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On extremal mappings in complex ellipsoids

by Armen Edigarian (Kraków)

Abstract. Using a generalization of [Pol] we present a description of complex geode-
sics in arbitrary complex ellipsoids.

1. Introduction and the main results. Let E(p) := {|z1|2p1 + . . .+
|zn|2pn < 1} ⊂ Cn, where p = (p1, . . . , pn), pj > 0, j = 1, . . . , n; E(p) is
called a complex ellipsoid .

The aim of the paper is to characterize complex κE(p)- and k̃E(p)-geode-
sics. The case where E(p) is convex (i.e. p1, . . . , pn ≥ 1/2) has been solved
in [Jar-Pfl-Zei]. The paper is inspired by methods of [Pol].

Let D ⊂ Cn be a domain and let ϕ ∈ O(E,D), where E denotes the
unit disk in C and O(Ω,D) is the set of all holomorphic mappings Ω → D.
Recall that ϕ is said to be a κD-geodesic if there exists (z,X) ∈ D × Cn
such that:

• ϕ(0) = z and ϕ′(0) = λϕX for some λϕ > 0,
• for any ψ ∈ O(E,D) such that ψ(0) = z and ψ′(0) = λψX with

λψ > 0, we have λψ ≤ λϕ.

We say that ϕ is a k̃D-geodesic if there exists (z, w) ∈ D×D such that:

• ϕ(0) = z and ϕ(σϕ) = w for some σϕ ∈ (0, 1),
• for any ψ ∈ O(E,D) such that ψ(0) = z and ψ(σψ) = w with σψ > 0,

we have σϕ ≤ σψ; cf. [Pan].

Let us fix some further notations:

• H∞(Ω,Cn) := the space of all bounded holomorphic mappings Ω →
Cn;
• ‖f‖∞ := sup{‖f(z)‖ : z ∈ Ω}, f ∈ H∞(Ω,Cn), where ‖ ‖ denotes the

Euclidean norm in Cn;
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• f∗(ζ) := the non-tangential boundary value of f at ζ ∈ ∂E, f ∈
H∞(E,Cn);
• A(Ω,Cn) := C(Ω,Cn) ∩ O(Ω,Cn);
• z · w := (z1w1, . . . , znwn), z • w :=

∑n
j=1 zjwj , z = (z1, . . . , zn), w =

(w1, . . . , wn) ∈ Cn;
• Aν := {z ∈ C : ν < |z| < 1}, ν ∈ (0, 1);
• PSH(Ω) := the set of all plurisubharmonic functions on Ω.

Fix w1, . . . , wN ∈ A(Aν ,Cn) and define

Φj(h) =
1

2π

2π∫
0

Re(h∗(eiθ) • wj(eiθ)) dθ, h ∈ H∞(E,Cn), j = 1, . . . , N.

We say that the functionals Φ1, . . . , ΦN are linearly independent if for ar-
bitrary s = (s1, . . . , sn), g ∈ H∞(E,Cn), and λ1, . . . , λN ∈ R such that sk
nowhere vanishes on E, k = 1, . . . , n, and g(0) = 0 the following implication
is true: if

∑N
j=1 λjwj · s∗ = g∗ on a subset of ∂E of positive measure, then

λ1 = . . . = λN = 0.
Later on, we always assume that the functionals Φ1, . . . , ΦN are linearly

independent.

Problem (P). Given a bounded domain D ⊂ Cn and numbers a1, . . .
. . . , aN ∈ R, find a mapping f ∈ O(E,D) such that Φj(f) = aj , j =
1, . . . , N , and there is no mapping g ∈ O(E,D) with

Φj(g) = aj , j = 1, . . . , N, g(E) b D.

Any solution of (P) is called an extremal mapping for (P) or, simply, an
extremal .

Problem (P) is a generalization of Problem (P) from [Pol].
We say that problem (P) is of m-type if there exists a polynomial Q(ζ) =∏m

k=1(ζ − σk) with σ1, . . . , σm ∈ E such that Qwj extends to a mapping of
class A(E,Cn), j = 1, . . . , N .

One can prove that (for bounded domains D ⊂ Cn) any complex κD-
or k̃D-geodesic may be characterized as an extremal for a suitable problem
(P) of 1-type (cf. §4).

The main result of the paper is the following

Theorem 1. Let D b G b Cn be domains and let u ∈ PSH(G) ∩ C(G)
be such that D = {u < 0}, ∂D = {u = 0}. Suppose that f ∈ O(E,D)
is an extremal for (P). Assume that there exist a set S ⊂ ∂E, a mapping
s = (s1, . . . , sn) ∈ H∞(E,Cn), a number ε > 0, and a function v : S ×
A(E,Cn)→ C such that :

(a) ∂E \ S has zero measure,
(b) f∗(ζ), ∇u(f∗(ζ)) and s∗(ζ) are defined for all ζ ∈ S,
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(c) sk nowhere vanishes on E for k = 1, . . . , n,
(d) u(f∗(ζ)+s∗(ζ) ·h(ζ)) = u(f∗(ζ))+2 Re(∇u(f∗(ζ))• (s∗(ζ) ·h(ζ)))+

v(ζ, h), ζ ∈ S, h ∈ A(E,Cn), ‖h‖∞ ≤ ε,
(e) limh→0 sup{|v(ζ, h)| : ζ ∈ S}/‖h‖∞ = 0.

Then
f∗(ζ) ∈ ∂D for a.a. ζ ∈ ∂E

and there exist % ∈ L∞(∂E), % > 0, g ∈ H∞(E,Cn), and (λ1, . . . , λN ) ∈
RN \ {0} such that

N∑
k=1

λkwk(ζ) · s∗(ζ) + g∗(ζ) = %(ζ)s∗(ζ) · ∇u(f∗(ζ)) for a.a. ζ ∈ ∂E.

R e m a r k 2. Under the assumptions of Theorem 1, if u ∈ C1(G) ∩
PSH(G), then one can take s :≡ (1, . . . , 1).

As an easy corollary to Theorem 1 we obtain

Corollary 3. Under the assumptions of Theorem 1, if problem (P) is
of m-type, then there exist % ∈ L∞(∂E), % > 0, and g ∈ H∞(E,Cn) such
that

g∗(ζ) = Q(ζ)%(ζ)s∗(ζ) · ∇u(f∗(ζ)) for a.a. ζ ∈ ∂E.
Theorem 1 generalizes Theorems 2 and 3 of [Pol] (cf. Remark 2). The

proof of Theorem 1 will be presented in §2.
Corollary 3 gives a tool for describing the extremal mappings for prob-

lems (P) of m-type in the case where D is an arbitrary complex ellipsoid
E(p).

Theorem 4. Let ϕ : E → E(p) be an extremal for problem (P) of m-type
such that ϕj 6≡ 0, j = 1, . . . , n. Then

ϕj(λ) = aj

m∏
k=1

(
λ− αkj
1− αkjλ

)rkj
(

1− αkjλ
1− αk0λ

)1/pj

, j = 1, . . . , n,

where

• a1, . . . , an ∈ C \ {0},
• αkj ∈ E, k = 1, . . . ,m, j = 0, . . . , n,
• rkj ∈ {0, 1} and , if rkj = 1, then αkj ∈ E,

•
n∑
j=1

|aj |2pj

m∏
k=1

(ζ − αkj)(1− αkjζ) =
m∏
k=1

(ζ − αk0)(1− αk0ζ), ζ ∈ E.

In particular , if ϕ is a complex κE(p)- or k̃E(p)-geodesic, then ϕ is of the
above form with m = 1.

Theorem 4 generalizes §6 of [Pol] and Theorem 1 of [Jar-Pfl-Zei]. The
proof of Theorem 4 will be given in §§3, 4.
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R e m a r k 5. In the case where E(p) is convex any mapping described in
Theorem 4 with m = 1 is a complex geodesic in E(p) ([Jar-Pfl-Zei]). This is
no longer true if E(p) is not convex (cf. [Pfl-Zwo] for the case n = 2, p1 = 1,
p2 < 1/2).

2. Proof of Theorem 1. Note that there are two possibilities: either
u◦f∗ = 0 a.e. on ∂E or there exists τ > 0 such that the set {θ : u(f∗(eiθ)) <
−τ} has positive measure. If such a τ exists, fix one of them. We put

P0 :=
{
∅ in the first case,
{θ : u(f∗(eiθ)) < −τ} in the second case,

A0 := [0, 2π) \ P0, and

ps(h) :=
1

2π

∫
A0

[Re(s∗(eiθ) ·∇u(f∗(eiθ))•h(eiθ))]+ dθ for h ∈ L1(∂E,Cn),

where L1(∂E,Cn) denotes the space of all Lebesgue integrable mappings
∂E → Cn.

R e m a r k 6. (a) Under the assumptions of Theorem 1, there exists
M > 0 such that

‖s∗(ζ) · ∇u(f∗(ζ))‖ ≤M for a.a. ζ ∈ ∂E.

(b) ps(h) is a seminorm on H1(E,Cn) and ps(h) ≤M‖h‖1, where H1(E)
denotes the first Hardy space of holomorphic functions,

H1(E,Cn) := {(f1, . . . , fn) : fj ∈ H1(E)},
and ‖ ‖1 denotes the norm in H1(E,Cn).

The proof of Theorem 1 is based on the following result.

Lemma 7 (cf. [Pol], Lemma 6). Under the assumptions of Theorem 1
there exist T > 0, j ∈ {1, . . . , N}, and δ ∈ {−1, 1} such that

δΦj(s · h) ≤ Tps(h)

for h ∈ Xj := {h ∈ H1(E,Cn) : Φl(s · h) = 0, l 6= j}.

Let us for a while assume that we already have Lemma 7.

P r o o f o f T h e o r e m 1. By Lemma 7 there exist T > 0, δ ∈ {−1, 1},
and j ∈ {1, . . . , N} such that

δΦj(s · h) ≤ Tps(h) for h ∈ Xj .

Let Φ̃(h) := δΦj(s · h), h ∈ Xj . Using the Hahn–Banach theorem we can
extend Φ̃ to L1(∂E,Cn) (we denote this extension by Φ) in such a way that

Φ(h) ≤ Tps(h) for h ∈ L1(∂E,Cn).
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We know that ps(h) ≤M |h|1, where |h|1 denotes the norm in L1(E,Cn). So
Φ is continuous on L1(∂E,Cn). By Riesz’s theorem, Φ can be represented
as

Φ(h) =
1

2π

2π∫
0

Re(h∗(eiθ) • w̃(eiθ)) dθ, where w̃ ∈ L∞(∂E,Cn).

It is easy to see that there are λ1, . . . , λN , not all zero, such that Φ(h) =∑N
k=1 λkΦk(s · h) for h ∈ H1(E,Cn). We denote by G the linear functional

on L1(∂E,Cn) defined by the formula

G(h) :=
1

2π

2π∫
0

Re
( N∑
k=1

λkwk(eiθ) • s∗(eiθ) · h(eiθ)
)
dθ.

Then Φ(h)−G(h) = 0 for h ∈ H1(E,Cn). By the theorem of F. & M. Riesz
it follows that there exists g ∈ H∞(E,Cn), g(0) = 0, such that

w̃ − s∗ ·
N∑
k=1

λkwk = g∗.

We have

Φ(h) =
1

2π

2π∫
0

Re
[( N∑

k=1

λkwk(eiθ) · s∗(eiθ) + g∗(eiθ)
)
• h∗(eiθ)

]
dθ(1)

≤ T 1
2π

∫
A0

[Re(s∗(eiθ) · ∇u(f∗(eiθ)) • h∗(eiθ))]+ dθ

for any h ∈ H1(E,Cn). We see that the right-hand side is zero for any
h ∈ H1(E,Cn) (hence, for any h ∈ L1(∂E,Cn)) such that

Re(s∗(eiθ) · ∇u(f∗(eiθ)) • h∗(eiθ)) ≤ 0

on ∂E \ (P0 ∪ {ζ ∈ ∂E : s∗(ζ) · ∇u(f∗(ζ)) = 0}).
Hence
N∑
k=1

λkwk · s∗ + g∗ = 0 a.e. on P0 ∪ {ζ ∈ ∂E : s∗(ζ) · ∇u(f∗(ζ)) = 0}.

We know that Φ1, . . . , ΦN are linearly independent, so the Lebesgue mea-
sures of P0 and of {ζ ∈ ∂E : s∗(ζ) · ∇u(f∗(ζ)) = 0} are zero. Hence

N∑
k=1

λkwk(ζ) · s∗(ζ) + g∗(ζ) = %(ζ)s∗(ζ) · ∇u(f∗(ζ)),

where %(ζ) ∈ C \ {0} for a.a. ζ ∈ ∂E. Now, it is enough to remark that
condition (1) implies that 0 < % ≤ T a.e. on ∂E.

Now, we are going to prove Lemma 7.
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P r o o f o f L e m m a 7. Suppose that the lemma is not true. Then for
each j ∈ {1, . . . , N} and m ∈ N there are h+

jm, h
−
jm ∈ Xj such that

Φj(s · h+
jm) > mps(h+

jm), −Φj(s · h−jm) > mps(h−jm).

We may assume that h+
jm, h

−
jm ∈ A(E,Cn) and that

Φj(s · h+
jm) = 1, Φj(s · h−jm) = −1.

For any q = (q+1 , q
−
1 , . . . , q

+
N , q

−
N ) ∈ R2N

+ we define the function

fqm = f +
N∑
j=1

(q+j s · h
+
jm + q−j s · h

−
jm) = f + s · hqm

and the linear mapping A : R2N
+ → RN , A(q) := (q+1 − q

−
1 , . . . , q

+
N − q

−
N ).

Note that Φj(fqm)− Φj(f) = A(q)j .

Lemma 8 (see [Pol], Lemma 7). Let u be a non-positive subharmonic
function in E and let 4u be the Riesz measure of u. Suppose that one of
the following conditions is true:

(a) 4u(r0E) > a > 0 for some r0 ∈ (0, 1),
(b) for some set Z ⊂ [0, 2π) with positive measure, the upper radial limit

of u at ζ ∈ Z does not exceed −a < 0 (i.e. lim supr→1 u(rζ) ≤ −a).

Then u(ζ) ≤ −C(1− |ζ|), where C > 0 is a constant depending only on
r0, a, and Z.

Let u0 := u ◦ f .

Lemma 9. There exist a constant C > 0 and constants tm > 0, m ∈ N,
such that for ‖q‖ < tm we have

(a) fqm ∈ O(E,G) (so, we define uqm := u ◦ fqm),

(b) uqm(ζ) ≤ vqm(ζ) := C ln |ζ|+ 1
2π

∫
A0

[u∗qm(eiθ)]+P (ζ, θ) dθ

for |ζ| > 1/2.

P r o o f. (a) follows from the assumption that D b G.
(b) Suppose that there exists r0 ∈ (0, 1) such that 4u0(r0E) > a > 0.

The continuity of u implies that for

ũqm(ζ) := uqm(ζ)− 1
2π

∫
A0

[u∗qm(eiθ)]+P (ζ, θ) dθ, ζ ∈ E,

if tm is small enough then 4ũqm(rE) > a/2. Hence, from Lemma 8 we get
the required result.

If 4u0(rE) = 0 for any r ∈ (0, 1) and u∗0(ζ) = 0 for a.a. ζ ∈ ∂E, then
by the Riesz representation theorem ([Hay-Ken], Ch. 3.5) we see that u0

is harmonic in E. But this is a contradiction, since u0 6≡ 0. Hence, P0 has
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positive measure. From the continuity of u we conclude that if tm are small
enough, then {ζ : ũqm(ζ) < −τ/2} has positive measure. By Lemma 8 we
get the required result.

Let us introduce some new notation: Eqm := {ζ ∈ E : vqm(ζ) < 0} and

gqm(ζ) := ζ exp
{

1
2πC

∫
A0

[u∗qm(eiθ)]+S(ζ, θ) dθ
}
.

Here S(ζ, θ) := (ζ + eiθ)/(ζ − eiθ) is the Schwarz kernel.

R e m a r k 10. Note that C ln |gqm| = vgm, vqm(ζ) ≥ C ln |ζ| (hence,
|gqm(ζ)| ≥ |ζ|), and Eqm = g−1

qm(E).

Lemma 11 (cf. [Pol], Statement 2). (a) Eqm is connected , 0 ∈ Eqm, (b)
gqm maps Eqm conformally onto E.

P r o o f. (a) Note that Eqm =
⋃
δ>0{ζ : vqm(ζ) < −δ} and

{ζ : vqm(ζ) < −δ} ⊂ {ζ : |ζ| < e−δ/C}.
Since vqm is harmonic outside 0 and v∗qm(eiθ) ≥ 0, any connected component
of {ζ : vqm(ζ) < −δ} must contain 0.

(b) First let us see that gqm : Eqm→E is proper. Let ζk→ζ0 ∈ ∂Eqm. If
ζ0 ∈ ∂E, then |gqm(ζk)| → 1 (since |gqm| ≥ |ζ|). If ζ0 ∈ E, then |gqm(ζk)| →
|gqm(ζ0)| = 1.

Since g′qm(0) 6= 0 and g−1
qm(0) = {0}, gqm is conformal.

We define f̃qm(ζ) = fqm(g−1
qm(ζ)), f̂qm(ζ) = f̃qm(e−‖q‖/mζ),

Ãm(q) = (Φ1(f̃qm)− Φ1(f), . . . , ΦN (f̃qm)− ΦN (f)),
and

Âm(q) = (Φ1(f̂qm)− Φ1(f), . . . , ΦN (f̂qm)− ΦN (f)).

R e m a r k 12. It is easy to see that f̃qm(E) ⊂ D, f̂qm(E) b D, and
Ãm(0) = Âm(0) = 0.

The following result explains why we have used functionals of the special
form.

Lemma 13. Suppose that

Φ(h) =
1

2π

2π∫
0

Re(h∗(eiθ) • w(eiθ)) dθ,

where w ∈ A(Aν ,Cn) for some ν ∈ (0, 1), f ∈ H∞(E,Cn), and that g ∈
O(E,E), g(0) = 0. Then

|Φ(f ◦ g)− Φ(f)| ≤ K‖f‖∞ sup
ζ∈E
|g(νζ)− νζ|,

where K > 0 depends only on Φ.
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P r o o f. We have

(2) Φ(h) =
1

2π

2π∫
0

Re(h(νeiθ) • w(νeiθ)) dθ.

Hence

|Φ(h)| ≤ (max
ζ∈∂E

‖w(νζ)‖)(max
ζ∈∂E

‖h(νζ)‖).

But

‖f(g(νζ))− f(νζ)‖ ≤ (sup
ξ∈E
|f ′(νξ)|)|g(νζ)− νζ|,

and supξ∈E |f ′(νξ)| ≤ ‖f‖∞/(1− ν2).

Lemma 14 (cf. [Pol], Statement 3). The mappings Ãm, Âm are continu-
ous in q for ‖q‖ < tm.

P r o o f. It is enough to remark that if qk → q, then u∗qkm
→ u∗qm uni-

formly on ∂E. Hence gqkm → gqm uniformly on compact subsets of E. It
is evident from the last assertion that also g−1

qkm
→ g−1

qm, f̃qkm → f̃qm, and
f̂qkm → f̂qm uniformly on compact sets. Since the Φj are continuous with
respect to this convergence (this follows easily from (2)), we conclude the
proof.

Lemma 15. For each b > 0 there is m0 ∈ N such that for any m ≥ m0

there is qm > 0 such that ‖A(q)− Ãm(q)‖ ≤ b‖q‖ whenever ‖q‖ ≤ qm.

P r o o f. It follows from the definition of A, Ãm that it is enough to prove
the inequality

|Φ(f̃qm)− Φ(fqm)| ≤ b‖q‖
for small q, where Φ is a functional of our special form. By Lemma 14 it is
enough to show that

sup
ζ∈νE

|g−1
qm(ζ)− ζ| ≤ b‖q‖

for small q. Note that

sup
ζ∈νE

|g−1
qm(ζ)− ζ| ≤ sup

ζ∈νE
|gqm(ζ)− ζ|

and for small qm (such that |1− exp qm| ≤ 2qm) and ‖q‖ ≤ qm,∣∣∣∣1− exp
(

1
2πC

∫
A0

[u∗qm(eiθ)]+S(ζ, θ) dθ
)∣∣∣∣

≤ 2
1 + ν

1− ν

(
1

2πC

∫
A0

[u∗qm(eiθ)]+ dθ
)
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for ζ ∈ νE. Hence, it is enough to show that∫
A0

[u∗qm(eiθ)]+ dθ ≤
∫
A0

2[Re(∇u(f∗(eiθ)) • s∗(eiθ) · hqm(eiθ))]+ dθ

+ o(‖hqm‖∞).

But ps(hqm) ≤ ‖q‖max{ps(hjm) : j = 1, . . . , N} ≤ ‖q‖/m. Hence, if m is
large and qm is small enough, we get the required result.

Lemma 16. For each b > 0 there is m0 ∈ N such that for any m ≥ m0

there is qm > 0 such that ‖Ãm(q)− Âm(q)‖ ≤ b‖q‖ whenever ‖q‖ ≤ qm.

P r o o f. As in Lemma 15, by Lemma 13 it is enough to prove the in-
equality

sup
ζ∈νE

|e−‖q‖/mζ − ζ| ≤ b‖q‖

for small ‖q‖. But for small ‖q‖/m we have |1−e−‖q‖/m| ≤ 2‖q‖/m. Hence,
we get the required result.

Lemma 17 (cf. [Pol], Lemma 8). For any continuous mapping F : R2N
+ →

RN , if
‖F (x)−A(x)‖ ≤ b‖x‖ for x ∈ B(0, r) ∩ R2N

+ ,

where b = 1/(2
√
N), then there exists q ∈ B(0, r) ∩ R2N

+ \ {0} such that
F (q) = 0.

P r o o f. Define

Q := {(x1, . . . , xN ) : 0 < xj < t0, j = 1, . . . , N}
and

π : RN 3 (x1, . . . , xN )→ (x1, t0 − x1, . . . , xN , t0 − xN ) ∈ R2N ,

where t0 = (2
√
N)−1 min{1, r}. It is easy to check that ‖π(l)‖ ≤ t0

√
N for

l ∈ Q and π(Q) ⊂ B(0, r) ∩ R2N
+ . Note that

‖F ◦ π(l)−A ◦ π(l)‖ ≤ b‖π(l)‖ ≤ t0/2 for l ∈ Q.

Consider the homotopy defined by the formula F̃t = tF ◦π+(1−t)A◦π. It is
enough to show that 0 6∈ F̃t(∂Q). Then from the homotopical invariance of
the degree of mappings [Zei] we have deg(F ◦π,Q, 0) = deg(A◦π,Q, 0) 6= 0,
hence 0 ∈ F ◦ π(Q).

It is easy to see that for any l ∈ ∂Q,

t0 ≤ ‖A ◦ π(l)‖ ≤ ‖F̃t(l)‖+ t‖F ◦ π(l)−A ◦ π(l)‖ ≤ ‖F̃t(l)‖+ t0/2.

Hence, we get the required result.

Let us return to the proof of Lemma 9. By Lemmas 14–16 it follows that
Âm is continuous in R2N

+ and for each b > 0 there are m ∈ N and qm > 0
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such that ‖Âm(q)−A(q)‖ ≤ b‖q‖ for ‖q‖ ≤ qm. By Lemma 17, for some m
we can find q0 which is a solution of the equation Âm(q0) = 0. Hence, we
have

Φj(f̂q0m) = aj for j = 1, . . . , N.

But this contradicts the extremality of f , since f̂q0m(E) b D.

3. Proof of Theorem 4. Before we prove the theorem we recall some
auxiliary results.

Lemma 18. Let ϕ ∈ H1(E) be such that

ϕ∗(ζ)∏m
k=1(ζ − σk)

∈ R>0 for a.a. ζ ∈ ∂E,

where σk ∈ C, k = 1, . . . ,m. Then there exist r ∈ R and αk ∈ E, k =
1, . . . ,m, such that

ϕ(ζ) = r

∏m
k=1(ζ − αk)(1− αkζ)∏m

k=1(1− σkζ)
, ζ ∈ E.

This lemma is a generalization of Lemma 8.4.6 of [Jar-Pfl].

P r o o f. Put ϕ̃(ζ) = ϕ(ζ)
∏m
k=1(1− σkζ). Then ϕ̃ ∈ H1(E) and

1
ζm

ϕ̃∗(ζ) ∈ R>0 for a.a. ζ ∈ ∂E.

Hence, it is enough to prove the lemma for σk = 0, k = 1, . . . ,m. Set

P (ζ) =
m∑
k=0

ϕ(k)(0)
k!

ζk +
m−1∑
k=0

ϕ(k)(0)
k!

ζ2m−k.

It is easy to see that if ψ(ζ) := (ϕ(ζ) − P (ζ))/ζm, then ψ ∈ H1(E) and
ψ∗(ζ) ∈ R for a.a. ζ ∈ ∂E. Hence ψ ≡ 0.

Let t(θ) := P (eiθ)/eiθm. We know that t is R-analytic and t(θ) ≥ 0 for
θ ∈ R. If for some θ0 ∈ R we have t(θ0) = 0 then t(θ) = (θ− θ0)k t̃(θ), where
k is even.

Note that P (1/ζ) = P (ζ)/ζ2m and if P (0) = 0, then P (ζ) = ζkP̃ (ζ),

P̃ (0) 6= 0, deg P̃ = 2m−2k, and P̃ (1/ζ) = P̃ (ζ)/ζ2(m−k). Now, it is enough
to note that if P (ζ0) = 0, ζ0 6= 0, then P (1/ζ0) = 0 and if

Q(ζ) :=
P (ζ)

(ζ − ζ0)(1− ζ0ζ)
,

then Q(1/ζ) = Q(ζ)/ζ2(m−1).

Lemma 19. Let S1, S2 be singular inner functions and let S1S2 ≡ 1.
Then S1, S2 ≡ 1.
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P r o o f. Suppose that

Sj(z) = exp
(
−

2π∫
0

eit + z

eit − z
dµj(t)

)
, j = 1, 2,

where µ1 and µ2 are non-negative Borel measures, singular w.r.t. Lebesgue
measure. Then S1S2 ≡ 1 is equivalent to µ1+µ2 = 0. Since µj ≥ 0, j = 1, 2,
we get µ1 = µ2 = 0.

P r o o f o f T h e o r e m 4. We know that ϕj = BjSjFj , where Bj is a
Blaschke product, Sj is a singular inner function and Fj is an outer function.
Take s := (F1, . . . , Fn). Note that |ϕ∗j (ζ)/F ∗j (ζ)| = 1 for a.a. ζ ∈ ∂E and

∂u

∂zj
(ϕ) = pj

|ϕj |2pj

ϕj
for j = 1, . . . , n.

We want to show that the assumptions of Theorem 1 are satisfied. Let
u(z) :=

∑n
j=1 |zj |2pj − 1 be the defining function for E(p).

We know that ϕj 6≡ 0, j = 1, . . . , n. Hence ∇u(ϕ∗(ζ)) exists for a.a.
ζ ∈ ∂E. We have

|ϕj + Fjhj |2pj − |ϕj |2pj − 2 Re
(
pj
|ϕj |2pj

ϕj
Fjhj

)
|hj |

= |ϕj |2pj

∣∣1 + Fj

ϕj
hj
∣∣2pj − 1− 2pj Re

(Fj

ϕj
hj
)∣∣hj Fj

ϕj

∣∣ .

From the equality

lim
z→0

|1 + z|α − 1− αRe z
|z|

= 0, α > 0,

we see that all the assumptions of Theorem 1 are satisfied.
Hence, by Corollary 3, there exist g ∈ H∞(E,Cn) and % ∈ L∞(∂E),

% > 0, such that

Q(ζ)%(ζ)F ∗j (ζ)
|ϕ∗j (ζ)|2pj

ϕ∗j (ζ)
= g∗j (ζ) for a.a. ζ ∈ ∂E, j = 1, . . . , n,

where Q(ζ) =
∏m
k=1(ζ − σk) is a polynomial witnessing the m-type. This is

equivalent to

Q(ζ)%(ζ)|F ∗j (ζ)|2pj = B∗j (ζ)S∗j (ζ)g∗j (ζ) for a.a. ζ ∈ ∂E, j = 1, . . . , n.

By Lemma 18 there exist rj > 0 and αkj ∈ E such that

(3) B∗j (ζ)S∗j (ζ)g∗j (ζ) = rj

∏m
k=1(ζ − αkj)(1− αkjζ)∏m

k=1(1− σkζ)
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and there exist r0 > 0 and αk0 ∈ E such that

(4) Q(ζ)%(ζ) =
n∑
j=1

B∗j (ζ)S∗j (ζ)g∗j (ζ) = r0

∏m
k=1(ζ − αk0)(1− αk0ζ)∏m

k=1(1− σkζ)
.

We have

(5) r0

m∏
k=1

(ζ − αk0)(1− αk0ζ)|Fj(ζ)|2pj = rj

m∏
k=1

(ζ − αkj)(1− αkjζ).

Hence

(6) Fj(ζ) = aj

m∏
k=1

(
1− αkjζ
1− αk0ζ

)1/pj

,

where aj ∈ C \ {0}. From (6) it follows that

Bj(ζ) =
m∏
k=1

(
ζ − αkj
1− αkjζ

)rkj

, where rkj ∈ {0, 1}.

Hence

Sj(ζ)gj(ζ) = rj

∏m
k=1(ζ − αkj)1−rkj (1− αkjζ)1+rkj∏m

k=1(1− σkζ)
.

Since the right-hand side is an outer function, from Lemma 19 we conclude
that Sj ≡ 1, j = 1, . . . , n.

From (5) and (6) we see that |aj |2pj = rj/r0 and from (3) and (4) it
follows that

n∑
j=1

|aj |2pj

m∏
k=1

(ζ − αkj)(1− αkjζ) =
m∏
k=1

(ζ − αk0)(1− αk0ζ), ζ ∈ E.

So, we get the required result.

4. The case of complex geodesics

Lemma 20. Any κD- and k̃D-geodesic is extremal for an appropriate
problem (P) of 1-type.

P r o o f. The case of a κD-geodesic. Consider problem (P) with linear
functionals such that:

• N = 4n,
• wj := (0, . . . , 1, . . . , 0) and aj := Re zj for j = 1, . . . , n,
• wj := (0, . . . ,−i, . . . , 0) and aj := Im zj for j = n+ 1, . . . , 2n,
• wj := (0, . . . , 1/ζ, . . . , 0) and aj := ReXj for j = 2n+ 1, . . . , 3n,
• wj := (0, . . . ,−i/ζ, . . . , 0) and aj := ImXj for j = 3n+ 1, . . . , 4n,

where z ∈ D and X ∈ Cn \ {0}.
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It is easy to see that the corresponding linear functionals are linearly
independent and problem (P) is of 1-type.

Let us show that any κD-geodesic f for (z,X) is extremal for this
problem (P). Suppose that there exists a mapping g ∈ O(E,D) such that
g(0) = z, g′(0) = X, and g(E) b D. Write g̃(ζ) := g(ζ) + ζtX, where t > 0
will be defined later. Then g̃(0) = g(0) = z and g̃′(0) = g′(0)+tX = (1+t)X.
If we take t such that g̃(E) ⊂ D (that is possible, because g(E) b D), then
we have a contradiction with f being a κD-geodesic.

The case of a k̃D-geodesic. Consider problem (P) with linear functionals
such that f ∈ O(E,D) is extremal iff f(0) = z, f(σ) = w, where σ > 0, and
there is no mapping g ∈ O(E,D) such that

(1) g(0) = z, g(σ) = w,
(2) g(E) b D.

(The functions wj in this case can be constructed similarly to the case of a
κD-geodesic. It is enough to replace 1/ζ by 1/(ζ−σ) and −i/ζ by −i/(ζ−σ).)
It is easy to see that the relevant linear functionals are linearly independent
and that the problem (P) is of 1-type.

Let us show that any k̃D-geodesic f is extremal for this problem. Suppose
that there exists a mapping g ∈ O(E,D) such that g(0) = z, g(σ) = w, and
g(E) b D. Define

g̃(ζ) := g(ζ) +
ζ

tσ
(g(σ)− g(tσ)),

where 0 < t < 1 will be defined later. Then g̃(0) = g(0) = z and g̃(tσ) =
g(σ) = w. If we take t such that g̃(E) ⊂ D (use g(E) b D), then we have a
contradiction, because f is a k̃D-geodesic.
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