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Kneser’s theorems for strong, weak and pseudo-solutions
of ordinary differential equations in Banach spaces

by Mieczys law Cichoń and Ireneusz Kubiaczyk (Poznań)

Abstract. We investigate the structure of the set of solutions of the Cauchy problem
x′ = f(t, x), x(0) = x0 in Banach spaces. If f satisfies a compactness condition expressed
in terms of measures of weak noncompactness, and f is Pettis-integrable, then the set of
pseudo-solutions of this problem is a continuum in Cw(I, E), the space of all continuous
functions from I to E endowed with the weak topology. Under some additional assump-
tions these solutions are, in fact, weak solutions or strong Carathéodory solutions, so we
also obtain Kneser-type theorems for these classes of solutions.

1. Introduction. We deal with the Cauchy problem

(1)
{
x′(t) = f(t, x(t)), t ∈ [0, T ],
x(0) = x0,

where x′ denotes the weak derivative of x.
The study of the problem (1) was initiated by Szep [16], and theorems

on the existence of weak solutions of this problem have been proved for ex-
ample by Cramer, Lakshmikantham and Mitchell [5], Kubiaczyk and Szufla
[12], Mitchell and Smith [13], Szufla [18] and Papageorgiou [14]. In all these
papers the function f is assumed to be weakly continuous, while in our pa-
per we will only assume that f is Pettis-integrable (for the definitions see
[8], [10]). Our additional assumptions are expressed in terms of measures of
weak noncompactness.

In the sequel, (E, ‖ · ‖) will be a real Banach space. Then E∗ denotes
the dual space, and Br = {x ∈ E : ‖x− x0‖ ≤ r} (r > 0). Unless otherwise
stated, we assume that ′ denotes the weak derivative, and

∫
denotes the

Pettis integral. Denote by I the interval [0, T ]. Moreover, let Cw(I, E) denote
the space of all weakly continuous functions from I to E endowed with the
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topology of weak uniform convergence and let (C(J,E), w) denote the space
C(J,E) with the weak topology σ(C(J,E), C(J,E)∗).

Recall that a function h : E → E is said to be weakly-weakly sequentially
continuous if h takes each weakly convergent sequence in E to a weakly
convergent sequence in E.

In general, the space E will be assumed to be nonreflexive (cf. Corol-
lary 2).

2. Pseudo-solutions. Whenever we investigate the existence of strong
solutions of (1) with discontinuous right-hand side, we consider so-called
Carathéodory-type solutions [9] (strong C-solutions). For such solutions the
problem (1) is equivalent to the integral problem

(2) x(t) = x0 +
t∫

0

f(s, x(s)) ds, t ∈ I.

For the moment let ′ denote the strong derivative, and
∫

the Bochner
integral. Recall that an absolutely continuous function x : I → E is said to
be a Carathéodory-type solution of (1) if x(0) = x0 and x(·) satisfies (1) a.e.

Fix x∗ ∈ E∗, and consider

(1′) (x∗x)′(t) = x∗f(t, x(t)), t ∈ I.

First, we introduce the following definition:

Definition 1. A function x : I → E is said to be a pseudo-solution of
the Cauchy problem (1) if it satisfies the following conditions:

(i) x(·) is absolutely continuous,
(ii) x(0) = x0,
(iii) for each x∗ ∈ E∗ there exists a negligible set A(x∗) (i.e. mes(A(x∗))

= 0) such that for each t 6∈ A(x∗),

x∗(x′(t)) = x∗(f(t, x(t))).

Here ′ denotes the pseudo-derivative (see Pettis [15]).
In other words, by a pseudo-solution of (1) we will understand an abso-

lutely continuous function such that x(0) = x0, and for each x∗ ∈ E∗, x(·)
satisfies (1′) a.e.

We will deal with problem (2) with the Pettis integral. If f is Pettis-
integrable, then the existence of a pseudo-solution of (1) is equivalent to the
existence of a solution of (2) (see [15], Section 8).

If we suppose the boundedness of f , then all pseudo-solutions are strongly
absolutely continuous. Indeed, for fixed s, t ∈ I there exists x∗ ∈ E∗ with
‖x∗‖ = 1 such that
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‖x(t)− x(s)‖ = x∗(x(t)− x(s)) ≤
t∫
s

|x∗(f(τ, x(τ)))| dτ ≤M |t− s|.

There exist examples of problems of type (1) which only have pseudo-
solutions, but no weak solutions or strong C-solutions ([1], [4]).

3. Measures of weak noncompactness. The notion of a measure
of weak noncompactness was introduced by De Blasi [7]. It can be used
in the same way as the strong measure of noncompactness, for example in
fixed point theory, and in the theory of functional equations or differential
equations.

Let us denote by Nw the family of all relatively weakly compact subsets
of E, and byM the family of all bounded subsets of E. A function µ :M→
[0,∞) is said to be a measure of weak noncompactness (cf. [3]) if

(i) µ(A) = 0⇔ A ∈ Nw,
(ii) µ(convA) = µ(A), A ∈M,

(iii) A,B ∈M, A ⊂ B ⇒ µ(A) ≤ µ(B),
(iv) for each x0 ∈ E, µ(x0 +A) = µ(A),
(v) µ(kA) = kA, k ∈ R+.

Lemma 1 (cf. [2], [4], [13]). Let H ⊂ C(I, E) be a family of strongly
equicontinuous functions. Then the function t→ v(t) = µ(H(t)) is continu-
ous and µ(H(I)) = sup{µ(H(t)) : t ∈ I}.

4. Main results. Now we prove a Kneser-type theorem for the prob-
lem (1). Let f : I × Br→E be such that ‖f(t, x)‖ ≤ M for each (t, x) ∈
I ×Br. Set J = [0, d], where d = min{T, r/M}.

Theorem 1. Assume that for each strongly absolutely continuous func-
tion x : J → E, f(·, x(·)) is Pettis-integrable, f(t, ·) is weakly-weakly se-
quentially continuous and

(∗) µ(f(J ×X)) ≤ kµ(X)

for each bounded subset X of Br, where kd < 1. Then the set S of all
pseudo-solutions of the Cauchy problem (1) on J is nonempty , compact and
connected in (C(J,E), w).

P r o o f. Put F (x)(t) = x0 +
∫ t
0
f(s, x(s)) ds, where

∫
denotes the Pettis

integral. By our assumptions F is a well defined operator from B̃ = {x ∈
C(J,E) : x(·) is Lipschitz-continuous with constant M, x(J) ⊂ Br} into B̃.
Denote by S the set of all fixed points of F (i.e. S = F (S)). Equivalently, it
is the set of all solutions of (1).
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Now, denote by Ω the family of all sets W such that S(J) ⊂ W ⊂ Br
and R(W ) ⊂W , where

R(W ) = x0 +
⋃

0≤λ≤d

λ conv f(J ×W ).

Then Br∈Ω. Indeed, S(J) ⊂ Br, by assumptions on f and since supx∈A ‖x‖
= supx∈convA ‖x‖ and R(Br) ⊂ Br. If we denote by H the intersection of
this family, then H 6= ∅ since x0 ∈ H (moreover, S(J) ⊂ H). For each
W ∈ Ω we have H ⊂W , so R(H) ⊂ R(W ) ⊂W and consequently R(H) ⊂⋂
W∈ΩW = H. Therefore H ∈ Ω. Thus

H = x0 +
⋃

0≤λ≤d

λ conv f(J ×H)

(cf. [6], [17]). As

µ(H) ≤ dµ(f(J ×H)) ≤ k dµ(H) < µ(H),

we conclude that µ(H) = 0 and consequently H is weakly compact in E.
Let H̃ = {x ∈ C(J,E) : x is Lipschitz-continuous with constant M and

x(J) ⊂ H}. It is clear that H̃ is a weakly compact subset of C(J,E). Since

F (x)(t) = x0 +
t∫

0

f(s, x(s)) ds ∈ x0 + t conv f(J ×H) ⊂ H

and

‖F (x)(t)− F (x)(s)‖ ≤
∣∣∣ t∫
s

‖f(τ, x(τ))‖ dτ
∣∣∣ ≤M |t− s|

for x ∈ H̃ and t, s ∈ J , it follows that F : H̃ → H̃.
Using the Lebesgue dominated convergence theorem for the Pettis in-

tegral, we deduce that F is weakly-weakly sequentially continuous. But H̃
is weakly compact, so F is weakly continuous on H̃. By the Schauder–
Tikhonov fixed point theorem, F has a fixed point. Thus S 6= ∅ and since
S ⊂ H, by the Eberlein–Shmul’yan theorem we deduce that S is weakly
compact.

For any η > 0 denote by Sη the set of all functions u : J → E satisfying
the following conditions:

(i) u(0) = x0, ‖u(t)− u(s)‖ ≤M |t− s| for t, s ∈ J ;
(ii) supt∈J ‖u(t)− x0 −

∫ t
0
f(s, u(s)) ds‖ < η;

(iii) u(t) ∈ x0 +
⋃

0≤λ≤t λ conv f(J ×H) =: Ht.

The set Sη is nonempty as S ⊂ Sη.
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Let β = min(d, η/M). For any ε ∈ (0, β) we define a function v(·, ε) by

v(t, ε) =


x0 for 0 ≤ t ≤ ε,

x0 +
t−ε∫
0

f(s, v(s, ε)) ds for ε < t ≤ d.

We have v(0, ε) = x0 and ‖v(t, ε)−v(s, ε)‖ ≤M |t−s|, so v(·, ε) satisfies (i).
Furthermore,∥∥∥v(t, ε)− x0 −

t∫
0

f(s, v(s, ε)) ds
∥∥∥

=



∥∥∥ t∫
0

f(s, v(ε, s)) ds
∥∥∥ for 0 ≤ t ≤ ε

∥∥∥ t∫
t−ε

f(s, v(ε, s)) ds
∥∥∥ for ε ≤ t ≤ d


≤Mε < η,

and v(·, ε) satisfies (ii).
We now prove that v(·, ε) satisfies (iii). If 0 ≤ t ≤ ε, then v(t, ε) =

x0 ∈ Ht. Let ε < t ≤ 2ε. Then by the mean value theorem for the Pettis
integral,

v(t, ε) = x0 +
t−ε∫
0

f(s, x0) ds ∈ x0 + (t− ε) conv f(J ×H) ⊂ Ht ⊂ H.

We extend the above procedure to the interval (2ε, 3ε] and we find that
v(t, ε) ∈ Ht ⊂ H. By induction, we obtain our assertion, and so v(·, ε) ∈
Sη ⊂ H̃.

Now, we prove the connectedness of Sη. Put v(·, ε) = vε. Then

vε(t) =
{
x0, 0 ≤ t ≤ ε,
F (vε)(t− ε), ε < t ≤ d.

We show that the mapping ε → vε(·) is weakly continuous from (0, β) into
C(J,E).

Let 0 < ε < δ ≤ d. For t ∈ [0, ε],

(1) |x∗(vε(t)− vδ(t))| = 0.

For t ∈ (ε, δ],

|x∗(vε(t)− vδ(t))| =
∣∣∣x∗ t−ε∫

0

f(s, vε(s)) ds
∣∣∣(2)

≤ ‖x∗‖M |t− ε| ≤ ‖x∗‖M |δ − ε|.
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Now, for t ∈ (δ, 2δ] we have

(3) |x∗(vε(t)− vδ(t))|

=
∣∣∣x∗( t−ε∫

0

f(s, vε(s)) ds−
t−δ∫
0

f(s, vδ(s)) ds
)∣∣∣

= |x∗(F (vε)(t− ε)− F (vδ)(t− δ))|

≤ |x∗(F (vε)(t− ε)− F (vε)(t− δ))|

+ |x∗(F (vε)(t− δ)− F (vδ)(t− δ))|

≤ |x∗(F (vε)(t− δ)− F (vδ)(t− δ))

+ ‖x∗‖M |t− ε− t+ δ|

= |x∗(F (vε)(t− δ)− F (vδ)(t− δ))|+ ‖x∗‖M |δ − ε|.

But F is weakly continuous and since t−δ ≤ δ, by using (2) we conclude
that the map ε → vε(t) from (0, β) into E is weakly continuous for each
t∈ [0, 2δ]. By induction, we can repeat this argument to deduce that the map
ε → vε(·) from (0, β) into (C(J,E), w) is continuous (cf. [13], Lemma 1.9).
Therefore the set V := {vε(·) : 0 < ε < β} is connected in (C(J,E), w).

Let x ∈ Sη. Choose ε > 0 such that 0 < ε < β and

sup
t∈J

∥∥∥x(t)− x0 −
t∫

0

f(s, x(s)) ds
∥∥∥+Mε < η.

For any p, 0 ≤ p ≤ d, we define a function y(·, p) by the formula

(4) y(t, p) =


x(t) for 0 ≤ t ≤ p,
x(p) for p < t ≤ min(d, p+ ε],

x(p) +
t−ε∫
p

f(s, y(s, p)) ds for min(d, p+ ε) ≤ t ≤ d.

By repeating the above considerations for y(·, p) instead of v(·, ε) we estab-
lish that y(·, p) ∈ Sη for each p ∈ [0, d] and we prove the continuity of the
mapping p→ y(·, p) from J into (C(J,E), w) (for more details see [11] and
[18]).

Consequently, the set

Tx = {y(·, p) : 0 ≤ p ≤ d}

is connected in (C(J,E), w). As y(·, 0) = v(·, ε) ∈ V ∩ Tx, the set V ∩ Tx is
also connected, and the same is true of

W =
⋃
x∈Sη

Tx ∪ V.
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Moreover, Sη ⊂ W , because x = y(·, d) ∈ Tx for each x ∈ Sη. On the other
hand, W ⊂ Sη, since Tx ⊂ Sη and V ⊂ Sη. Finally, Sη = W is a connected
subset of (C(J,E), w).

Denote by Sη the closure of Sη in (C(J,E), w). Obviously, for each u∈Sη
and t, s ∈ J ,

u(0) = x0, ‖u(t)− u(s)‖ ≤M |t− s|
and u(t) ∈ Ht because Ht is closed convex.

We now show that

(5)
∥∥∥u(t)− x0 −

t∫
0

f(s, u(s)) ds
∥∥∥ ≤ η for u ∈ Sη and t ∈ J .

If u ∈ Sη, then for any ε > 0 and y∗ ∈ C(J,E)∗, there exists u ∈ Sη
such that |y∗(u− u)| < ε and |y∗(Fu−Fu)| < ε as F is weakly continuous.
Let y∗ be such that ‖y∗‖ = 1 and |y∗(u− Fu)| = ‖u− Fu‖. Then

‖u− Fu‖ = |y∗(u− F (u)|
≤ |y∗(u− u)|+ |y∗(u− Fu)|+ |y∗(Fu− Fu)| < ε+ η + ε.

Since the last inequality is satisfied for each ε > 0 we get (5).
We see that Sη is a weakly closed strongly equicontinuous subset of

C(J,E) such that u(t) ∈ H for each u ∈ Sη and t ∈ J . As H is weakly
compact, Sη is compact in (C(J,E), w) .

Put Vn = S1/n for n = 1, 2, . . . Then Vn is a decreasing sequence
of nonempty compact connected subsets of (C(J,E), w), and therefore
the intersection S =

⋂∞
n=1 V1/n is nonempty, compact and connected in

(C(J,E), w). From (5) it follows that S is the set of all solutions of (1)
defined on J , which completes the proof.

It is not difficult to prove that if f(·, x) is scalarly measurable, f(t, ·) is
weakly-weakly continuous, f is bounded, and E is a WCG Banach space
([8]), then for each absolutely strongly continuous function x(·), f(·, x(·)) is
Pettis-integrable (cf. [8], p. 99).

Note that our pseudo-solution is pseudo-differentiable, and may be
nowhere weakly differentiable (see [4], Example 3, or [15]). It is well known
that the integral of a weakly continuous function is weakly differentiable
with respect to the right endpoint of the integration interval and its deriva-
tive equals the integrand at that point (see [13], Lemma 2.3, [16]). In this
case a pseudo-solution is, in fact, a weak solution. Therefore as special cases
we obtain the following corollaries.

Corollary 1 ([11]). Let E be a weakly sequentially complete Banach
space. Assume that f is weakly-weakly continuous on J ×Br. In addition,
let f satisfy (∗). Then the set S of all weak solutions of the Cauchy problem
(1) on J is a continuum in Cw(J,E).
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Corollary 2 ([18]). If E is a reflexive Banach space, and f is weakly-
weakly continuous, then the set S of all weak solutions of the Cauchy problem
(1) on J is a continuum in Cw(J,E).

Now, as a corollary we can obtain the result on existence of strong
C-solutions (cf. [4], Corollary 3, [1], [10]).

Proposition 1. Suppose that f satisfies the following assumptions:

(i) for each t ∈ J , f(t, ·) is weakly-weakly continuous,
(ii) for each x ∈ B, f(·, x) is strongly measurable on J ,
(iii) f satisfies (∗).

Then all pseudo-solutions of the problem (1) are, in fact , strong C-solutions,
and so the set S of all strong C-solutions is a continuum in (C(J,E), w).

This is a simple consequence of our Theorem 1 and Corollary 3 from [4]
(cf. also [10], Corollary 3).

Observe that if the space E is separable then each pseudo-solution of (1)
is a strong Carathéodory solution (see [1]).
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Reçu par la Rédaction le 20.6.1993


