,
i.e.

1
λ

(1− αj1,...,jnλ)(λ− αj1,...,jn) = |1− αj1,...,jnλ|2,

which is obviously true for λ ∈ ∂E.
To prove the converse implication one can take hj1,...,jn as in Lemma 2.1.

In view of Lemma 8.4.6 of [JP] (see also [Ge]) we get, for λ ∈ E,

(2.7) ϕj1,...,jn(λ)hj1,...,jn(λ) = rj1,...,jn(λ− αj1,...,jn)(1− αj1,...,jnλ),
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(2.8)
mj1,...,jk−1∑

jk=1

. . .

mj1,...,jn−1∑
jn=1

ϕj1,...,jn(λ)hj1,...,jn(λ)

= rj1,...,jk−1(λ− αj1,...,jk−1)(1− αj1,...,jk−1λ),

where k = 1, . . . , n; rj1,...,jp > 0, αj1,...,jp ∈ E for p = 0, . . . , n and all
possible (j1, . . . , jp); if ϕj1,...,jn has a root in E, then we put sj1,...,jn := 1,
otherwise sj1,...,jn := 0.

We see that if sj1,...,jn = 1, then αj1,...,jn ∈ E. From (2.7) and (2.8)
we get

rj1,...,jk−1αj1,...,jk−1 =
mj1,...,jk−1∑

jk=1

rj1,...,jkαj1,...,jk ,(2.9)

rj1,...,jk−1(1 + |αj1,...,jk−1 |2) =
mj1,...,jk−1∑

jk=1

rj1,...,jk(1 + |αj1,...,jk |2),(2.10)

for k = 1, . . . , n and all possible (j1, . . . , jk−1).
From (2.9) and (2.10) we conclude that a.e. on ∂E we have

(2.11)
mj1,...,jk−1∑

jk=1

rj1,...,jk
rj1,...,jk−1

∣∣∣∣ 1− αj1,...,jkλ
1− αj1,...,jk−1λ

∣∣∣∣2 = 1.

Hence we easily see that

(2.12) if |αj1,...,jk−1 | = 1, then αj1,...,jk = αj1,...,jk−1

for jk = 1, . . . ,mj1,...,jk−1 ;

in particular,

(2.13) if |α0| = 1, then αj1,...,jp = α0

for p = 1, . . . , n and all possible (j1, . . . , jp).

In view of (2.7) and Lemma 2.1 we see that a.e. on ∂E,

(2.14) %(λ)
( n∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)
|ϕ∗j1,...,jn(λ)|2

= |h∗j1,...,jn(λ)ϕ∗j1,...,jn(λ)| = rj1,...,jn |1− αj1,...,jnλ|2.

Summing now the left-hand side of (2.14), for (j1, . . . , jn−1) fixed, with
respect to jn from 1 to mj1,...,jmj1,...,jn−1

we get a.e. on ∂E (we also
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use (2.8))

%(λ)
( n−1∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

× pj1,...,jn−1

(mj1,...,jn−1∑
jn=1

|ϕ∗j1,...,jn(λ)|2
)pj1,...,jn−1

= %(λ)
mj1,...,jn−1∑

jn=1

(( n∏
k=2

pj1,...,jk−1

× (Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)
|ϕ∗j1,...,jn(λ)|2

)
=
∣∣∣mj1,...,jn−1∑

jn=1

h∗j1,...,jn(λ)ϕ∗j1,...,jn(λ)
∣∣∣

= rj1,...,jn−1 |1− ᾱj1,...,jn−1λ|2.

Using again this procedure (this time summing the left-hand side of the
previous equality w.r.t. jn−1 with (j1, . . . , jn−2) fixed) we get

%(λ)
( n−2∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

× pj1,...,jn−2 min
jn−1
{pj1,...,jn−1}(Jj1,...,jn−2(ϕ∗(λ)))pj1,...,jn−2

≤ %(λ)
( n−2∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

× pj1,...,jn−2(Jj1,...,jn−2(ϕ∗(λ)))pj1,...,jn−2−1

×
(mj1,...,jn−2∑

jn−1=1

pj1,...,jn−1

(mj1,...,jn−1∑
jn=1

|ϕ∗j1,...,jn(λ)|2
)pj1,...,jn−1

)

= %(λ)
mj1,...,jn−2∑
jn−1=1

mj1,...,jn−1∑
jn=1

(( n∏
k=2

pj1,...,jk−1

× (Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)
|ϕ∗j1,...,jn(λ)|2

)
=
∣∣∣mj1,...,jn−2∑

jn−1=1

mj1,...,jn−1∑
jn=1

h∗j1,...,jn(λ)ϕ∗j1,...,jn(λ)
∣∣∣

= rj1,...,jn−2 |1− αj1,...,jn−2 |2
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≤ %(λ)
( n−2∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

× pj1,...,jn−2 max
jn−1
{pj1,...,jn−1}(Jj1,...,jn−2(ϕ∗(λ)))pj1,...,jn−2 .

And, generally,

%(λ)
( l∏
k=2

pj1,...,jk−1

(
Jj1,...,jk−1(ϕ∗(λ))

)pj1,...,jk−1−1
)

(2.15)

× pj1,...,jl min
jn,...,jl+1

{pj1,...,jn . . . pj1,...,jl+1}(Jj1,...,jl(ϕ∗(λ)))pj1,...,jl

≤ rj1,...,jl |1− αj1,...,jlλ|2

≤ %(λ)
( l∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

× pj1,...,jl max
jn,...,jl+1

{pj1,...,jn . . . pj1,...,jl+1}(Jj1,...,jl(ϕ∗(λ)))pj1,...,jl ,

for l = 2, . . . , n and moreover,

(2.16) pj1%(λ) min
jn,...,j2

{pj1,...,jn . . . pj1,j2}(Jj1(ϕ∗(λ)))pj1

≤ rj1 |1− αj1λ|2 ≤ pj1%(λ) max
jn,...,j2

{pj1,...,jn . . . pj1,j2}(Jj1(ϕ∗(λ)))pj1

and

(2.17) %(λ) min
jn,...,j1

{pj1,...,jn . . . pj1}

= %(λ) min
jn,...,j1

{pj1,...,jn . . . pj1}(J0(ϕ∗(λ)))

≤ r0|1− α0λ|2 ≤ %(λ) max
jn,...,j1

{pj1,...,jn . . . pj1}(J0(ϕ∗(λ)))

= %(λ) max
jn,...,j1

{pj1,...,jn . . . pj1}.

Set

Rj1,...,jl−1(λ) := %(λ)
l∏

k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1

for λ ∈ ∂E a.e., l = 2, . . . , n, and additionally R0(λ) := %(λ). Then it is
clear that

(2.18) Rj1,...,jl(λ) = Rj1,...,jl−1(λ)pj1,...,jl(Jj1,...,jl(ϕ
∗(λ)))pj1,...,jl

−1

for l = 1, . . . , n− 1. From (2.15) and (2.16) we get

Rj1,...,jl−1(λ)pj1,...,jl min
jn,...,jl+1

{pj1,...,jn . . . pj1,...,jl+1}(2.19)

×(Jj1,...,jl(ϕ
∗(λ)))pj1,...,jl
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≤ rj1,...,jl |1− ᾱj1,...,jlλ|2

≤ Rj1,...,jl−1(λ)pj1,...,jl
× max
jn,...,jl+1

{pj1,...,jn . . . pj1,...,jl+1}(Jj1,...,jl(ϕ∗(λ)))pj1,...,jl ,

so in other words,

(2.20)
rj1,...,jl |1− αj1,...,jlλ|2

Rj1,...,jl−1(λ)pj1,...,jl
· 1
Mj1,...,jl

≤ Jj1,...,jl(ϕ∗(λ))pj1,...,jl ≤ rj1,...,jl |1− αj1,...,jlλ|2

Rj1,...,jl−1(λ)pj1,...,jl
· 1
Nj1,...,jl

,

for l = 1, . . . , n − 1, where Mj1,...,jl (respectively Nj1,...,jl) is the maxi-
mum (respectively minimum) from the earlier formula;M0 (respectivelyN0)
equals max (respectively min) with respect to j1, . . . , jn and Mj1,...,jn :=
Nj1,...,jn := 1.

From (2.14) and (2.18) we get, a.e. on ∂E,

|ϕ∗j1,...,jn(λ)|2 =
rj1,...,jn |1− αj1,...,jnλ|2

Rj1,...,jn−1(λ)

=

rj1,...,jn

M̃j1,...,jnpj1,...,jn

|1− αj1,...,jnλ|2

Rj1,...,jn−2(λ)pj1,...,jn−1(Jj1,...,jn−1(ϕ∗(λ)))pj1,...,jn−1−1 ,

where we put M̃j1,...,jn := 1; in view of (2.20) the last expression is at least

rj1,...,jn

M̃j1,...,jnpj1,...,jn

|1− αj1,...,jnλ|2

Rj1,...,jn−2(λ)pj1,...,jn−1

×
(M̃j1,...,jn−1pj1,...,jn−1Rj1,...,jn−2(λ))

1− 1
pj1,...,jn−1

(rj1,...,jn−1 |1− αj1,...,jn−1λ|2)
1− 1

pj1,...,jn−1

,

where we put

M̃j1,...,jk :=
{
Nj1,...,jk if pj1,...,jk ≥ 1,
Mj1,...,jk if pj1,...,jk < 1.

We define Ñj1,...,jk by the same formula, but with the conditions inter-
changed (so it equals Nj1,...,jk if pj1,...,jk < 1). In other words, we have

|ϕ∗j1,...,jn(λ)|2 ≥

 rj1,...,jn

M̃j1,...,jnpj1,...,jn

|1− αj1,...,jnλ|2
rj1,...,jn−1

M̃j1,...,jn−1pj1,...,jn−1
|1− αj1,...,jn−1λ|2

 1
pj1,...,jn
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×

 rj1,...,jn−1

M̃j1,...,jn−1pj1,...,jn−1
|1− αj1,...,jn−1λ|2

Rj1,...,jn−2(λ)p
pj1,...,jnpj1,...,jn−1
j1,...,jn

p
pj1,...,jn−1
j1,...,jn−1


1

pj1,...,jn
pj1,...,jn−1

.

Repeating this procedure, in view of (2.18) and (2.20) we get

|ϕ∗j1,...,jn(λ)|2(2.21)

≥

 n∏
k=l+1

 rj1,...,jk

M̃j1,...,jk
pj1,...,jk

|1− αj1,...,jkλ|2
rj1,...,jk−1

M̃j1,...,jk−1pj1,...,jk−1
|1− αj1,...,jk−1λ|2

 1
pj1,...,jn

...pj1,...,jk


×

 rj1,...,jl

M̃j1,...,jl
pj1,...,jl

|1− αj1,...,jlλ|2

Rj1,...,jl−1(λ)p
pj1,...,jn ...pj1,...,jl
j1,...,jn

. . . p
pj1,...,jl
j1,...,jl

 1
pj1,...,jn

...pj1,...,jl

,

for l = 1, . . . , n− 1.
In view of (2.17) (remember that R0 = %),

|ϕ∗j1,...,jn(λ)|2(2.22)

≥

 n∏
k=1

 rj1,...,jk

M̃j1,...,jk
pj1,...,jk

|1− αj1,...,jkλ|2
rj1,...,jk−1

M̃j1,...,jk−1pj1,...,jk−1
|1− αj1,...,jk−1λ|2

 1
pj1,...,jn

...pj1,...,jk


×
(

1
p
pj1,...,jn ...pj1
j1,...,jn

. . . p
pj1
j1

) 1
pj1,...,jn

...pj1
.

We can also estimate ϕj1,...,jn from above analogously to (2.21) and (2.22);
we get the same bound with M̃j1,...,jk replaced by Ñj1,...,jk .

Note that if for some l ∈ {1, . . . , n − 1}, pj1,...,jk is independent of the
choice of (j1, . . . , jk) for any k ∈ {l + 1, . . . , n}, then in (2.21) we have
equality. More precisely, a.e. on ∂E,

|ϕ∗j1,...,jn(λ)|2(2.23)

=
( n∏
k=l+1

(
rj1,...,jk |1− αj1,...,jkλ|2

rj1,...,jk−1 |1− αj1,...,jk−1λ|2

) 1
pj1,...,jn

...pj1,...,jk

)

×
(

rj1,...,jl |1− αj1,...,jlλ|2

Rj1,...,jl−1(λ)pj1,...,jn . . . pj1,...,jl

) 1
pj1,...,jn

...pj1,...,jl

.

Note also that in view of (2.14) and (2.22), a.e. on ∂E,

|h∗j1,...,jn(λ)| ≤ C|1− αj1,...,jnλ|2
n∏
k=1

∣∣∣∣ 1− αj1,...,jkλ
1− αj1,...,jk−1λ

∣∣∣∣ 1
pj1,...,jn

...pj1,...,jk

.
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If αj1,...,jk ∈ E for all possible (j1, . . . , jk) (or |α0| = 1 and then see (2.13)),
then hj1,...,jn ∈ H∞(E). But if |αj1,...,jk | = 1 for some k and αj1,...,jk−1 ∈ E,
then (see (2.12))

(2.24) hj1,...,jn(λ)(1− αj1,...,jkλ)
1

pj1,...,jn
...pj1,...,jk

−2
∈ H∞(E).

In particular, hj1,...,jn ∈ H∞(E) (see (1.3)).
Consider now the special case

pj1,...,jl = q̃l for l = 1, . . . , n.

In this case we have a.e. on ∂E (see (2.23) for l = 1—remember that
R0q̃1 . . . q̃n = %q̃1 . . . q̃n = r0|1− α0λ|2 in view of (2.17))

|ϕ∗j1,...,jn(λ)|2 =
n∏
k=1

(
rj1,...,jk |1− αj1,...,jkλ|2

rj1,...,jk−1 |1− αj1,...,jk−1λ|2

) 1
pj1,...,jn

...pj1,...,jk

.

Since
n∏
k=1

(
rj1,...,jk(1− αj1,...,jkλ)2

) 1
pj1,...,jn

...pj1,...,jk

is an outer function, the decomposition theorem (see [Ga]) implies that for
λ ∈ E,

(2.25) ϕj1,...,jn(λ) = Bj1,...,jn(λ)

×
( n∏
k=1

aj1,...,jk

(
1− αj1,...,jkλ

1− αj1,...,jk−1λ

) 1
pj1,...,jn

...pj1,...,jk

)
Sj1,...,jn(λ),

where

|aj1,...,jk | =
(
rj1,...,jk
rj1,...,jk−1

)1/2

for k = 1, . . . , n,

Bj1,...,jn(λ) =


λ− αj1,...,jn
1− ᾱj1,...,jnλ

if sj1,...,jn = 1,

1 if sj1,...,jn = 0,

Sj1,...,jn(λ) = exp
(
−

π∫
−π

eiθ + λ

eiθ − λ
dσj1,...,jn(θ)

)
,

where σj1,...,jn is a singular nonnegative Borel measure.
It is sufficient to prove that σj1,...,jn = 0, because then, in view of (2.13),

if |α0| = 1, then αj1,...,jk = α0 and sj1,...,jn = 0 for all possible (j1, . . . , jk),
which implies that ϕ is constant—a contradiction; so α0 ∈ E. Moreover,
(2.9) and (2.10) yield (2.3) and (2.4).
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To prove that σj1,...,jn = 0 note that in view of (2.25), (2.7) and the fact
that hj1,...,jn ∈ H∞(E) we get

|Sj1,...,jn(λ)| ≥ ε|λ− αj1,...,jn ||1− αj1,...,jnλ|2
n∏
k=1

∣∣∣∣ 1− αj1,...,jkλ
1− αj1,...,jk−1λ

∣∣∣∣ 1
pj1,...,jn

...pj1,...,jk

for λ ∈ E and some ε > 0. But

S∗j1,...,jn(λ) = 0 for σj1,...,jn -almost all λ ∈ ∂E.

From these two conditions together with (2.12) we deduce, in view of the
fact that the function

E 3 λ→ |λ− 1|β exp
(
b
1− |λ|2

|λ− 1|2

)
, β ∈ R, b > 0,

is unbounded, that σj1,...,jn = 0.
Now consider the general case. We use induction. The previous case is

the first inductive step. Assume that we have already proved the formulas
for pj1,...,jk = q̃k for k = n, . . . , l.

Assume now that for l < n,

pj1,...,jk = q̃k for k = n, . . . , l + 1.

We may write (compare (2.23))

(2.26) ϕj1,...,jn(λ)

= Bj1,...,jn(λ)

×
( n∏
k=l+1

(
rj1,...,jk
rj1,...,jk−1

(
1− αj1,...,jkλ

1− αj1,...,jk−1λ

)2) 1
2pj1,...,jn

...pj1,...,jk

)
× ψj1,...,jn(λ)

for λ ∈ E, where rj1,...,jk , αj1,...,jk are as in (2.7) and (2.8) and Bj1,...,jn is
the Blaschke product of ϕj1,...,jn .

In view of (2.23) it is clear that |ψ∗j1,...,jn(λ)| is independent of the choice
of (jl+1, . . . , jn) a.e. on ∂E and (2.20) implies additionally that

(2.27) ψj1,...,jn ∈ H∞(E).

Define
p̃j1,...,jk := pj1,...,jk for k 6= l,
p̃j1,...,jl := q̃l := max

j1,...,jl
{pj1,...,jl}.
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Let us also put

(2.28) ϕ̃j1,...,jn(λ)

:= Bj1,...,jn(λ)

×
( n∏
k=l+1

(
rj1,...,jk
rj1,...,jk−1

(
1− αj1,...,jkλ

1− αj1,...,jk−1λ

)2) 1
2pj1,...,jn

...pj1,...,jk

)
× ψj1,...,jn(λ)pj1,...,jl

/q̃l

and

h̃j1,...,jn :=
q̃l

pj1,...,jl
hj1,...,jn

ϕj1,...,jn
ϕ̃j1,...,jn

(2.29)

=
q̃l

pj1,...,jl
hj1,...,jnψ

1−pj1,...,jl
/q̃l

j1,...,jn
,

where hj1,...,jn is chosen from Lemma 2.1 as before.

By (2.27), h̃j1,...,jn ∈ H1(E) (even more, it is in H∞(E)—see (2.24)).
In view of (2.9), (2.10), (2.26) and the fact that |ψ∗j1,...,jn(λ)| does not

depend on (jl+1, . . . , jn), we have a.e. on ∂E,

Jj1,...,jn−1(ϕ∗(λ)) =
mj1,...,jn−1∑

jn=1

|ϕ∗j1,...,jn(λ)|2

= |ψ∗j1,...,jn(λ)|2

×
(mj1,...,jn−1∑

jn=1

( n∏
k=l+1

(
rj1,...,jk
rj1,...,jk−1

× |1− αj1,...,jkλ|2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,jn−1

...pj1,...,jk

))

= |ψ∗j1,...,jn(λ)|2
( n−1∏
k=l+1

(
rj1,...,jk
rj1,...,jk−1

× |1− αj1,...,jkλ|2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,jn−1

...pj1,...,jk

)

×
mj1,...,jn−1∑

jn=1

rj1,...,jk
rj1,...,jk−1

· |1− αj1,...,jkλ|
2

|1− αj1,...,jk−1λ|2
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= |ψ∗j1,...,jn(λ)|2

×
( n−1∏
k=l+1

(
rj1,...,jk
rj1,...,jk−1

· |1− αj1,...,jkλ|
2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,jn−1

...pj1,...,jk

)
.

Moreover, if n− 1 ≥ l + 1,

Jj1,...,jn−2(ϕ∗(λ))

=
mj1,...,jn−2∑
jn−1=1

Jj1,...,jn−1(ϕ∗(λ))pj1,...,jn−1

= |ψ∗j1,...,jn(λ)|2pj1,...,jn−1

×
n−2∏
k=l+1

(
rj1,...,jk
rj1,...,jk−1

· |1− αj1,...,jkλ|
2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,jn−2

...pj1,...,jk

.

Generally, if s+ 1 ≥ l + 1, then

(2.30) Jj1,...,js(ϕ∗(λ)) = |ψ∗j1,...,jn(λ)|2pj1,...,jn ...pj1,...,js+1

×
s∏

k=l+1

(
rj1,...,jk
rj1,...,jk−1

· |1− ᾱj1,...,jkλ|
2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,js

...pj1,...,jk

.

In particular, we have (for s = l)

(2.31) Jj1,...,jl(ϕ
∗(λ)) = |ψ∗j1,...,jn(λ)|2pj1,...,jn ...pj1,...,jl+1 .

Note that for s < l,

Jj1,...,js(ϕ∗(λ))

=
mj1,...,js−1∑

js=1

(
. . .
(mj1,...,jl−1∑

jl=1

J
pj1,...,jl
j1,...,jl

(ϕ∗(λ))
)pj1,...,jl−1

. . .
)pj1,...,js

.

But

J̃j1,...,jl(ϕ̃
∗(λ))q̃l = |ψ∗j1,...,jn(λ)pj1,...,jl

/q̃l |2q̃n...q̃l = Jj1,...,jl(ϕ
∗(λ))pj1,...,jl ,

where J̃ is an analogue to J with p̃l in place of pj1,...,jl (the formulas anal-

ogous to (2.30) and (2.31) with ψ
pj1,...,jl

/q̃l

j1,...,jn
in place of ψj1,...,jn also hold for

J̃ and ϕ̃). This implies that

(2.32) J̃j1,...,js(ϕ̃∗(λ)) = Jj1,...,js(ϕ∗(λ))

for any s < l. In particular,

J̃0(ϕ̃∗(λ)) = 1 a.e. on ∂E.

To prove that ϕ̃ is a geodesic in an ellipsoid with q̃l in place of pj1,...,jl
(note that in view of the definition of q̃l the new pseudoellipsoid satisfies
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(1.3)) we verify that

1
λ
ϕ̃∗j1,...,jn(λ)h̃∗j1,...,jn(λ)

= %(λ)
( n∏
k=2

pj1,...,jk−1(J̃j1,...,jk−1(ϕ̃∗(λ)))pj1,...,jk−1−1
)
|ϕ̃∗j1,...,jn(λ)|2

a.e. on ∂E. By (2.29) we have

1
λ
ϕ̃∗j1,...,jn(λ)h̃∗j1,...,jn(λ) =

q̃l
pj1,...,jl

1
λ
ϕ∗j1,...,jn(λ)h∗j1,...,jn(λ),

which, in view of Lemma 2.1 applied to ϕ, is equal to

(2.33)
q̃l

pj1,...,jl
%(λ)

×
( n∏
k=2

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)
|ϕ∗j1,...,jn(λ)|2.

From (2.30) we get

q̃l
pj1,...,jl

%(λ)
( n∏
k=l+1

pj1,...,jk−1(Jj1,...,jk−1(ϕ∗(λ)))pj1,...,jk−1−1
)

× |ϕ∗j1,...,jn(λ)|2

= %(λ)
( n∏
k=l+1

(
q̃k−1|ψ∗j1,...,jn(λ)|2q̃n...q̃k(pj1,...,jk−1−1)

×
k−1∏
t=l+1

(
rj1,...,jt
rj1,...,jt−1

· |1− αj1,...,jtλ|
2

|1− αj1,...,jt−1λ|2

) pj1,...,jk−1
−1

pj1,...,jk−1
...pj1,...,jt

))
× |ψ∗j1,...,jn(λ)|2

×
n∏

k=l+1

(
rj1,...,jk
rj1,...,jk−1

· |1− αj1,...,jkλ|
2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,jn

...pj1,...,jk

= %(λ)
( n∏
k=l+1

(
q̃k−1|ψ∗j1,...,jn(λ)pj1,...,jl

/q̃l |2q̃n...q̃k(q̃k−1−1)

×
k−1∏
t=l+1

(
rj1,...,jt
rj1,...,jt−1

· |1− αj1,...,jtλ|
2

|1− αj1,...,jt−1λ|2

) pj1,...,jk−1
−1

pj1,...,jk−1
...pj1,...,jt

))
× |ψ∗j1,...,jn(λ)pj1,...,jl

/q̃l |2



Complex geodesics in generalized pseudoellipsoids 279

×
n∏

k=l+1

(
rj1,...,jk
rj1,...,jk−1

· |1− αj1,...,jkλ|
2

|1− αj1,...,jk−1λ|2

) 1
pj1,...,jn

...pj1,...,jk

= %(λ)
( n∏
k=l+1

p̃j1,...,jk−1(J̃j1,...,jk−1(ϕ̃∗(λ)))p̃j1,...,jk−1−1
)
|ϕ̃∗j1,...,jn(λ)|2.

The last but one equality is a consequence of the fact that
n∑

k=l+1

2q̃n . . . q̃k(pj1,...,jk−1 − 1) + 2

=
n∑

k=l+1

2q̃n . . . q̃k(q̃k−1 − 1)
pj1,...,jl
q̃l

+ 2
pj1,...,jl
q̃l

.

Together with (2.32) and (2.33), this completes the proof of the fact that
ϕ̃ is a geodesic in a suitable ellipsoid. In view of the inductive assumption
applied to ϕ̃ and because of the form of ϕ and ϕ̃, h and h̃ the proof of
the inductive step is complete. For l = n − 1 we obtain the assertion of
Theorem 2.2.

R e m a r k 2.3. If ϕ is a geodesic and ϕj1,...,jn ≡ 0 for some (j1, . . . , jn),
then the mapping ϕ̃ : E → CN−1 all of whose components but (j1, . . . , jn)
are equal to the components of ϕ and the (j1, . . . , jn) component is omitted,
is a geodesic in a suitable pseudoellipsoid in CN−1, which is naturally convex
if E is convex.

R e m a r k 2.4. In case n = 2, mj = 1 for j = 1, . . . ,m0, Theorem 2.2
has been proved in [JPZ] (see also [JP]). Moreover, those works show the
uniqueness of the geodesics, up to automorphisms of E; for strictly convex
bounded domains this uniqueness is a general property (see [D]) and the
complex ellipsoids are convex and not strictly convex if pj ≥ 1/2 for j =
1, . . . ,m0 and #{j : pj = 1/2} > 1.

R e m a r k 2.5. The formulas of Theorem 2.2 show that the geodesics
extend continuously to the boundary. In many cases one can get more in-
formation about the regularity of the extension. Moreover, it is a relatively
rare phenomenon that the extensions of all geodesics are holomorphic on
some neighbourhoods of E. This is so, for instance, when all the products
in (1.3) are 1 or 1/2 (see also the proof of Proposition 3.2).

R e m a r k 2.6. From Theorem 2.2 it is clear that if |α◦1,...,◦k | = 1 for
some k ∈ {1, . . . , n− 1}, then α◦1,...,

◦
k,jk+1,...,jl

= α◦1,...,
◦
k

for l > k (the α’s
are as in the formulas for complex geodesics in E in Theorem 2.2).
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3. Automorphisms of convex generalized pseudoellipsoids

Lemma 3.1. Assume that ϕ and E are as in Theorem 2.2. Fix (◦1, . . . , 
◦
k)

with k ∈ {1, . . . , n− 1}. If α◦1,...,◦k,jk+1
= 1 for jk+1 = 1, . . . ,m◦1,...,◦k , then

α◦1,...,
◦
k

= 1.

P r o o f. From Theorem 2.2 we get

α◦1,...,
◦
k

=

m◦1,...,◦k∑
jk+1=1

|a◦1,...,◦k,jk+1
|2α◦1,...,◦k,jk+1

=

m◦1,...,◦k∑
jk+1=1

|a◦1,...,◦k,jk+1
|2.

Moreover,

1 + α2
◦1,...,

◦
k

= 1 + |α◦1,...,◦k |
2 =

m◦1,...,◦k∑
jk+1=1

|a◦1,...,◦k,jk+1
|2(1 + |α◦1,...,◦k,jk+1

|2)

= 2

m◦1,...,◦k∑
jk+1=1

|a◦1,...,◦k,jk+1
|2 = 2α◦1,...,◦k .

The last equality completes the proof.

Let E be a generalized pseudoellipsoid as before, but, additionally, we
assume that we may present it in the following way:

E :=
{ m0∑
j1=1

(
. . .
(mj1,...,jn−1∑

jn=1

|zj1,...,jn |2
)pj1,...,jn−1

. . .
)pj1

+ |zm0+1|2 + . . .+ |zm0+r|2 < 1
}
,

where r is largest possible. We may assume without loss of generality that
if r = 0, then m0 > 1.

Assume that E ⊂ CN , where N = N1 + r.

Proposition 3.2. Let Φ : D → E be a biholomorphic mapping , where D
is a bounded convex complete Reinhardt domain. Assume that the coefficients
p in the definition of E satisfy

(3.1) pj1,...,jn . . . pj1,...,jk > 1/2
for any possible (j1, . . . , jn) and k = 1, . . . , n.

If Φ(0) = b, where

(3.2) bm0+1 = . . . = bm0+r = 0,

then b = 0.

P r o o f. We restrict our attention to the case dim E > 1, keeping in mind
that Φ extends to a biholomorphism between some neighbourhoods of D
and E (see [B], also [JP]).
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Suppose that b 6= 0. Then N1 > 0. In other words, there is (◦1, . . . , 
◦
n)

such that

(3.3) b◦1,...,
◦
n
6= 0.

Changing p’s if necessary so that they define the same pseudoellipsoid
E and satisfy (3.1) we may assume that there are k ∈ {1, . . . , n − 1} and
(◦1, . . . , 

◦
n) such that

(3.4) p◦1,...,
◦
n
. . . p◦1,...,

◦
k
6= 1 and if k ≥ 2, then p◦1,...,

◦
n
. . . p◦1,...,

◦
k−1

=
. . . = p◦1,...,

◦
n
. . . p◦1 = 1 and m◦1,...,

◦
k−1

> 1.

For z ∈ ∂D define ϕz : E 3 λ → λz ∈ D, which is a geodesic in D
(see [JP]).

In view of (3.4) there is a point w ∈ ∂E such that

(3.5) w◦1,...,
◦
k

= 0 and w◦1,...,
◦
k−1,jk

6= 0

for jk 6= ◦k. Moreover, there is always at least one jk with this property (by
the assumptions on E and the fact that m◦1,...,◦k−1

> 1 if k ≥ 2).
Since the extension of Φ is a homeomorphism between D and E , there is

ϕz such that ψ := Φ ◦ ϕz is a geodesic in E joining b to w (we now treat ψ
as a mapping on E) and even more precisely

(3.6) ψ(0) = b, ψ(1) = w.

Since (by (3.3)) ψ◦1,...,◦n 6≡ 0, in view of the form of geodesics in E
(or if some of the components are identically 0, in some lower dimensional
pseudoellipsoid, see Remark 2.3) together with (3.5) and (3.6) we get

(3.7) α◦1,...,
◦
n

= 1,

and for the same reasons,

(3.8) if ψ◦1,...,◦k,jk+1,...,jn
6≡ 0, then α◦1,...,

◦
k,jk+1,...,jn

= 1.

We claim that

(3.9) |α◦1,...,◦k−1
| < 1.

Since |α0| < 1, we are done in case k = 1. Suppose that (3.9) does not hold
for k ≥ 2. This means, in view of the form of the geodesics in E and (3.7),
that |α◦1,...,◦k−1

| = 1 and consequently for all possible (jk, . . . , jn) we get
α◦1,...,

◦
k−1,jk,...,jn

= 1 or ψ◦1,...,◦k−1,jk,...,jn
≡ 0. This implies that (see (3.4))

(3.10) ψ◦1,...,
◦
k−1,jk,...,jn

(λ)

= C(jk, . . . , jn)
(

1− λ
1− α◦1,...,◦k−2

λ

) k−2∏
l=1

( 1− α◦1,...,◦lλ
1− α◦1,...,◦l−1

λ

)
,

with the product equal to 1 if k = 2.
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Remark 2.6 together with (3.10) implies that (remember that α0 ∈ E)

w◦1,...,
◦
k−1,jk,...,jn

= ψ◦1,...,
◦
k−1,jk,...,jn

(1) = 0

for all possible (jk, . . . , jn), which, however, contradicts (3.5) and the remark
following it.

In view of (3.7), (3.8) and Lemma 3.1 applied repeatedly (if necessary
to some lower dimensional pseudoellipsoid) we get

α◦1,...,
◦
k

= 1.

Therefore (see (3.4))

(3.11) ψ◦1,...,
◦
n
(λ)

= C

(
1− λ

1− α◦1,...,◦k−1
λ

) 1
p
◦1,...,◦n

...p
◦1,...,◦k

k−1∏
l=1

( 1− α◦1,...,◦lλ
1− α◦1,...,◦l−1

λ

)
,

with the product equal to 1 if k = 1.
Since ϕz extends holomorphically to a neighbourhood of 1, so does

ψ◦1,...,
◦
n
, but since p◦1,...,

◦
n
. . . p◦1,...,

◦
k

is not 1 and is larger than 1/2 we
get a contradiction with (3.11). This completes the proof of Proposition 3.2.

Lemma 3.3. Let E be as in Proposition 3.2. Let a′ ∈ Br and Ψ ∈ AutBr
so that Ψ(a′) = 0. Define Φ : E → CN by setting for (z′, w′) ∈ E , where
z′ = (z1, . . . , zm0) ∈ CN1 and w′ ∈ Br,

Φj1,...,jn(z′, w′) := zj1,...,jn

(
1− ‖a′‖2

(1− 〈w′, a′〉)2

) 1
2pj1,...,jn

...pj1
,

Φm0+k(z′, w′) := Ψk(w′) for k = 1, . . . , r.

Then Φ ∈ Aut E.

P r o o f (as in [JP]). If r = 0 or N1 = 0, then we are done. In the
remaining cases, one can easily see that Φ is holomorphic and injective. We
know that

‖Ψ(w′)‖ = c∗Br
(0, Ψ(w′))

= c∗Br
(a′, w′) =

(
1− (1− ‖a′‖2)(1− ‖w′‖2)

|1− 〈w′, a′〉|2

)1/2

for w′ ∈ Br (see the formulas for c∗Br
in [JP]).

So for (z′, w′) ∈ E we get
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m0∑
j1=1

(
. . .
(mj1,...,jn−1∑

jn=1

|Φj1,...,jn(z′, w′)|2
)pj1,...,jn−1

. . .
)pj1

+
r∑
t=1

|Φm0+t(z′, w′)|2

= − 1− ‖a′||2

|1− 〈w′, a′〉|2

×
(

1−
m0∑
j1=1

(
. . .
(mj1,...,jn−1∑

jn=1

|zj1,...,jn |2
)pj1,...,jn−1

. . .
)pj1

−
r∑
t=1

|w′t|2
)

+ 1,

which finishes the proof.

Cartan’s theorem implies that any holomorphic automorphism of E which
preserves the origin is linear. Therefore in view of Proposition 3.2 and
Lemma 3.3 we get a description of all holomorphic automorphisms of E .

4. Biholomorphic equivalence of convex complex ellipsoids. In
this section we restrict our attention to the case of complex ellipsoids. We
write E(p) := {|z1|2p1 + . . .+ |zn|2pn < 1} ⊂ Cn, where p = (p1, . . . , pn) with
pj > 0. From now on assume that n > 1.

In [JP] the following theorem was proved:

Theorem 4.1. E(p) is biholomorphically equivalent to E(q) iff p = q up
to a permutation.

It was also suggested that the proof could be simplified, at least in the
convex case, by using the formulas for complex geodesics from Theorem 2.2.

Below we prove this theorem in the convex case utilizing the formulas
from Theorem 2.2 and avoiding the use of the theory of the Bergman kernel
(as in [JP]) or Lie theory (see the results in [KU] and [N]). The key fact in
the proof is

Theorem 4.2. Let Φ : E(p) → E(q) be a biholomorphic mapping , where
pj , qj ≥ 1/2 for j = 1, . . . , n. Then Φ extends to a homeomorphism between
the closures of the ellipsoids.

This is proved just using the complex geodesics.
It is worth mentioning that it would be desirable to find a theorem

analogous to Theorem 2.2 valid for all complex ellipsoids, not necessarily
convex. A difficulty arising here is that we do not have just one notion
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of complex geodesic (see Theorem 1.2). Therefore we should try to prove
that the mappings defined in Theorem 2.2 describe, in the general case, all
d-geodesics, where d is k̃, k or c. If this were the case, then Theorem 4.2
and consequently Theorem 4.1 without the assumption that pj , qj ≥ 1/2
could be proven without any change in the proof. Indeed, the assumption
pj , qj ≥ 1/2 is only used in order to show that every biholomorphic mapping
maps the image of a mapping as in Theorem 2.2 onto an image of the same
form. And this holds for any d-geodesics.

Since in the proof of Theorem 4.1 we shall need the explicit formulas
for complex geodesics, let us reformulate Theorem 2.2 in the special case of
convex ellipsoids in order to have simpler formulas.

Theorem 2.2′ (see [JP] and Theorem 2.2). A bounded holomorphic map-
ping ϕ = (ϕ1, . . . , ϕn) : E → Cn is a geodesic for E(p) with pj ≥ 1/2 if and
only if either

(4.1) ϕj(λ) = aj

(
λ− αj
1− αjλ

)rj
(

1− αjλ
1− α0λ

)1/pj

,

or

(4.2) ϕj(λ) = 0,

where in the case (4.1)

rj ∈ {0, 1} and aj ∈ C∗ for j = 1, . . . , n, α0 ∈ E,
αj ∈ E for j such that rj = 1, αj ∈ E for j such that rj = 0,

and (in the case (4.2) we put αj := 0, aj := 0, rj := 0),

α0 =
n∑
j=1

|aj |2pjαj , 1 + |α0|2 =
n∑
j=1

|aj |2pj (1 + |αj |2),

where the case such that for any j = 1, . . . , n the mapping ϕj is either of
the form (4.2) or of the form (4.1) with rj = 0 and αj = α0 is excluded and
the branches of powers are taken so that 11/pj = 1.

Before we prove Theorem 4.2 let us formulate and prove the following

Lemma 4.3. Let ϕk, ϕ0 : E → E for k = 1, 2, . . . be mappings of the form

(4.3) ϕk(λ) = ak

(
λ− αk
1− αkλ

)rk
(

1− αkλ
1− βkλ

)1/m

for k = 0, 1, . . . ,

where m > 0, rk ∈ {0, 1}, ak ∈ C∗, βk ∈ E, and 11/m = 1, αk ∈ E if rk = 1,
αk ∈ E if rk = 0. Assume that

(4.4) ϕk(0) = ϕ0(0) and ϕk → ϕ0 locally uniformly on E.

Moreover , if ϕ0 is constant (so r0 = 0, α0 = β0), then assume that βk → β0.
Then ϕk → ϕ0 uniformly on E and βk → β0.
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P r o o f. First we prove that

(4.5) αk → α0, βk → β0,

and, additionally,

(i) if r0 = 1, then rk = 1 for k sufficiently large and ak → a0,
(ii) if r0 = 0 and |α0| < 1, then rk = 0 and ak = a0 for k sufficiently

large,
(iii) if r0 = 0, |α0| = 1 and rk = 0, then ak = a0,
(iv) if r0 = 0, |α0| = 1 and rk = 1, then −akαk = a0.

Consider case (i). The Hurwitz theorem implies that ϕk has a root for k
sufficiently large. So

ϕk(λ) = ak
λ− αk
1− αkλ

(
1− αkλ
1− βkλ

)1/m

,

with αk → α0.
Note that

(4.6) there is M <∞ such that |ak| ≤M ,

otherwise ϕk(x) would be unbounded for x ∈ E with α0 6= x, which contra-
dicts the fact that |ϕk(x)| ≤ 1.

In view of (4.4),
ϕk(0) = −akαk = −a0α0.

In case α0 6= 0 this implies that (together with the convergence αk → α0)
ak → a0 and consequently βk → β0. So assume that α0 = 0. Suppose that
ak does not tend to a0 or βk does not tend to β0. Taking subsequences we
can assume that ak → x, βk → y and x 6= a0 or y 6= β0 and |y| ≤ 1 (we may
choose such a subsequence because |βk| < 1 and (4.6)). But this implies that
a suitable subsequence

ϕk(λ)→ xλ

(1− yλ)1/m

and consequently, in view of (4.4),

xλ

(1− yλ)1/m
=

a0λ

(1− β0λ)1/m

for λ ∈ E, which gives x = a0 and y = β0. That gives a contradiction.
Consider now cases (ii)–(iv). Below for brevity we also write (ϕk) for

some subsequence of (ϕk).
Consider the subsequence

ϕk(λ) = ak

(
1− αkλ
1− βkλ

)1/m

.
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Then in view of (4.4), ak = a0 and we get αk → α0 and βk → β0, otherwise
we would choose subsequences of ϕk such that αk → x and βk → y with
y 6= β0 or x 6= α0, again leading to a contradiction after making use of the
convergence of the subsequence ϕk (note that if ϕ0 is constant, then x = α0

and in the other case α0 6= β0).
So we are left with the subsequence

(4.7) ϕk(λ) = ak
λ− αk
1− αkλ

(
1− αkλ
1− βkλ

)1/m

,

which, in view of ϕk(0) = −akαk = a0 = ϕ0(0), can be written in the form

(4.8) ϕk(λ) = a0

1− 1
αk
λ

1− αkλ

(
1− αkλ
1− βkλ

)1/m

,

First note that |αk| → 1. Otherwise we could choose some subsequence
of ϕk such that αk → x with |x| < 1 but in view of (4.8) we get ϕk(x)→ 0
(remember that |βk|, |αk| < 1), which contradicts (4.4) (because ϕ0(x) 6= 0).

We want to prove that αk → α0 (it will imply that |α0| = 1, too).
Assume otherwise; then we can assume that for some subsequence αk →
x 6= α0, |x| = 1 and additionally βk → y. Consequently, in view of (4.8),

ϕk(λ)→ a0

1− 1
xλ

1− xλ

(
1− xλ
1− yλ

)1/m

= a0

(
1− xλ
1− yλ

)1/m

,

and the limit has to equal

ϕ0(λ) = a0

(
1− α0λ

1− β0λ

)1/m

.

This proves that x = α0 and y = β0, which settles cases (ii)–(iv).
Before we complete the proof of Lemma 4.3 let us make an auxiliary

remark.
Consider the mapping

Ψ : D := E ×B(β, r)× E 3 (βj , β0, λ)→
1− βjλ
1− β0λ

∈ C,

where B(β, r) is a closed disk in C with center β ∈ E and radius r > 0 such
that B(β, r) ⊂ E.

Ψ is continuous, so Ψ(D) is compact. Since Re(1−βjλ) ≥ 0 and Re(1−
β0λ) > 0, we get Ψ(D) ⊂ C \ (−∞, 0).

Together with (4.5) this shows that

(4.9)
(

1− αkλ
1− βkλ

)1/m

→
(

1− α0λ

1− β0λ

)1/m

uniformly on E.
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Consequently, we get the uniform convergence of ϕk to ϕ0 on E if r0 =1 or
r0 = 0 with |α0| < 1, and the same convergence of the subsequence of ϕk
such that rk = 0 if r0 = 0 and |α0| = 1. We only need to prove that ϕk with
rk = 1 tends to ϕ0 uniformly on E, if r0 = 0 and |α0| = 1.

We want to prove (see (4.8)) that

(4.10) a0

1− 1
αk
λ

1− αkλ

(
1− αkλ
1− βkλ

)1/m

→ a0

(
1− α0λ

1− β0λ

)1/m

,

uniformly on E.
Set

(4.11)
fk(λ) =

1− 1
αk
λ

1− αkλ
, gk(λ) =

(
1− αkλ
1− βkλ

)1/m

for k = 1, 2, . . . ,

f0(λ) = 1, g0(λ) =
(

1− α0λ

1− β0λ

)1/m

.

In view of (4.9),

(4.12) gk → g0 uniformly on E.

For 1/2 < |αk| and |λ| ≤ 1 we have

(4.13) |fk(λ)− f0(λ)| = |λ|
|αk|

· 1− |αk|2

|1− αkλ|
,

and, consequently,

(4.14) |fk(λ)− f0(λ)| ≤ 2
(1− |αk|)(1 + |αk|)

1− |αk||λ|
< 4.

To prove (4.10), i.e. that |fkgk − f0g0| → 0 uniformly on E, observe that

(4.15) |fkgk − f0g0| ≤ |fk − f0||gk|+ |f0||gk − g0|.
In view of (4.12) it is sufficient to show that the first summand in (4.15) is
arbitrarily small for βk, αk close enough to β0, α0.

Fix ε > 0. There is a neighbourhood V of α0 in E such that |gk(λ)| < ε/4
for λ ∈ V (by (4.12), the continuity of g0, and the equality g0(α0) = 0) but
‖fk − f0‖Ē ≤ 4 (see (4.14)) so on V the first summand of (4.15) behaves
well. For αk, βk close enough to α0, β0 we get ‖gk‖Ē ≤ M < ∞ in view
of (4.12). On the other hand, there is δ > 0 such that |1 − αkλ| ≥ δ for
λ ∈ E \ V and for αk close to α0. Therefore, if we take αk close enough to
α0, then in view of (4.13),

‖fk − f0‖Ē\V < ε/M,

which completes the proof of (4.10) and, consequently, the proof of Lem-
ma 4.3.
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P r o o f o f T h e o r e m 4.2. For any z ∈ ∂E(p) define ϕz(λ) := λz,
which is a complex geodesic. For z ∈ ∂E(p) the mapping ψz := Φ ◦ ϕz is a
complex geodesic for E(q). Moreover, in view of Theorem 2.2′, we can extend
ψz continuously to E. We denote the extension also by ψz. Now we define

Φ̃ : E(p) 3 z →
{
Φ(z) for z ∈ E(p),
ψz(1) for z ∈ ∂E(p).

Below we prove that Φ̃ is the extension we are looking for.
Note that for z ∈ ∂E(p),

(4.16) ψz(0) = Φ(0) = constant.

Moreover, ϕz → ϕz0 as z → z0, z ∈ ∂E(p), uniformly on E. Consequently,
for z0 ∈ ∂E(p),

(4.17) ψz → ψz0 as z → z0, z ∈ ∂E(p), locally uniformly on E.

We prove more, namely, that for z0 ∈ ∂E(p),

(4.18) ψz → ψz0 as z → z0, z ∈ ∂E(p), uniformly on E.

To prove (4.18) it is sufficient to prove the uniform convergence on E of
the components of the geodesics. In view of Theorem 2.2′ the components
have the form as in Lemma 4.3 (or are identically 0), therefore we are done in
the cases when (ψz0)j is not constant. Take 1 ≤ j0 ≤ n such that (ψz0)j0 ≡ A
for some A ∈ E. There is certainly 1 ≤ j1 ≤ n such that (ψz0)j1 is not
constant. Since, in view of Theorem 2.2′, we have for z close to z0,

(ψz)j1(λ) = aj1,z

(
λ− αj1,z
1− αj1,zλ

)rj1,z
(

1− αj1,zλ
1− α0,zλ

)1/qj1

,

where rj1,z ∈ {0, 1} and the remaining coefficients are as in Theorem 2.2′,
in view of (4.17) and Lemma 4.3 we get α0,z → α0,z0 as z → z0, z ∈ ∂E(p),
which implies that

(4.19) |α0,z| < δ < 1 for z close to z0.

Consider the case A = 0.
Considering only the points z 6= z0 with (ψz)j0 6≡ 0 we have as above

(4.20) (ψz)j0(λ) = aj0,z

(
λ− αj0,z
1− αj0,zλ

)rj0,z
(

1− αj0,zλ
1− α0,zλ

)1/qj0

.

We claim that

(4.21) aj0,z → 0 as z → z0, z ∈ ∂E(p).

Note first that rj0,z = 1, otherwise we would have aj0,z = 0 (see (4.16)).
Also, in view of (4.16), αj0,z = 0. One easily sees that taking x ∈ E∗, the
convergence (ψz(x))j0 → 0 implies (4.21). Finally, in view of (4.19), (4.21)
and the fact that αj0,z = 0 we get the desired convergence.
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If A 6= 0, then we put

(ψz0(λ))j0 = aj0,z0

(
1− αj0,z0λ
1− α0,z0λ

)1/qj0

.

Since α0,z → α0,z0 , Lemma 4.3 settles this case.
This completes the proof of (4.18).
Considering neighbourhoods of z0 in E(p) of the type

(4.22) Vz0 = {ϕz(t) for 1 ≥ t > s, z ∈ ∂E(p),
z in some neighbourhood of z0},

for some s > 0, we see that for any neighbourhood U of Φ̃(z0) in E(q) there
is a set V of the type (4.22) such that Φ̃(V ) ⊂ U (use (4.18)).

Consequently, Φ̃ is continuous. Compactness of E(p) and E(q) implies the
surjectivity of Φ̃.

Applying the same reasoning to Φ−1 we get the continuity of the exten-
sion Φ̃−1. The injectivity of Φ̃ (and simultaneously of Φ̃−1) is a consequence
of continuity.

In the proof of Theorem 4.1 we shall need the following technical lemma:

Lemma 4.4. Assume that for some fixed a, b, c, d ∈ C and 1 6= s > 0 we
have

a+ bλs

c+ dλs
=
(
λ− α
1− αλ

)t(1− αλ
1− βλ

)
for λ from some nonempty open set in E, where α ∈ E, β ∈ E, t ≥ 0 and
the functions appearing in the equality are not constant. Then t = s and
α = β = 0.

P r o o f. Differentiate both sides of the assumed equality, then eliminate
the powers of expressions which are not monomials; comparing the coeffi-
cients of the powers of λ gives the desired result. We omit the tedious but
elementary calculations.

P r o o f o f T h e o r e m 4.1 i n t h e c o n v e x c a s e. Let Φ : E(p) →
E(q) be a biholomorphic mapping, which in view of Theorem 4.2 extends
to a homeomorphism between the closures of the ellipsoids. Therefore there
are open domains ∅ 6= U1 ⊂ E(p), ∅ 6= U2 ⊂ E(q) such that U1 (respectively
U2) is the intersection of some Euclidean ball in Cn, not lying entirely in
E(p) (respectively E(q)), with E(p) (respectively E(q)), U1 and U2 do not
intersect any axis in the respective ellipsoids and Φ(U1) ⊂ U2. Moreover,
there are domains ∅ 6= Ũ1, Ũ2 ⊂ Bn such that the mappings

(4.23) zp : U1 3 z → (zp11 , . . . , zpn
n ) ∈ Ũ1, z

q : U2 3 z → (zq11 , . . . , z
qn
n ) ∈ Ũ2

are biholomorphic.
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Denote the inverse mappings to zp and zq by z1/p and z1/q and set

(4.24) F := zq ◦ Φ ◦ z1/p on Ũ1.

Then F is a biholomorphic mapping onto the image, which extends to a
homeomorphism between the closures such that the extension maps a part
of the boundary lying in ∂Bn into ∂Bn.

Rudin’s theorem (obtained in [R] with relatively simple tools, owing to
which our proof avoids any sophisticated methods) implies that

(4.25) F is a restriction of a holomorphic automorphism of Bn to Ũ1,

which, in view of (4.24), gives

(4.26) z1/q ◦ F ◦ zp = Φ on U1, where F ∈ AutBn.

Consider now the geodesics (see Theorem 2.2′) for E(p) of the type

(4.27) ϕ(j0,A1,...,An)(λ) := (A1, . . . , Aj0−1, Aj0λ,Aj0+1, . . . , An),

where 1 ≤ j0 ≤ n and (A1, . . . , An) ∈ ∂E(p) is taken from some nonempty
open set in ∂E(p) chosen so that

(4.28) ϕ(j0,A1,...,An)(V ) ⊂ U1 for some open set ∅ 6= V ⊂ E.

Note that Aj 6= 0 for j = 1, . . . , n and we can take (A1, . . . , Ǎj0 , . . . , An)
from some open set in E(p1, . . . , p̌j0 , . . . , pn).

We consider two cases depending on the form of F :

(4.29) F = C ◦ Fb, where 0 6= b ∈ Bn and

Fb(z) =
1
‖b‖2

·
‖b‖2(z

√
1− ‖b‖2 − b) + 〈z, b〉b(1−

√
1− ‖b‖2)

1− 〈z, b〉
,

where 〈·, ·〉 is the standard scalar product in Cn, or

(4.30) F = C,

where in both cases C = [ckl]1≤k,l≤n is a unitary mapping.
Below we prove that in both cases the following property holds:

(4.31) if pj0 6= 1, then there is 1 ≤ k0 ≤ n such that qk0 = pj0 ; for j0 6= j1
with pj0 = pj1 6= 1 there are 1 ≤ k0, k1 ≤ n such that k0 6= k1 and
qk0 = qk1 = pj0 .

Note that if we assume (4.31), then applying the same reasoning to Φ−1

we get p = q, up to a permutation.
Therefore, it is sufficient to prove (4.31) in the cases (4.29) and (4.30).
In view of (4.26) we have

(4.32) F ◦ (ϕ(j0,A1,...,An)(λ)p) = zq ◦ Φ(ϕ(j0,A1,...,An)(λ)) for λ ∈ V .

Fix j0 such that pj0 6= 1.
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In the case (4.29), for j 6= j0,

(4.33) (Fb(ϕ(j0,A1,...,An)(λ)p))j

=
1
‖b‖2

( ‖b2‖(Apj

j

√
1− ‖b‖2 − bj)

1−
∑
l 6=j0 A

pl

l bl −A
pj0
j0
bj0λ

pj0

+
(
∑
l 6=j0 A

pl

l bl +A
pj0
j0
bj0λ

pj0 )bj(1−
√

1− ‖b‖2)

1−
∑
l 6=j0 A

pl

l bl −A
pj0
j0
bj0λ

pj0

)
and

(4.34) (Fb(ϕ(j0,A1,...,An)(λ)p))j0

=
1
‖b‖2

(‖b2‖(Apj0
j0
λpj0

√
1− ‖b‖2 − bj0)

1−
∑
l 6=j0 A

pl

l bl −A
pj0
j0
bj0λ

pj0

+
(
∑
l 6=j0 A

pl

l bl +A
pj0
j0
bj0λ

pj0 )bj0(1−
√

1− ‖b‖2)

1−
∑
l 6=j0 A

pl

l bl −A
pj0
j0
bj0λ

pj0

)
.

Consequently, for k = 1, . . . , n we have

(4.35) (F (ϕ(j0,A1,...,An)(λ)p))k =
1
‖b‖2

· D1λ
pj0 +D2

1−
∑
l 6=j0 A

pl

l bl −A
pj0
j0
bj0λ

pj0
,

where

D1 =
(∑

j

ckjbj

)
(Apj0

j0
bj0(1−

√
1− ‖b‖2)) + ckj0‖b‖2A

pj0
j0

√
1− ‖b‖2,

D2 = ‖b‖2
∑
j 6=j0

ckj(A
pj

j

√
1− ‖b‖2 − bj)− ckj0‖b‖2bj0

+
(∑
l 6=j0

Apl

l bl

)∑
j

bjckj(1−
√

1− ‖b‖2).

The properties of ϕ(j0,A1,...,An) and Theorem 2.2′ imply that Φ ◦
ϕ(j0,A1,...,An) is a complex geodesic of the form

(4.36) (Φ ◦ ϕ(j0,A1,...,An))
qk

k (λ) = aqk

k

(
λ− αk
1− αkλ

)rkqk
(

1− αkλ
1− α0λ

)
,

where rk, αk, α0, ak have the properties as in Theorem 2.2′.
Comparing the expressions and the exponents in (4.35) and (4.36) we

see in view of Lemma 4.4 that (Φ◦ϕ(j0,A1,...,An))
qk

k can be nonconstant only
for k such that

(4.37) qk = pj0 with rk = 1, αk = α0 = 0.

We then have bj0 = 0 and also



292 W. Zwonek

(4.38) D1 6= 0 and D2 = 0 for k such that (Φ ◦ ϕ(j0,A1,...,An))
qk

k is not
constant, D1 = 0 for k such that qk 6= pj0 .

From (4.38) we conclude that

(4.39) ckj0 6= 0 for k with (Φ ◦ ϕ(j0,A1,...,An))
qk

k nonconstant and ckj0 = 0
for k with qk 6= pj0 .

Hence for any j with pj 6= 1 we have

(4.40) bj = 0 and ckj = 0 whenever qk 6= pj .

Since F ◦ ϕ(j0,A1,...,An) is not a constant mapping for any (A1, . . . , An),
there is k0 such that (Φ ◦ ϕ(j0,A1,...,An))

qk0
k0

is not constant for (A1, . . . ,

Ǎj0 , . . . , An) from some open set in E(p1, . . . , p̌j0 , . . . , pn)). Then (4.38) im-
plies that

(4.41)
∑
j 6=j0

ck0j

(
‖b‖2(Apj

j

√
1− ‖b‖2 − bj)

+
(∑
l 6=j0

Apl

l bl

)
bj(1−

√
1− ‖b‖2)

)
= 0

for (A1, . . . , Ǎj0 , . . . , An) from an open set. (4.41) is in view of (4.40) equiv-
alent to∑

j 6=j0
qk0=pj 6=1

ck0j‖b‖2A
pj

j

√
1− ‖b‖2

+
∑
j 6=j0
pj=1

ck0j

(
‖b‖2(Aj

√
1− ‖b‖2 − bj)

+
( ∑
l 6=j0
pl=1

Albl

)
bj(1−

√
1− ‖b‖2)

)
= 0

for the numbers Aj as above, which implies that∑
j 6=j0

qk0=pj 6=1

ck0j‖b‖2A
pj

j

√
1− ‖b‖2 = constant

for 0 6= A
pj

j with pj = qk0 , j 6= j0, taken from some nonempty set.
Therefore

(4.42) ck0j0 6= 0 and ck0j = 0 for j 6= j0 with qk0 = pj = pj0 .

For j0 6= j1 with pj0 = pj1 6= 1 we see, in view of (4.42), that there are
k0 6= k1 such that qk0 = qk1 = pj0 .

This completes the case (4.31).
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In the case (4.30) we have

(4.43) (F (ϕ(j0,A1,...,An)(λ)p))k =
∑
j 6=j0

ckjA
pj

j + ckj0A
pj0
j0
λpj0 .

As before (4.43) has to equal (4.36), which implies that (see Lemma 4.4)
(4.43) is not constant only for k such that

(4.44) qk = pj0 and rk = 1, αk = α0 = 0.

Take k0 as before such that (4.43) is not constant for (A1, . . . , Ǎj0 , . . .
. . . , An) from a nonempty open set in E(p1, . . . , p̌j0 , . . . , pn). Then we easily
conclude that ∑

j 6=j0

ck0jA
pj

j = 0,

which implies that ck0j = 0 for j 6= j0, so ck0j0 6= 0, which in view of the
fact that C is unitary completes the proof of (4.31).
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Reçu par la Rédaction le 16.6.1994
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