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On extremal mappings in complex ellipsoids

by ARMEN EDIGARIAN (Krakéw)

Abstract. Using a generalization of [Pol] we present a description of complex geode-
sics in arbitrary complex ellipsoids.

1. Introduction and the main results. Let £(p) := {|21]?P* +... +
|2,|?Pn < 1} € C", where p = (p1,...,pn), p; > 0,5 = 1,...,n; E(p) is
called a complex ellipsoid. N

The aim of the paper is to characterize complex »g(,)- and kg(,)-geode-
sics. The case where £(p) is convex (i.e. p1,...,p, > 1/2) has been solved
in [Jar-Pfl-Zei]. The paper is inspired by methods of [Pol].

Let D C C" be a domain and let ¢ € O(E, D), where E denotes the
unit disk in C and O(£2, D) is the set of all holomorphic mappings 2 — D.
Recall that ¢ is said to be a »p-geodesic if there exists (z,X) € D x C"
such that:

e ©(0) = z and ¢'(0) = A\, X for some A, > 0,

e for any ¢ € O(E,D) such that ¢(0) = z and ¢'(0) = A\, X with
Ay >0, we have Ay < Ag.

We say that ¢ is a ED -geodesic if there exists (z,w) € D x D such that:

e ©(0) = z and ¢(o,) = w for some o, € (0,1),

e for any ¢ € O(E, D) such that ¢(0) = 2z and ¢ (oy) = w with o, > 0,
we have o, < gy; cf. [Pan].

Let us fix some further notations:

o H>(£2,C™) := the space of all bounded holomorphic mappings 2 —
(O

o ||flloo :=sup{||f(2)]| : z € 2}, f € H*(§2,C™), where || || denotes the

Euclidean norm in C";
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84 A. Edigarian

e f*(¢) := the non-tangential boundary value of f at ( € OF, f €

H>(E,C™);

o A(£2,C") :=C(£2,C") N O(£2,C");

2w = (Z1W1,...,2,Wy), Z W := Z?zlzjwj, z2=(21,...,2n), W=
(w1,...,w,) € C"

e A, ={zeC:v<|z| <1}, ve (1)
o PSH(S2) := the set of all plurisubharmonic functions on (2.

Fix wy,...,wy € A(A,,C"™) and define

27
1 ) )
j(h) = o [ Re(h*(e”) ew;(e”?))do, he H*(E,C"), j=1,...,N.
T
0
We say that the functionals @4,...,®n are linearly independent if for ar-
bitrary s = (s1,...,8n),9 € H®(E,C™), and A1,..., Ay € R such that s,
nowhere vanishes on E, k = 1,...,n, and g(0) = 0 the following implication

is true: if Z;VZI Ajw; - s¥ = g* on a subset of OF of positive measure, then
AM=...= Ay =0.

Later on, we always assume that the functionals @1, ..., PN are linearly
independent.

PROBLEM (P). Given a bounded domain D C C" and numbers ay, ...
...,any € R, find a mapping f € O(FE,D) such that ®;(f) = a;, j =
1,..., N, and there is no mapping g € O(F, D) with

Qﬁj(g):aj, jzl,...,N, g(E)@D

Any solution of (P) is called an extremal mapping for (P) or, simply, an
extremal.

Problem (P) is a generalization of Problem (P) from [Pol].

We say that problem (P) is of m-type if there exists a polynomial Q(¢) =
[T, (¢ — ok) with o1,..., 0., € E such that Qu; extends to a mapping of
class A(E,C"), j=1,...,N.

One can prove that (for bounded domains D C C™) any complex sp-
or %D—geodesic may be characterized as an extremal for a suitable problem
(P) of 1-type (cf. §4).

The main result of the paper is the following

THEOREM 1. Let D € G € C" be domains and let w € PSH(G) NC(QG)
be such that D = {u < 0}, 0D = {u = 0}. Suppose that f € O(E, D)
is an extremal for (P). Assume that there exist a set S C OE, a mapping
s = (81,...,8,) € H®(E,C"), a number ¢ > 0, and a function v : S X
A(E,C") — C such that:

(a) OFE \ S has zero measure,

(b) £*(¢), Vu(f*(C)) and s*(¢) are defined for all { € S,
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(c
(d
v(C, h
(e

Then

~—

sk nowhere vanishes on E for k=1,...,n,

u(£5(0)+5*(0) - h(<)) = u(F* () +2Re(Vu(F()) o (*(C) - h(C))) +
, ¢ €5, he A(E,C), [[hll <e,

hmhﬁo sup{|v(¢,h)| : C € S}/HhHoo = 0.

\—/\_/\_/

f(¢)edD fora.a. ¢ €OF

and there exist o € L®(OFE), 0 > 0, g € H*®(E,C"), and (A1,...,A\n) €
RY \ {0} such that

Zkak Q) +9°(¢) = o(Q)s™(¢) - Vu(f*(€))  for a.a. ( € IE.

Remark 2. Under the assumptions of Theorem 1, if u € CHG) N
PSH(G), then one can take s := (1,...,1).

As an easy corollary to Theorem 1 we obtain

COROLLARY 3. Under the assumptions of Theorem 1, if problem (P) is
of m-type, then there exist p € L*(0FE), o > 0, and g € H*(E,C") such

that
9"(€) = Q(Q)e(¢)s™(¢) - Vu(f())  for a.a. ( € IE.

Theorem 1 generalizes Theorems 2 and 3 of [Pol] (cf. Remark 2). The
proof of Theorem 1 will be presented in §2.

Corollary 3 gives a tool for describing the extremal mappings for prob-
lems (P) of m-type in the case where D is an arbitrary complex ellipsoid
£(p)-

THEOREM 4. Let ¢ : E — E(p) be an extremal for problem (P) of m-type
such that p; #0, 5 =1,...,n. Then

T Ao\ (L—aga
>\ = . J J :1
80.7( ) a’]g(:l_ak])\) <]-_ak:0)\ ) J ’ y Ty

where
®ay,...,a, € C\ {0},
ea; €l k=1,....m,j=0,...,n
o r; €1{0,1} and, if r; =1, then ay; € E,

m m

n
o ) a7 TT (¢ = a) (1 = @i Q) = [J (€ = aro) (1 — o), ¢ € E.
j=1 k=1 k=1

In particular, if ¢ is a complex g,y - or Eg(p) -geodesic, then ¢ is of the
above form with m = 1.

Theorem 4 generalizes §6 of [Pol] and Theorem 1 of [Jar-Pfl-Zei]. The
proof of Theorem 4 will be given in §§3, 4.
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Remark 5. In the case where £(p) is convex any mapping described in
Theorem 4 with m = 1 is a complex geodesic in £(p) ([Jar-Pfl-Zei]). This is
no longer true if £(p) is not convex (cf. [Pfl-Zwo] for the case n =2, p; =1,
Py <1 / 2).

2. Proof of Theorem 1. Note that there are two possibilities: either
uo f* = 0 a.e. on OF or there exists 7 > 0 such that the set {6 : u(f*(e?)) <
—7} has positive measure. If such a 7 exists, fix one of them. We put

P o= 0 in the first case,
O {0 u(f*(e)) < —1}  in the second case,
Ay :=[0,2m) \ Py, and
1
ps(h) :

o
Ao

[Re(s*(e)-Vu(f*(e?))oh(e?))]Td§ for h € L}(OE,C"),

where L'(0FE,C") denotes the space of all Lebesgue integrable mappings
oF — C"™.

Remark 6. (a) Under the assumptions of Theorem 1, there exists
M > 0 such that

[s*(¢) - Vu(f* ()l < M for a.a. ¢ € E.

(b) ps(h) is a seminorm on H'(E,C") and p,s(h) < M]||h|1, where H*(E)
denotes the first Hardy space of holomorphic functions,

HYE,C") :={(f1,..., fn): fj € H(E)},
and || |1 denotes the norm in H(E,C").
The proof of Theorem 1 is based on the following result.

LEMMA 7 (cf. [Pol], Lemma 6). Under the assumptions of Theorem 1
there exist T >0, j € {1,...,N}, and 6 € {—1,1} such that

6@;(s - h) < Tps(h)
forhe X;:={h e H(E,C") : &(s-h) =0, #j}.
Let us for a while assume that we already have Lemma 7.

Proof of Theorem 1. By Lemma 7 there exist T > 0, § € {—1,1},
and j € {1,..., N} such that

dP;(s-h) <Tps(h) for he Xj.
Let ®(h) := dP;(s-h), h € X;. Using the Hahn-Banach theorem we can
extend @ to L1(OE,C") (we denote this extension by @) in such a way that
@&(h) < Tps(h) for h € L*(OE,C™).
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We know that p(h) < M|hl|;, where |h|; denotes the norm in L!(E,C"). So
@ is continuous on L'(OF,C"). By Riesz’s theorem, ¢ can be represented
as
1 27 ) )
P(h) = 5 [ Re(h*(e) e w(c™”)) df,  where @ € L*(9E,C").

It is easy to see that there are A1, ..., An, not all zero, such that ¢(h) =
Egzl M®@r(s - h) for h € HY(E,C"). We denote by G the linear functional
on L'(OF,C") defined by the formula

1

G(h) = 27T

[ Re (Z Newp (€9) o s* () - h(ei9)> de.

Then ¢(h) —G(h) =0 for h € HY(E,C"). By the theorem of F. & M. Riesz
it follows that there exists g € H*(E,C"), g(0) = 0, such that

N
~—S*- E /\kwk:g*.
k=1

We have
A N . . . .
(1) o) =5 [ Re|(D Mwn(e) - () +g7(c)) o b7 (c)] o
0 k=1

< Ty [ Re(s"(e) - Vu(f*(e)) o h* ()] d6

Ao
for any h € H'(E,C"). We see that the right-hand side is zero for any
h € H'(E,C") (hence, for any h € L'(0FE,C")) such that

Re(s™(e") - Vu(f*(e')) o h*(e")) < 0
on OF \ (Py U{C € OF : 5°(C) - V([ (Q)) = 0}).

Hence

N
Z)\kwk 28" 4+¢9"=0 ae on PpU{¢€IE:s* () Vu(f*(()) =0}
k=1

We know that &;,...,Py are linearly independent, so the Lebesgue mea-
sures of Py and of {¢ € OE : s*(() - Vu(f*(¢)) = 0} are zero. Hence

Z)\kwk (€) +97(0) = e(€)s™(C) - Vu(f*(C)),

where o(¢) € C \ {0} for a.a. ¢ € OE. Now, it is enough to remark that
condition (1) implies that 0 < p < T a.e. on OF. =

Now, we are going to prove Lemma 7.
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Proof of Lemma 7. Suppose that the lemma is not true. Then for
each j € {1,...,N} and m € N there are h},  h; € X; such that

gm? Yim
Dj(s-hfy) >mps(hi,),  —Pi(s-hy,) > mps(hy,,).
We may assume that hl  h; € A(E,C") and that

gm? ' Yim
Pi(s-hl,) =1, Pi(s-h,)=—1

For any ¢ = (¢;,q1,---, 4% an) € R2V we define the function
N
fqm:f—i—Z(q;“&h;rm—i-qj_s-h;m):f—i—s-hqm
j=1

and the linear mapping A : R — RV, A(q) := (a7 — a1, af — dn)-
Note that ®;(fgm) — ®;(f) = Alq);-

LEMMA 8 (see [Pol], Lemma 7). Let u be a non-positive subharmonic
function in E and let Au be the Riesz measure of u. Suppose that one of
the following conditions is true:

(a) Au(roFE) > a > 0 for some rg € (0,1),

(b) for some set Z C [0, 27) with positive measure, the upper radial limit
of u at ¢ € Z does not exceed —a < 0 (i.e. limsup,_; u(r¢) < —a).

Then u(¢) < —C(1 —[(]), where C > 0 is a constant depending only on
ro, a, and Z.

Let ug :=uo f.

LEMMA 9. There exist a constant C' > 0 and constants t,, > 0, m € N,
such that for ||q|| < t,, we have

(a) fgm € O(E,G) (so, we define ugm =10 fom),

1 * 7
(b) tgm(€) < vgm(¢) 1= Cln || + o~ [ [ugn ()T P(C.0) dO

Ao
for |¢| > 1/2.

Proof. (a) follows from the assumption that D € G.
(b) Suppose that there exists ro € (0,1) such that Aug(roE) > a > 0.
The continuity of u implies that for
~ 1 * %
Uigm (€) = Ugm (¢) [ ()T P(C,0)d0, ¢ € E,

2
Ao

if ¢,,, is small enough then Aty (rE) > a/2. Hence, from Lemma 8 we get
the required result.

If Aug(rE) =0 for any r € (0,1) and uj(¢) = 0 for a.a. ( € OF, then
by the Riesz representation theorem ([Hay-Ken], Ch. 3.5) we see that ug
is harmonic in E. But this is a contradiction, since ug # 0. Hence, Py has
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positive measure. From the continuity of u we conclude that if ¢,,, are small
enough, then {¢ : Ugm(¢) < —7/2} has positive measure. By Lemma 8 we
get the required result. m

Let us introduce some new notation: Eg,, = {¢ € E : vy () < 0} and
L 1 * 10\1+
gan() = Coxp | g1 [ i ()" S(G.0) a0}
0

Here S(¢,0) := (¢ +¢€%) /(¢ — €'?) is the Schwarz kernel.

Remark 10. Note that C'ln|ggm| = vgm, vgm(¢) > Cln|¢| (hence,
|9gm ()] = [¢]), and Egm, = gy (E).

LeEMMA 11 (cf. [Pol], Statement 2). (a) Eyy, is connected, 0 € Egyy,, (b)
Ggm maps Eqp, conformally onto E.

Proof. (a) Note that Eypy, = Usoo{¢ : vgm(¢) < =6} and
{Crvgm(Q) < =0} C{C: [¢[ < €™/}

Since vy, is harmonic outside 0 and vy, (€?) > 0, any connected component
of {¢ : vgm(¢) < —6} must contain 0.

(b) First let us see that ggpm, : Egm — E is proper. Let ¢, — (o € 0Eqn,. If
Co € O, then |ggm (k)| — 1 (since |ggm| > [C]). If (o € E, then |ggm ()| —

|gqm(CO)| =1
Since g/,,(0) # 0 and g;,}(0) = {0}, ggm is conformal. m

We define fon(¢) = fam (93t (C)): fam(C) = fam(e~lal/ ™),

Am(Q) = (@1(}::]7%) - @1(f), s ,@N(ﬁ]m) - gZSN(f)),

An(@) = (@1(fom) = P15+, B (Jm) — P ().
Remark 12. It is easy to see that fqm(E) C D, ]?qm(E) € D, and
A (0) = A,,(0) = 0.

The following result explains why we have used functionals of the special
form.

and

LEMMA 13. Suppose that
1 x( i i0
f Re(h*(e"”) @ w(e')) db,
0
where w € A(A,,C") for some v € (0,1), f € H*(E,C"), and that g €
O(E,E), g(0) =0. Then

2(f ©g) = ()] < K| f]loo sup |g(+¢) = vC],
CeE

(k) = o

where K > 0 depends only on P.
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Proof. We have

(2) &(h) = % f Re(h(ve®) o w(ve')) do.
Hence

[2(h)] < (max [lw(vC))(max ||A(+O)I)-
But

1F(g(¥¢)) = F(vO)l < (222 ') Dlg(vC) — vl

and supee g [/ (VE)] < || flloo/(1 = 1?). =

LEMMA 14 (cf. [Pol], Statement 3). The mappings Ap,, Ay are continu-
ous in q for ||q|| < tp,.

*

Proof. It is enough to remark that if g — ¢, then ug ., — ug,, uni-
formly on OF. Hence gg,m — ggm uniformly on compact subsets of £. It

is evident from the last assertion that also g} — go.%, foum — fqm, and

f;km — ]‘“;m uniformly on compact sets. Since the @, are continuous with
respect to this convergence (this follows easily from (2)), we conclude the
proof. m

LEMMA 15. For each b > 0 there is mg € N such that for any m > mg
there is g¢m, > 0 such that ||A(q) — Am(q)|| < bllq|| whenever ||q|| < gm.

Proof. It follows from the definition of A, A,, that it is enough to prove
the inequality

(B (fam) = P (fom)| < blla]

for small ¢, where @ is a functional of our special form. By Lemma 14 it is
enough to show that

sup |gom(¢) = ¢l < bllqll
(eVvE

for small ¢q. Note that

SUp [ggm(¢) = €| < sup |ggm(¢) — ¢
CevE CeEVE

and for small ¢, (such that |1 — exp ¢ | < 2¢,,) and ||q|| < Gm,

’1 — exp <27rICA{ [t ()] S(C, 0) d9> ‘

1+v 1 * 10\1+
_21_V<27T0Af [, (e7)] d0>
0
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for ( € vE. Hence, it is enough to show that
[ (] do < [ 2ARe(Tu(f* (¢7)) o 5" () - hgm(e))]* b

qm
A() AO
+ o(llhgmloo)-
But ps(hgm) < |lgl|max{ps(hjm) :j =1,...,N} < |q||/m. Hence, if m is
large and g¢,, is small enough, we get the required result. m

LEMMA 16. For each b > 0 there is mo € N such that for any m > mq
there is g, > 0 such that ||An(q) — Am ()| < bllq|| whenever ||q|| < g¢m.

Proof. As in Lemma 15, by Lemma 13 it is enough to prove the in-
equality

sup [e~lall/m¢e —¢| < b|jq]|
CevE

for small ||q||. But for small ||q||/m we have |1 —e~llal/™| < 2||q||/m. Hence,
we get the required result. m

NLE}MMA 17 (cf. [Pol], Lemma 8). For any continuous mapping F : R3YN —
RN
IF(z) = A@)|| < bllel|  for z € B(0,r) NREY,

where b = 1/(2V/'N), then there ezists ¢ € B(0,r) NR2N \ {0} such that
F(q) =0.

Proof. Define
Q:={(x1,...,zn): 0<zj <tp, j=1,...,N}
and
7:RY 3 (z1,...,2n5) — (x1,t0 — Z1,..., 2N, 1o — xn) € RPY,
where tg = (2v/N)~'min{1,r}. It is easy to check that ||7(1)|| < tov/N for
l € Q and n(Q) C B(0,7) NR2V. Note that
|[For(l) —Aom()|| <b|lx(l)|| <to/2 forle Q.

Consider the homotopy defined by the formula F; = tFom+(1 —t)Aom. It is
enough to show that 0 ¢ E(ag). Then from the homotopical invariance of
the degree of mappings [Zei] we have deg(Fom, Q,0) = deg(Aom, Q,0) # 0,
hence 0 € Fo7(Q).

It is easy to see that for any [ € 0Q,

to <A@ < |FO) +tIF on(l) = Aom)] < | Fx()l| + to/2:
Hence, we get the required result. m

__ Let us return to the proof of Lemma 9. By Lemmas 14-16 it follows that
A,, is continuous in RiN and for each b > 0 there are m € N and ¢, > 0
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such that || A,,(q) — A(q)| < bllq for ||¢|| < ¢m. By Lemma 17, for some m
we can find gy which is a solution of the equation A,,(qy) = 0. Hence, we
have

dsj(-]/c;om) =a; forj=1,...,N.
But this contradicts the extremality of f, since fqom( EYED. n

3. Proof of Theorem 4. Before we prove the theorem we recall some
auxiliary results.

LEMMA 18. Let ¢ € HY(E) be such that
©* (<)
H;nzl(g — o)

where o, € C, k = 1,...,m. Then there exist r € R and o, € E, k =
1,...,m, such that

©(¢)

€Rsg fora.a (€0F,

_ TH?:I(C — ag)(1 — @()
[lie (1 —3x) 7
This lemma is a generalization of Lemma 8.4.6 of [Jar-Pfl].
Proof. Put ¢(¢) = ¢(¢) [Ty, (1 = k(). Then $ € H'(E) and
1 _
Cfmw*(@ €Rso foraa. (€OF.

Hence, it is enough to prove the lemma for o, =0, kK =1,...,m. Set

(e L.

m (k) m—1 (%)
k=0 ’ k=0 ’

It is easy to see that if ¥(¢) = (¢(¢) — P(¢))/¢™, then v € H'(E) and
¥*(¢) € R for a.a. ( € IE. Hence ¢ = 0.
Let t(0) := P(e")/e®®™. We know that ¢ is R-analytic and #() > 0 for
6 € R. If for some 6y € R we have t(fy) = 0 then t(f) = (6 — 6o)*(6), where
k is even. B
Note that P(1/¢) = P(¢)/¢?™ and if P(0) = 0, then P(¢) = ¢*P((),

P(0) # 0, deg P = 2m — 2k, and P(1/¢) = ]57(0/@(7”_'“). Now, it is enough
to note that if P((p) =0, (o # 0, then P(1/(,) = 0 and if

_rE
YO 0o

then Q(1/¢) = Q(¢)/¢*™ Y. =

LEMMA 19. Let S1, Sy be singular inner functions and let 5152 = 1.
Then 51,52 = 1.
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Proof. Suppose that
27

Sj(z):exp<— fd“](t)>7 ]:1727

et — 2
0

where p1 and po are non-negative Borel measures, singular w.r.t. Lebesgue
measure. Then 515, = 1 is equivalent to pq +pe = 0. Since p; >0, j = 1,2,
we get (1 = e =0. m

Proof of Theorem 4. We know that ¢; = B;S;F}, where B, is a
Blaschke product, S; is a singular inner function and F; is an outer function.
Take s := (F1, ..., Fy,). Note that [¢7(()/F;({)| =1 for a.a. ( € OF and

ou ;|77

8721(90) j 0
We want to show that the assumptions of Theorem 1 are satisfied. Let
u(z) := 37 |2j|*P7 — 1 be the defining function for £(p).
We know that ¢; # 0, j = 1,...,n. Hence Vu(¢*(()) exists for a.a.
¢ € OF. We have

forj=1,...,n.

12Pj
|05 + Fjhy|*Pi — |;]* — 2Re (Pjilwfp‘j Fyhy)

;]
Fip |2Pi _ 1 _ 9. iy
:Iwzpj‘ + 5 hl L= 2p; Re (5i1y)
J ‘h‘&
X
From the equality
1+4z*—1—-aR
lim L2 20, a>0,

z—0 ‘z|

we see that all the assumptions of Theorem 1 are satisfied.
Hence, by Corollary 3, there exist ¢ € H*®(E,C") and po € L>*(JF),
0 > 0, such that

5 QPP .

W =g;(() foraa. (€0E, j=1,...,n,
J

where Q(¢) = [[,(¢ — o) is a polynomial witnessing the m-type. This is

equivalent to

Q(Oe(OIF; (O = Bj()S;(¢)g;(¢)  foraa. (€IE, j=1,...,n.
By Lemma 18 there exist r; > 0 and ax; € E such that

[Ty (€ = auy) (1 — @)
[T2, (1 = 7xC)

Q(Q)e(C)Fy(¢)

(3) Bj(¢)S55(0)g;(¢) =
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and there exist rg > 0 and ayo € E such that

4)  QQe(¢) = ZB;(OS;(C)Q}‘(O o Lz (€ = r0)(1 = @ro)

T2 (1= 7kC)
We have
@ o I1C - w10 B O =7 TIC - )1 -0,
Pt k=1
Hence
6 P - 1T (L)
©) 0=ol1l ()
where a; € C\ {0}. From (6) it follows that
B;(¢) = kl_[1 <1<:0?:2> ,  where 7; € {0,1}.

Hence

m — o) TR (1 — @ C) TR
Si(Qgi(C) = 7; L=t H’:;Z]l)l(l (akC) MO

Since the right-hand side is an outer function, from Lemma 19 we conclude
that S;=1,7=1,...,n

From (5) and (6) we see that |aj|?P7 = r;/r¢ and from (3) and (4) it
follows that

m

Z a7 TT(C = any) (1 = @s¢) =

k=1 k

3

(¢ —ago)(l —aro¢), C(€E.
1

So, we get the required result. m

4. The case of complex geodesics

LEMMA 20. Any »p- and Ep—geodesic is extremal for an appropriate
problem (P) of 1-type.

Proof. The case of a »xp-geodesic. Consider problem (P) with linear
functionals such that:

e N =4n,

e w; :=(0,...,1,...,0) and aj := Rez; for j =1,...,n,

e w; :=(0,...,—4,...,0) and a; :=Imz; for j=n+1,...,2n,

o w; :=(0,.. 1/(,... 0) and a;j := Re X fOI'j—2Tl+1 ., 3n,
owj::(O,..., —i/C,. .., )andaJ:—ImX for]—3n—|—1 ., 4n,

where z € D and X € C™\ {0}.
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It is easy to see that the corresponding linear functionals are linearly
independent and problem (P) is of 1-type.

Let us show that any sp-geodesic f for (z,X) is extremal for this
problem (P). Suppose that there exists a mapping g € O(FE, D) such that
9(0) =z, ¢'(0) = X, and g(E) € D. Write g(¢) := g(¢) + (tX, where t > 0
will be defined later. Then g(0) = g(0) = z and ¢'(0) = ¢'(0)+tX = (1+¢)X.
If we take t such that g(F) C D (that is possible, because g(E) € D), then
we have a contradiction with f being a »p-geodesic.

The case of a kp-geodesic. Consider problem (P) with linear functionals
such that f € O(E, D) is extremal iff f(0) = z, f(¢0) = w, where o > 0, and
there is no mapping g € O(E, D) such that

(1) 9(0) = z, g(0) = w,
(2) 9(E) € D.

(The functions w; in this case can be constructed similarly to the case of a
»p-geodesic. It is enough to replace 1/¢ by 1/(¢(—o) and —i/{ by —i/(¢(—0).)
It is easy to see that the relevant linear functionals are linearly independent
and that the problem (P) is of 1-type.

Let us show that any kp-geodesic f is extremal for this problem. Suppose
that there exists a mapping g € O(FE, D) such that ¢g(0) = z, g(0) = w, and
g(E) € D. Define

5(0) = 9(0) + = (g(0) — glto)),

where 0 < ¢ < 1 will be defined later. Then g(0) = ¢(0) = z and g(to) =
g(o) = w. If we take ¢ such that g(E) C D (use g(E) € D), then we have a
contradiction, because f is a kp-geodesic. m
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