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On global solutions to a nonlinear Alfvén wave equation

by XS. Feng and F. Wei (Beijing)

Abstract. We establish the global existence and uniqueness of smooth solutions to
a nonlinear Alfvén wave equation arising in a finite-beta plasma. In addition, the spatial
asymptotic behavior of the solution is discussed.

1. Introduction. The aim of this paper is to consider the Cauchy prob-
lem

∂tu+ iuxx = α(u|u|2)x + β(uH|u|2)x, t > 0, x ∈ R,(1.1)
u(x, 0) = φ(x),(1.2)

where α and β are real constants, β > 0, i =
√
−1 and

(Hf)(x) = P.V.
∞∫
−∞

f(y)
π(y − x)

dy

denotes the Hilbert transform.
In [11], considering the effects of finite-temperature, Mjølhus and Wyller

derived equation (1.1) from a set of equations describing weakly nonlinear,
weakly dispersive, weakly diffractive and unidirectional MHD waves prop-
agating nearly parallel to the ambient magnetic field in a finite-beta colli-
sionless plasma. The nonlinear nonlocal term in (1.1) represents the effect
of a resonant particle.

When β = 0, equation (1.1) reduces to the well-known derivative nonlin-
ear Schrödinger (DNLS) equation. Kaup and Newell [7] obtained an exact
solution for the DNLS equation by using an appropriate version of the in-
verse scattering method. Hayashi [5] discussed the Cauchy problem for the
DNLS equation by means of nonlinear transforms. Tsutsumi and Fukuda
[14, 15] studied the DNLS equation

ut + iuxx = (u|u|k)x,
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where k is a natural number. In particular, Kenig et al . [8] established a local
well-posedness result for the initial value problem for a general nonlinear
Schrödinger equation of the form

ut = i∆u+ P (u,∇xu, u,∇xu), t ∈ R, x ∈ Rn,

where u = u(x, t) is a complex-valued function, P : C2n+2 → C is a polyno-
mial having no constant or linear terms and ∇xu = (∂x1u, . . . , ∂xn

u).
For a detailed introduction to the Cauchy problem for the nonlinear

Schrödinger equations, one can refer to [8] and references therein. It should
be pointed out that the method developed in [8] is not applicable to equa-
tion (1.1). One cannot expect to obtain similar estimates (such as (4.8) of
[8]) as done in [8] because of the appearance of the nonlocal term in (1.1).
Thus, in the present paper, we shall employ the well-known parabolic reg-
ularization method in order to establish the global existence of solutions to
problem (1.1), (1.2).

This paper is divided into four parts including the introduction. Section 2
gives some preliminaries and announces the results of this paper. Sections 3
and 4 contain the proofs of the results.

2. Preliminaries and results. Here we give the notation that will be
used throughout this paper and announce the results of this paper.

As usual, Lp(R), 1 ≤ p ≤ ∞, and Hs(R), s ∈ R, are the usual Lebesgue
and Sobolev spaces with norms | · |p and ‖·‖s, respectively. If I is an interval
and X a Banach space with norm ‖ · ‖X , then Lp(I;X) ≡ {u : I → X :
‖u‖X ∈ Lp(I)}. W r

p (0, T ;Hk(R)) denotes the space of functions f(x, t) that
have derivatives ∂st ∂

h
xf(t, x) ∈ Lp(0, T ;L2(R)) with 0 ≤ s ≤ r, 0 ≤ h ≤ k.

We denote by C, C(·, ·, ·) generic constants, not necessarily the same at each
occurrence, which depend in an increasing way on the indicated quantities.

Let Z = {0, 1, 2, . . .}, ω(x) = (1+x2)1/2 and S(R) be the Schwartz space
of all rapidly decreasing infinitely differentiable functions on R. Then for any
s, r ∈ R, Hs

r is the completion of S(R) under the norm ‖u‖r,s = |ωr(1 −
∂2
x)s/2u|2. Let Jsr = H0

r ∩Hs
0 with the norm |||u|||r,s = (‖u‖2r,0 + ‖u‖20,s)1/2.

For Hs
r and Jsr we have [3, 13]

Lemma 2.1. (a) Hs′

r′ ⊆ Hs
r , Js

′

r′ ⊆ Jsr , s ≤ s′, r ≤ r′.
(b) [Hs1

r1 , H
s2
r2 ]θ = H

(1−θ)s1+θs2
(1−θ)r1+θr2 , 0 < θ < 1, sj , rj ∈ R, j = 1, 2, where

[ , ]θ denotes the complex interpolation.
(c) Jsr ⊆ [H0

r , H
s
0 ]θ = Hθs

(1−θ)r, 0 < θ < 1, s, r ∈ R.
(d)

⋂
r,s∈Z J

s
r =

⋂
r,s∈Z = S(R).

(e) (Jsr )′ = H0
−r +H−s0 .

(f) Let r, s>0. If u∈Jrsr , then u∈Hs
r−1 and ‖u‖r−1,s≤C(r, s)|||u|||r,rs.
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(g) Let r ∈ R and s ≥ 0. Then for h ∈ Z we have

|||∂hxu|||r,s ≤ C(r, s)|||u|||r′,s′ ,
where r′ = (s+ h)r/s and s′ = s+ h.

(h) If s > 1/2, then for all u, v ∈ Jsr we have

|||uv|||r,s ≤ C(r, s)|||u|||r,s|||v|||r,s.

R e m a r k. By the lemma above and Sobolev embedding theorem we see
that if u ∈ Jr(s+1)

r with s, r ∈ Z and r 6= 0, then

sup
x∈R
|(ω(x))r−1∂sxu(x)| ≤ C(r, s)‖u‖r−1,s+1 ≤ C(r, s)|||u|||r,(s+1)r,

that is, |∂sxu(x)| = O(|x|−(r−1)) as |x| → ∞.
The following statement follows from a straightforward calculation and

its proof is omitted here.

Lemma 2.2. Let µ(x) ∈ C∞0 (R) be such that 0 ≤ µ ≤ 1, µ = 1 if |x| ≤ 1
and µ = 0 if |x| ≥ 2. Let µε(x) = µ(εx) for 0 < ε < 1. Then as ε→ 0,

µε(x)→ 1 uniformly on any bounded set of R,
∂jxµε(x)→ 0 uniformly on R for j 6= 0.

Moreover , for any j ∈ Z we have

|∂hx (x)| ≤ C(j)εh(ω(x))−(j−h), 0 ≤ h ≤ j,
where C(j) > 0 is independent of ε.

Lemma 2.3. Let q and r be any real numbers satisfying 1 ≤ q, r ≤ ∞
and j,m ∈ Z be such that j ≤ m. Then for u ∈ Lq with ∂mx u ∈ Lr we have

|∂jxu|p ≤ C(j,m, q, r, a)|∂mx u|ar |u|1−aq ,

where 1/p = j + a(1/r −m) + (1− a)1/q for all a in the interval j/m ≤ a
≤ 1. In particular ,

|u|∞ ≤ |u|1/22 |ux|
1/2
2

for u ∈ H1.

The first result in this lemma is well known. For the second conclusion
we know that

u2 = 2
x∫

−∞

uux dx, u2 = −2
∞∫
x

uux dx

From the above two equations we have

|u|2 ≤ 2
x∫

−∞

|uux| dx and |u|2 ≤ 2
∞∫
x

|uux| dx.
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Adding the above two inequalities yields

|u|2 ≤
( x∫
−∞

+
∞∫
x

)
|uux| dx =

∞∫
−∞

|uux| dx,

which implies the result by Hölder’s inequality.

Lemma 2.4 (Gronwall’s inequality). Suppose that g(t) and h(t) satisfy
the inequality

g(t) ≤M1 +M2

t∫
0

g(s)h(s) ds for any 0 ≤ t ≤ T,

where M1 and M2 are nonnegative constants. Moreover , suppose that∫ T
0
h(t) dt <∞. Then

g(t) ≤M1 exp
(
M2

T∫
0

h(t) dt
)
, t ∈ [0, T ].

Lemma 2.5 (Properties of Hilbert transform). (a) If f, g ∈ L2(R), then∫
fHg dx = −

∫
gHf dx,

∫
HfHg dx =

∫
fg dx.

(b) For real functions g ∈ H2, we have

1) (Hg)x = H(gx) and
∫
gxH(g) dx ≥ 0,

2) |gx|2 ≤
( ∫

gxH(g) dx
)1/4( ∫

gxxH(gx) dx
)1/4

, and

|gx|2 ≤ |g|1/32

( ∫
gxxH(gx) dx

)2/3

.

Part (a) and 1) of part (b) are well known. The conclusion 2) of (b) can
be proved directly by using Fourier transform and the Plancherel formula [2].

Our results are as follows:

Theorem 2.6. Let T be any given positive constant. For any initial data
φ ∈ Hs, s ∈ Z and s ≥ 2, if

|φ|22 <
4

3(
√

(|α|+ β)2 + 8
3α

2 + |α|+ β)

then problem (1.1), (1.2) has a solution u such that

u ∈
⋂

k+2h≤s

Wh
∞(0, T ;Hk(R)),

where k, h ∈ Z.



Nonlinear Alfvén wave equation 159

Theorem 2.7. Let T be any given positive constant. For any initial
data φ ∈ Jsr (R) satisfying the condition of Theorem 2.6 with s, r ∈ Z and
s ≥ max(r, 2), problem (1.1), (1.2) has a solution u such that

u ∈
⋂

s′+2h≤s, r′s+2hr≤rs

Wh
∞(0, T ; Js

′

r′ ),

where s′, h ∈ Z and r′ ≥ 0 real.

Corollary 2.8. For any T > 0 fixed , if φ ∈ S(R) satisfies the condi-
tion of Theorem 2.6, then the solution u to problem (1.1), (1.2) belongs to
C∞([0, T ];S(R)).

Corollary 2.9. Let uα,β be the solution obtained in Theorems 2.6
and 2.7. Then as β → 0 (resp. α→ 0), uα,β converges in⋂

k+2h≤s

Wh
∞(0, T ;Hk)

(
resp.

⋂
s′+2h≤s, r′s+2hr≤rs

Wh
∞(0, T ; Js

′

r′ )
)

to the unique solution to the equations

ut + iuxx = α(|u|2u)x

and

ut + iuxx = β(uH|u|2)x
respectively.

3. Proof of Theorem 2.6. In the study of global existence for dis-
persive equations, global a priori estimates play an important role. It is a
common technique to use the conservation laws to establish global a priori
estimates. But in our case we do not know explicit forms of the conservation
laws associated with equation (1.1). In this section we derive global a priori
estimates of the solution to (1.1), (1.2) by constructing substitutes for the
conservation laws corresponding to (1.1). In order to prove Theorem 2.6 we
first consider the initial value problem for the following parabolic regular-
ization:

(3.1) ut + iuxx = εuxx + α(u|u|2)x + β(uH|u|2)x, t > 0, ε > 0, x ∈ R,
(3.2) u(x, 0) = φε(x), ε > 0,

where φε(x) ∈ H∞(R) =
⋂
k≥0H

k(R) with φε(x)→ φ(x) strongly in Hs(R)
as ε ↓ 0+. Then the solution to problem (1.1), (1.2) is obtained by the
standard limiting process ε ↓ 0+.

For problem (3.1), (3.2) we have

Lemma 3.1. For any given T > 0, there exists a unique solution uε to
problem (3.1), (3.2) such that uε ∈ C∞([0, T ];H∞(R)).
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P r o o f. The proof is simple. By using the argument of [9] one can estab-
lish the existence in L∞(0, T ;L2) ∩ L2(0, T ;H1). Then differentiating the
equation with respect to x one obtains the L∞(0, T ;H1)∩L2(0, T ;H2) reg-
ularity. Continuing in this way and applying the standard results for linear
parabolic problems [1, 10] one can finish the proof.

In order to guarantee the convergence of the limiting process we need
uniform estimates of the solution to problem (3.1), (3.2). The uniform esti-
mates are established in the subsequent several lemmas.

Lemma 3.2. For the solution u = uε obtained in Lemma 3.1 we have the
following identities:

1)
d

dt

∫
|u|2 dx+ β

∫
(|u|2)xH|u|2 dx+ 2ε

∫
|ux|2 dx = 0,

2)
d

dt

∫ [
|ux|2 + 3

2α Im(uux)|u|2 + 3
2β Im(uux)H|u|2 + 3

2α
2|u|6

]
dx

= β
[
6α Im

∫
uxu|u|2H(|u|2)x dx+ 3

2α Im
∫
uux(|u|2)xH|u|2 dx

+ 3
2β Im

∫
uuxH|u|2H(|u|2)x dx− 3

2α Im
∫

(uH|u|2)x(u|u|2)x dx

+ 3
2α Im

∫
uuxH(|u|2(|u|2)x) dx+ 3β Im

∫
uuxH(|u|2H(|u|2)x) dx

+ 3
2β Im

∫
uuxH((|u|2)xH|u|2) dx− 5

2α
2
∫
|u|6H(|u|2)x dx

]
+ ε
∫

[3α2|u|4 Re(uuxx) + 6αIm(uxuxx)|u|2] dx

+ 3
2βε Im

∫
[(uxuxx)H|u|2 − (uH|u|2)xuxx + 2(uux)H(Re(uuxx))] dx.

P r o o f. The proof of 1) can be given by multiplying (3.1) by uε, inte-
grating the resulting expression in x and performing several integrations by
parts. The proof of 2) can be established directly by integration by parts.
In fact, using equation (3.1) and integration by parts we have

(3.3)
d

dt

∫
|ux|2 dx+ 2ε

∫
|uxx|2 dx

= 3β
∫
|ux|2H(|u|2)x dx−β

∫
(|u|2)xxH(|u|2)x dx+3α

∫
(|u|2)x|ux|2 dx,

(3.4)
d

dt

∫
Im(uux)|u|2 dx

= − 2
∫

(|u|2)x|ux|2 dx+ 4ε
∫

Im(uxuxx)|u|2 dx

+ 4α
∫

Im(uux)|u|2(|u|2)x dx+ 4β
∫

Im(uux)|u|2H(|u|2)x dx,

(3.5)
d

dt

∫
Im(uux)H|u|2 dx
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= − 2
∫
H(|u|2)x|ux|2 dx+ 1

2

∫
(|u|2)xxxH(|u|2)xx dx

+ 2
∫

Im(uux)H(Im(uuxx)) dx

+ ε Im
∫

(uxuxxH|u|2 − (uH|u|2)xuxx + 2(uux)H(Re(uuxx))) dx

+ α
∫

Im(uux)(|u|2)xH|u|2 dx+ β
∫

Im(uux)H|u|2H(|u|2)x dx

− α Im
∫

(uH|u|2)x(u|u|2)x dx+ 3α
∫

Im(uux)H(|u|2(|u|2)x) dx

+ β
∫

Im(uux)(2H(|u|2H(|u|2)x) +H((|u|2)xH|u|2)) dx,

(3.6)
d

dt

∫
|u|6 = −4

∫
|u|2(|u|2)x Im(uux) dx− 5

3β
∫
|u|6H(|u|2)x dx

+ 2ε
∫
|u|4 Re(uuxx) dx.

Considering (3.3)–(3.6) we can complete the proof.

From this lemma we get the following conclusion:

Lemma 3.3. Under the conditions of Lemma 3.1, if

|φ|22 <
4

3(
√

(|α|+ β)2 + 8
3α

2 + |α|+ β)
,

then

‖u(·, t)‖21 + ε
t∫

0

‖u(·, τ)‖22 dτ ≤ C

and

β

4

t∫
0

∫
(|u|2)xxH(|u|2)x dx dτ + 3β

t∫
0

∫
Im(uux)xH Im(uux) dx dτ ≤ C

hold for all t ≥ 0, where C is a positive constant depending only on the size
of ‖φ‖1.

P r o o f. From 1) of Lemma 3.2 it follows that

(3.7) |u(·, t)|22 + β
t∫

0

∫
(|u|2)xH|u|2 dx+ 2ε

t∫
0

|ux(·, τ)|22 dτ ≤ C

for all t ≥ 0. Denoting the right hand side of 2) in Lemma 3.2 by A(t) and
using Lemmas 2.3 and 2.5 we have the following delicate estimate:

|A(t)| ≤ Cβ(|u|3∞|ux|2|(|u|2)x|2(3.8)
+ |ux|2|(|u|2)x|2|u|∞|H|u|2|∞ + |u|4∞‖u|2|2|(|u|2)x|2)
+ Cε(|u|4∞|u|2|uxx|2 + |ux|∞|u|24|uxx|2 + |u|2∞|ux|2|uxx|2)
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≤ Cβ(|u|3∞|ux|2|(|u|2)x|2
+ |ux|2|(|u|2)x|2|u|∞|H|u|2|∞ + |u|4∞‖u|2|2|(|u|2)x|2)

+ Cε(|u|32|ux|22|uxx|2 + |u|3/22 |ux|2|uxx|
3/2
2 ).

In order to estimate the first term on the right hand side of (3.8) we use
the following inequalities (see Lemma 2.3):

(3.9) ‖u|2|∞ ≤ C|(|u|2)x|2/32 ‖u|2|
1/3
1

and

(3.10) ‖u|2|2 ≤ C|(|u|2)x|1/32 ‖u|2|
2/3
1 .

From (3.9), (3.10) we have

(3.11) |u|3∞ = ‖u|2|3/2∞ ≤ C|(|u|2)x|2|u|2
and

|u|∞|H|u|2|∞ ≤ |u|∞|(|u|2)x|1/22 ‖u|2|
1/2
2(3.12)

= ‖u|2|1/2∞ ‖u|2|
1/2
2 |(|u|2)x|1/22 ≤ C|u|2|(|u|2)x|2,

|u|4∞‖u|2|2 = |u|3∞|u|∞|u|24 ≤ C|u|32|ux|2|(|u|2)x|2.(3.13)

Inserting (3.11)–(3.13) into (3.8) we obtain

|A(t)| ≤ Cβ
(
|u|2|ux|2 + |u|32|ux|2

)
|(|u|2)x|22(3.14)

+ Cε(|u|32|ux|22|uxx|2 + |u|3/22 |ux|2|uxx|
3/2
2 )

≤ Cβ|ux|2|(|u|2)x|22 + Cε(|ux|22|uxx|2 + |ux|2|uxx|3/22 )

≤ Cβ|ux|2
( ∫

(|u|2)xH|u|2 dx
)1/2( ∫

(|u|2)xxH(|u|2)x dx
)1/2

+ ε|uxx|22 + Cε|ux|42
≤ 1

8β
∫

(|u|2)xxH(|u|2)x dx+ Cβ
( ∫

(|u|2)xH|u|2 dx
)
|ux|22

+ ε|uxx|22 + Cε|ux|42,
where we have used Lemma 2.5 and Young’s inequality. Consequently, we get

(3.15)
d

dt

∫ [
|ux|2 + 3

2β Im(uux)H|u|2 + 3
2α Im(uux)|u|2 + 3

2α
2|u|6

]
dx

+ 1
8β
∫

(|u|2)xxH(|u|2)x dx+3β
∫

(Im(uux))xH(Im(uux))+ε
∫
|uxx|2 dx

≤ C
(
β
∫

(|u|2)xH|u|2 dx+ ε|ux|22
)
|ux|22.

To bound (3.5), first note that∣∣∣ 32β ∫ Im(uux)H|u|2 dx
∣∣∣ ≤ 3

2β|φ|
2
2|ux|22,(3.16) ∣∣∣ 32α ∫ Im(uux)H|u|2 dx

∣∣∣ ≤ 3
2 |α‖φ|

2
2|ux|22,(3.17)
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3
2α

2
∫
|u|6 dx ≤ 3

2α
2|ux|22|u|42 ≤ 3

2α
2|φ|42|ux|22.(3.18)

Keeping (3.16)–(3.18) in mind and integrating (3.15) over the time interval
[0, t] we obtain

(3.19) |ux|22 + 1
8β

t∫
0

∫
(|u|2)xxH(|u|2)x dx dt

+ 3β
t∫

0

∫
(Im(uux))xH(Im(uux)) dx dt+ ε

t∫
0

∫
|uxx|2 dx dt

≤ C + C
t∫

0

(
β
∫

(|u|2)xH|u|2 dx+ ε|ux|22
)
|ux|22 dτ

if |φ|22 is less than the positive root of the algebraic equation
3
2α

2y2 + 3
2 (|α|+ β)y − 1 = 0,

that is,

|φ|22 <
4

3(
√

(|α|+ β)2 + 8
3α

2 + |α|+ β)
.

Now apply Gronwall’s inequality to (3.19) and use (3.7) to finish the proof.

Lemma 3.4. Under the conditions of Lemma 3.3, we have

|uxx|22 + ε
t∫

0

|uxxx|22 dτ ≤ C,

(3.20) β
t∫

0

∫
(|u|2)xxxH(|u|2)xx dx dτ

+ β
t∫

0

∫
Im(uux)xxH Im(uux)x dx dτ ≤ C

for all t ∈ [0, T ], where C depends only on T and ‖φ‖H2 .

P r o o f. Using equation (3.1) and integration by parts we can obtain the
following somewhat tedious identities:

(3.21)
d

dt

∫
|uxx|2 dx

= 5α
∫

(|u|2)x|uxx|2 dx+ 5α
∫

(|u|2)xx(|ux|2)x dx

+ β
∫

(5|uxx|2H(|u|2)x + 5H(|u|2)xx(|ux|2)x − (|u|2)xxxH(|u|2)xx) dx,

(3.22)
d

dt

∫
Im(uxuxx)H|u|2 dx

= 2
∫
H(|u|2)x|uxx|2 dx+ 1

2

∫
H(|u|2)xx(|ux|2)x dx
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+ 2
∫

Im(uxuxx)H(Im(uux)x) dx

+ ε Im
∫

[uxxuxxxH|u|2 − (uxH|u|2)xuxxx

+ 2uxuxxH(Re(uuxx))] dx

+ α Im
∫
uxx(u|u|2)xxH|u|2 dx

+ β Im
∫
uxx(uH|u|2)xxH|u|2 dx

− α Im
∫

(u|u|2)x(uH|u|2)xx dx− β Im
∫

(uxH|u|2)x(uH|u|2)xx dx

+ 3α Im
∫
uxuxxH((|u|2)x|u|2) dx+ 2β Im

∫
uxuxxH(|u|2H(|u|2)x) dx

+ β Im
∫
uxuxxH((|u|2)xH|u|2) dx,

(3.23)
d

dt

∫
Im(uuxxx)H|u|2 dx

= − 2
∫
H(|u|2)x|uxx|2 dx− 5

2

∫
H(|u|2)xx(|ux|2)x dx

+ 1
2

∫
(|u|2)xxxH(|u|2)xx dx− 2

∫
(Im(uux))xxH(Im(uux))x dx

+ 2
∫

Im(uxuxx)H(Im(uux))x dx

+ ε Im
∫

[uxxuxxxH|u|2 + (uH|u|2)xxuxxx + 2uuxxxH(Re(uuxx))] dx

− 4α Im
∫
uuxxH(|u|2(|u|2)x)x dx− 4α Im

∫
uxuxx(|u|2)xH|u|2 dx

− α Im
∫

(|u|2H|u|2)xuxuxx dx− 3β Im
∫
H(|u|2)H(|u|2)xuxuxx dx

− β Im
∫

(H(|u|2)H(|u|2)x)xuuxx dx

− 2β Im
∫
uxuxxH(|u|2H(|u|2)x) dx

− 2β Im
∫
uuxx(H(|u|2)H(|u|2)x)x dx

− β Im
∫
uxuxxH((|u|2)xH|u|2) dx

− β Im
∫
uuxxH((|u|2)xH|u|2)x dx,

(3.24)
d

dt

∫
Im(uxuxx)|u|2 dx

=
∫

(|u|2)x|uxx|2 dx+
∫

(|u|2)xx(|ux|2)x dx
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+ ε Im
∫

[|u|2uxxuxxx + 2uxuxx Re(uuxx)− (|u|2ux)xuxxx] dx

+ α Im
∫
|u|2uxx(u|u|2)xx dx+ β Im

∫
|u|2uxx(uH|u|2)xx dx

− α Im
∫

(|u|2ux)x(u|u|2)xx dx− β Im
∫

(|u|2ux)x(uH|u|2)xx dx

+ 3α Im
∫
uxuxx|u|2(|u|2)x dx+ 2β Im

∫
uxuxx|u|2H(|u|2)x dx

+ β Im
∫
uxuxx(|u|2)xH|u|2 dx.

Considering (3.21)–(3.24) we get

(3.25)
d

dt

∫ [
|uxx|2 + 15

8 β Im(uuxxx)H|u|2

− 5
8β Im(uxuxx)H|u|2 − 5α Im(uxuxx)|u|2

]
dx

+ 2ε
∫
|uxxx|2 dx+ 1

16β
∫

(|u|2)xxxH(|u|2)xx dx

+ 15
4 β
∫

(Im(uux))xxH(Im(uux))x dx

≤ Cβ|ux|∞|uxx|2| Im(uux)x|2 + (1 + |uxx|22) + ε|uxxx|22,

where we have used Lemmas 2.3 and 2.5 and Young’s inequality.
Using Lemma 2.5 we have

|(Im(uux))x|22 ≤
( ∫

(Im(uux))xH(Im(uux)) dx
)1/2

(3.26)

×
( ∫

(Im(uux))xxH(Im(uux))x dx
)1/2

Combining (3.25) and (3.26) yields that the right hand side of (3.25) is less
than

(3.27) Cβ|uxx|3/22

( ∫
(Im(uux))xH(Im(uux)) dx

)1/4

×
( ∫

(Im(uux))xxH(Im(uux))x dx
)1/4

+ C(1 + |uxx|22) + ε|uxxx|22

≤ C + C
(

1 + β
∫

(Im(uux))xH(Im(uux)) dx
)
|uxx|22 + ε|uxxx|22

+ β
∫

(Im(uux))xxH(Im(uux))x dx.

By integration by parts and Lemma 2.3 we have
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(3.28)
∣∣∣ 158 β Im

∫
uuxxxH|u|2 dx

− 5
8β Im

∫
uxuxxH|u|2 dx− 5α Im

∫
uxuxx|u|2 dx

∣∣∣
≤ C|uxx|2 ≤ 1

2 |uxx|
2
2 + C.

From (3.25), (3.27) and (3.28) we get

|uxx|22 + 1
16β

t∫
0

∫
(|u|2)xxxH(|u|2)xx dx dt+ ε

t∫
0

∫
|uxxx|2 dx dt(3.29)

+ 11
4 β

t∫
0

∫
(Im(uux))xxH(Im(uux))x dx dt

≤ C + C
t∫

0

(
1 + β
∫

(Im(uux))xH(Im(uux)) dx
)
|uxx|22 dτ.

The application of Gronwall’s inequality to (3.29) completes the proof.

Lemma 3.5. Under the conditions of Lemma 3.3, for k ≤ s we have

|ukx|22 + ε
t∫

0

∫
|u(k+1)x|2 dx dt+ β

t∫
0

(|u|2)(k+1)xH(|u|2)kx dx dt ≤ C

for all t ∈ [0, T ], where C depends only on T and ‖φ‖k, and ukxdenotes the
kth derivative of u in x.

P r o o f. A simple calculation gives

(3.30)
d

dt

∫
|ukx|2 dx+2ε

∫
|u(k+1)x|2 dx+β

∫
(|u|2)(k+1)xH(|u|2)kx dx

= − β
∫
|ukx|2H(|u|2)x dx− α

∫
|ukx|2(|u|2)x dx

+ 2βRe
∫
ukx[(uH|u|2)(k+1)x − u(k+1)xH|u|2 − uH(|u|2)(k+1)x] dx

+ β
∫

((|u|2)kx − 2 Re(ukxu))xH(|u|2)kx dx

+ 2αRe
∫
ukx[(u|u|2)(k+1)x − u(k+1)x|u|2 − u(|u|2)(k+1)x] dx

+ α
∫

[(|u|2)kx − 2 Re(ukxu)]x(|u|2)kx dx

≤ C(|H(|u|2)x|∞ + |(|u|2)x|∞)|ukx|22

+ C|ukx|2|(uH|u|2)(k+1)x − u(k+1)xH|u|2 − uH(|u|2)(k+1)x|2
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+ C|ukx|2|(u|u|2)(k+1)x − u(k+1)x|u|2 − u(|u|2)(k+1)x|2

+ C|(|u|2)kx|2|[(|u|2)kx − 2 Re(ukxu)]x|2

≤ C(|H(|u|2)x|∞ + |(|u|2)x|∞)|ukx|22 + C|(|u|2)kx|2|ux|∞|ukx|2

+ C|ukx|2(|u|∞|(|u|2)kx|2 + |H(|u|2)x|∞|ukx|2) ≤ C|ukx|22
Now the application of Gronwall’s inequality implies the conclusion of the
lemma.

From equation (3.1) and Lemmas 3.2–3.5 we know that

‖uεt‖L2(0,T ;Hs−2) ≤ C, sup
0≤t≤T

‖uε‖s ≤ C,

where C is independent of ε. By weak compactness, we can find a subse-
quence of {uε}ε>0 (also denoted by {uε}) and u ∈ Lε(0, T ;Hs) ∩ L2(0, T ;
Hs−2) such that

uε → u weak-star in L∞(0, T ;Hs),

uεt → ut weakly in L2(0, T ;Hs−2).

Evidently,

α(uε|uε|2)x + β(uεH|uε|2)x → α(u|u|2)x + β(uH|u|2)x.

So, the limit u of {uε} satisfies equation (1.1). By a classical result of Strauss
[12] we know that u is weakly continuous from [0, T ] into Hs after a mod-
ification on a set with zero measure. Thus uε(x, 0) = φε → φ(x) = u(x, 0).
Continuing in this way and using equation (1.1) we conclude that

u ∈
⋂

k+2r≤s

W r
∞(0, T ;Hk).

In order to complete the proof of Theorem 2.6 it remains to show the
uniqueness. To this end, let u and v be two solutions to problem (1.1), (1.2)
with initial data φ and ψ, respectively. Then w = u− v is a solution to the
problem

wt + iwxx = α(u|u|2 − v|v|2)x + β(uH|u|2 − vH|v|2)x,(3.31)
w(x, 0) = φ− ψ.(3.32)

Using equation (3.31) and integration by parts we get
d

dt
|w|22 = 2 Re

∫
wwt dx

= − 2αRe
∫
wx

[
w
|u|2 + |v|2

2
+
u+ v

2
Re(w(u+ v))

]
dx

− 2βRe
∫
wx

[
wH

(
|u|2 + |v|2

2

)
+
u+ v

2
H Re(w(u+ v))

]
dx
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= α
∫
|w|2

(
|u|2 + |v|2

2

)
x

dx+ α
∫

Re(w(u+ v)x) Re(w(u+ v)) dx

+ β
∫
|w|2H

(
|u|2 + |v|2

2

)
x

dx

− β
∫

Re(w(u+ v))xH Re(w(u+ v)) dx

+ β
∫

Re(w(u+ v)x)H Re(w(u+ v)) dx

≤ C|w|22 − β
∫

Re(w(u+ v))xH Re(w(u+ v)) dx ≤ C|w|22.
By Gronwall’s inequality it follows that

|w(·, t)|22 ≤ |φ− ψ|22 exp(CT ), t ∈ [0, T ],

which implies the uniqueness.

4. Proof of Theorem 2.7. It is of interest to know that equation (1.1)
has solutions decreasing faster than Hs(R) convergence as x tends to infinity,
in particular, solutions in the Schwartz space S(R) for each t, provided that
its initial data is in S(R). This can be realized by considering the initial
value problem (1.1), (1.2) in the weighted Sobolev space Jsr (R). For the
Jsr (R) convergence of solutions to problem (1.1), (1.2) we have Theorem 2.7
and Corollary 2.8. In the proof of our result we employ the same method as
in Tsutsumi [13]. In fact, the proof can be reproduced from [13]. In order
to make the paper self-contained we present the proof as follows.

Since S(R) is dense in Jsr (R), there exists a sequence {φk} ⊂ S(R) such
that

(4.1) {φk} → φ strongly in Jsr (R) as k →∞.
We first consider the parabolic regularization of equation (1.1): for k ∈ Z\0,

(4.2) ut + iuxx =
1
k
uxx + α(|u|2u)x + β(uH|u|2)x

with

(4.3) u(x, 0) = φk(x).

For problem (4.2), (4.3) we have

Lemma 4.1. For every fixed k ∈ Z \ 0, problem (4.2), (4.3) has a unique
global solution uk ∈ C∞([0, T ];S(R)), T > 0.

P r o o f. By the results of Section 3 we know that problem (4.2), (4.3)
has a unique global solution uk ∈ C∞([0, T ];H∞) and

(4.4) sup
0≤t≤T

‖uk(t)‖2s +
1
k

T∫
0

‖uk(t)‖2s+1dt ≤ C,
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where C is independent of k but depends on the size of φ and T . In order
to prove the assertion of the lemma, it suffices to show that

(4.5) uk ∈ L∞(0, T ; J0
r (R))

for every r ∈ Z. The proof of (4.5) together with

(4.6) ∂xu
k ∈ L2(0, T ; J0

r (R))

is done by induction on r. When r = 0, this is obvious. Assume that the
result is known for all values less than or equal to r − 1 (r ≥ 1). We prove
it for r. Let µ(x) and µε(x) be as given in Lemma 1.2. For simplicity we
sometimes suppress k in uk. Differentiating ‖uk(t)‖2r,0 with respect to t,
using equation (4.2) and integrating by parts we have

d

dt
‖µεu(t)‖2r,0 = − 2

k
‖µεux‖2r,0 +

1
k

∫
(µ2
εω

2r)x|u|2(4.7)

+ 2 Re
∫

(µεω2r)xiuux dx

+ 3α
∫
µ2
εω

2r|u|2(|u|2)x dx

+ 2β
∫
µ2
εω

2r|u|2H(|u|2)x dx

+ β
∫
µ2
εω

2r(|u|2)xH|u|2 dx

≤ − 1
k
‖µεux‖2r,0 + C(k)(‖u‖2r,0 + ‖u‖2r−1,0 + ‖ux‖2r−1,0),

where we have used |∂dxω2r|≤C(d)(ω(x))2r−d and |∂jxµε(x)|≤C(j)(ω(x))−j .
And C is a positive constant independent of ε. We can rewrite (4.7) as

(4.9)
d

dt
‖µεu‖2r,0 +

1
k
‖µεux(t)‖2r,0 ≤ C(k)(‖µεu‖2r,0 +‖u‖2r−1,0 +‖ux‖2r−1,0).

Now Gronwall’s inequality gives

sup
0≤t≤T

‖µεuk(t)‖2r,0 ≤ C,(4.10)

T∫
0

‖µεukx(t)‖2r,0 dt ≤ C,(4.11)

where C is independent of ε. Therefore, {µεuk} remains in a bounded subset
of L∞(0, T ; J0

r (R)). So, taking the limit as ε → 0, we see that µεuk → uk

weak-star in L∞(0, T ; J0
r (R)) and the assertions (4.5), (4.6) hold for r since

L∞(0, T ; J0
r ) = (L1(0, T ;H0

−r + L2))′. This ends the proof of the lemma.

P r o o f o f T h e o r e m 2.7. With Lemma 4.1 we consider the conver-
gence of uk as k →∞. From Lemma 4.1 we know that for any T > 0,

(4.12) sup
0≤t≤T

‖uk(t)‖0,s ≤ C
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holds for all integers s. From this it follows that {uk} forms a bounded subset
of L∞(0, T ; Js0 (R)). We next show that for r > 0, {uk} remains bounded in
L∞(0, T ; J0

r (R)). In fact, we have

d

dt
‖uk(t)‖2r,0 = 2 Re

∫
ω2ruut dx

= − 2
k
‖ux‖2r,0 −

2
k

Re
∫

2rω2(r−1)xuux dx

+ 4rRe
∫

(4rω2(r−1)xiuux

+ 2αω2ru(u|u|2)x + 2βω2ru(uH|u|2)x) dx

≤ − 1
k
‖ux‖2r,0 + C‖u‖2r,0 + C‖ux‖2r−1,0

≤ − 1
k
‖ux‖2r,0 + C‖u‖2r,0 + C|||u|||2r,r

≤ − 1
k
‖ux‖2r,0 + C(‖u‖2r,0 + 1),

where we have used the uniform boundedness of ‖u‖0,s and s ≥ max(r, 2).
Thus

(4.13)
d

dt
‖u‖2r,0 +

1
k
‖ux‖2r,0 ≤ C(‖u‖2r,0 + 1),

where C is independent of the natural number k. Integrating (4.13) with
respect to t and using Gronwall’s inequality give

(4.14) sup
0≤t≤T

‖uk(t)‖r,0 ≤ C

with the constant C independent of k. From (4.12) and (4.14) it follows that
{uk} forms a bounded sequence in L∞(0, T ; Jsr (R)). Hence, there exists a
subsequence of {uk} (also denoted by {uk}) and u ∈ L∞(0, T ; Jsr (R)) such
that

uk → u weak-star in L∞(0, T ; Jsr (R)).

Then it can be easily seen by the standard argument that u is the desired
solution of (1.1), (1.2) (see [9]). From Lemma 1.1(g) it is shown that

u2x ∈ L∞(0, T ; Js
′

r′ (R)),

where s′ = s− 2 and r′ = r(s− 2)/s. Here, in view of equation (1.1) we can
conclude that

ut ∈ L∞(0, T ; Js
′

r′ (R))

with s′ and r′ as above. Continuing in this way and using equation (1.1) we
obtain the conclusion of Theorem 2.7.
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Corollary 2.8 is just a consequence of Theorem 2.7 and Lemma 1.1(d)
combined.

Corollary 2.9 can be seen from the process of proof of Theorems 2.6
and 2.7.

R e m a r k. From Corollary 2.8 one knows that equation (1.1) has rapidly
decreasing solutions if its initial data is in S(R). This shows that the non-
local nonlinear term in (1.1) does not affect the decay rate of its solutions.
Thus the effect of the nonlocal nonlinear term in equation (1.1) is quite
different from that of similar nonlocal terms in the Benjamin–Ono equation
and the higher order Benjamin–Ono equation, in which the decay rate of
the solutions is limited because of the presence of the nonlocal terms Huxx
and H(u2)xx ([6, 4]).
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Reçu par la Rédaction le 20.11.1994


