A counterexample to a conjecture of Drużkowski and Rusek

by Arno van den Essen (Nijmegen)

Abstract

Let $F=X+H$ be a cubic homogeneous polynomial automorphism from \mathbb{C}^{n} to \mathbb{C}^{n}. Let p be the nilpotence index of the Jacobian matrix $J H$. It was conjectured by Drużkowski and Rusek in [4] that $\operatorname{deg} F^{-1} \leq 3^{p-1}$. We show that the conjecture is true if $n \leq 4$ and false if $n \geq 5$.

1. Introduction. In [1] and [7] it was shown that it suffices to prove the Jacobian Conjecture for cubic homogeneous polynomial maps from \mathbb{C}^{n} to \mathbb{C}^{n}, i.e. maps of the form $F=\left(F_{1}, \ldots, F_{n}\right)$ with $F_{i}=X_{i}+H_{i}$, where each H_{i} is either zero or a homogeneous polynomial of degree 3. In [2] it was shown that it even suffices to consider cubic linear polynomial maps, i.e. maps such that each H_{i} is of the form $H_{i}=l_{i}^{3}$, where l_{i} is a linear form.

A crucial result (cf. [1] and [6]) asserts that the degree of the inverse of a polynomial automorphism F is bounded by $(\operatorname{deg} F)^{n-1}$ (where $\operatorname{deg} F=$ $\max \operatorname{deg} F_{i}$). In [4] Drużkowski and Rusek proved that for cubic homogeneous (resp. cubic linear) automorphisms this degree estimate could be improved in some special cases; more precisely, if ind $J H$ denotes the index of nilpotency of $J H$ then they showed that $\operatorname{deg} F^{-1} \leq 3^{\text {ind } J H-1}$ if ind $J H \leq 2$ and also if H is cubic linear and ind $J H \leq 3$. This led them to the following conjecture:

Conjecture $1.1(\mathrm{D}-\mathrm{R})([4], 1985)$. If $F=X+H$ is a cubic homogeneous polynomial automorphism, then $\operatorname{deg} F^{-1} \leq 3^{p-1}$, where $p=\operatorname{ind} J H$.

Recently, in [3], Drużkowski showed that Conjecture D-R is true in case all coefficients of H are real numbers ≤ 0 (in which case the map F is stably tame, a result obtained by Yu in [8]).

In the present paper we show that the conjecture is true if $n \leq 4$ and false if $n \geq 5$.

1991 Mathematics Subject Classification: Primary 14E02.
Key words and phrases: polynomial automorphisms, Jacobian Conjecture.
2. The counterexample for $n \geq 5$. Let $n \geq 5$ and consider the polynomial ring $\mathbb{C}[X]:=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$.

THEOREM 2.1. For each $n \geq 5$ the polynomial automorphism
$F=\left(X_{1}+3 X_{4}^{2} X_{2}-2 X_{4} X_{5} X_{3}, X_{2}+X_{4}^{2} X_{5}, X_{3}+X_{4}^{3}, X_{4}+X_{5}^{3}, X_{5}, \ldots, X_{n}\right)$
is a counterexample to Conjecture $D-R$.
Proof. Put $H=F-X$. Then one easily verifies that $(J H)^{3}=0$ and $(J H)^{2} \neq 0$. Thus ind $J H=3$. So if Conjecture $\mathrm{D}-\mathrm{R}$ is true, then $\operatorname{deg} F^{-1} \leq 9$. However, the inverse $G=\left(G_{1}, \ldots, G_{n}\right)$ of F is given by the following formulas:

$$
\begin{aligned}
G_{1}= & X_{1}-3\left(X_{4}-X_{5}^{3}\right)^{2}\left(X_{2}-\left(X_{4}-X_{5}^{3}\right)^{2} X_{5}\right) \\
& +2\left(X_{4}-X_{5}^{3}\right) X_{5}\left(X_{3}-\left(X_{4}-X_{5}^{3}\right)^{3}\right) \\
G_{2}= & X_{2}-\left(X_{4}-X_{5}^{3}\right)^{2} X_{5} \\
G_{3}= & X_{3}-\left(X_{4}-X_{5}^{3}\right)^{3} \\
G_{4}= & X_{4}-X_{5}^{3} \\
G_{i}= & X_{i} \quad \text { for all } 5 \leq i \leq n
\end{aligned}
$$

So looking at the highest power of X_{5} appearing in G_{1}, one easily verifies that $\operatorname{deg} G_{1}=13>9$.
3. The case $n \leq 4$. The main result of this section is

Proposition 3.1. Conjecture $D-R$ is true if $n \leq 4$.
To prove this result we need the following theorem (cf. [5]):
Theorem 3.2. Let K be a field of characteristic zero and $F=X-H$ a cubic homogeneous polynomial map in dimension four such that $\operatorname{Det}(J F)$ $=1$. Then there exists some $T \in G L_{4}(K)$ such that $T^{-1} F T$ is of one of the following forms:
(1) $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}-a_{4} x_{1}^{3}-b_{4} x_{1}^{2} x_{2}-c_{4} x_{1}^{2} x_{3}-e_{4} x_{1} x_{2}^{2}-f_{4} x_{1} x_{2} x_{3} \\ \\ \quad-h_{4} x_{1} x_{3}^{2}-k_{4} x_{2}^{3}-l_{4} x_{2}^{2} x_{3}-n_{4} x_{2} x_{3}^{2}-q_{4} x_{3}^{3}\end{array}\right)$,
(2) $\left(\begin{array}{l}x_{1} \\ x_{2}-\frac{1}{3} x_{1}^{3}-h_{2} x_{1} x_{3}^{2}-q_{2} x_{3}^{3} \\ x_{3} \\ x_{4}-x_{1}^{2} x_{3}-h_{4} x_{1} x_{3}^{2}-q_{4} x_{3}^{3}\end{array}\right)$,
(3)

$$
\left(\begin{array}{rl}
x_{1} & \\
x_{2}-\frac{1}{3} x_{1}^{3}-c_{1} x_{1}^{2} x_{4}+3 c_{1} x_{1} x_{2} x_{3}-\frac{16 q_{4} c_{1}^{2}-r_{4}^{2}}{48 c_{1}^{2}} x_{1} x_{3}^{2} \\
\quad & \quad \frac{1}{2} r_{4} x_{1} x_{3} x_{4}+\frac{3}{4} r_{4} x_{2} x_{3}^{2}-\frac{r_{4} q_{4}}{12 c_{1}} x_{3}^{3}-\frac{r_{4}^{2}}{16 c_{1}} x_{3}^{2} x_{4} \\
x_{3} & \\
x_{4} & -x_{1}^{2} x_{3}+\frac{r_{4}}{4 c_{1}} x_{1} x_{3}^{2}-3 c_{1} x_{1} x_{3} x_{4}+9 c_{1} x_{2} x_{3}^{2} \\
& \quad-q_{4} x_{3}^{3}-\frac{3}{4} r_{4} x_{3}^{2} x_{4}
\end{array}\right),
$$

(4) $\left(\begin{array}{l}x_{1} \\ x_{2}-\frac{1}{3} x_{1}^{3} \\ x_{3}-x_{1}^{2} x_{2}-e_{3} x_{1} x_{2}^{2}-k_{3} x_{2}^{3} \\ x_{4}-e_{4} x_{1} x_{2}^{2}-k_{4} x_{2}^{3}\end{array}\right)$,
(5) $\left(\begin{array}{l}x_{1}-\frac{1}{3} x_{1}^{3}+i_{3} x_{1} x_{2} x_{4}-j_{2} x_{1} x_{4}^{2} s_{3} x_{2} x_{4}^{2}+i_{3}^{2} x_{3} x_{4}^{2}-t_{2} x_{4}^{3} \\ x_{2}-x_{1}^{2} x_{2}-\frac{2 s_{3}}{i_{3}} x_{1} x_{2} x_{4}-i_{3} x_{1} x_{3} x_{4}-j_{3} x_{1} x_{4}^{2}-\frac{s_{3}^{2}}{i_{3}^{2}} x_{2} x_{4}^{2} \\ \\ \quad-s_{3} x_{3} x_{4}^{2}-t_{3} x_{4}^{3} \\ x_{4}\end{array}\right)$,
(6) $\left(\begin{array}{l}x_{1} \\ x_{2}-\frac{1}{3} x_{1}^{3}-j_{2} x_{1} x_{4}^{2}-t_{2} x_{4}^{3} \\ x_{3}-x_{1}^{2} x_{2}-e_{3} x_{1} x_{2}^{2}-g_{3} x_{1} x_{2} x_{4}-j_{3} x_{1} x_{4}^{2}-k_{3} x_{2}^{3} \\ \quad \\ \quad-m_{3} x_{2}^{2} x_{4}-p_{3} x_{2} x_{4}^{2}-t_{3} x_{4}^{3} \\ x_{4}\end{array}\right)$,
(7) $\left(\begin{array}{l}x_{1} \\ x_{2}-\frac{1}{3} x_{1}^{3} \\ x_{3}-x_{1}^{2} x_{2}-e_{3} x_{1} x_{2}^{2}-k_{3} x_{2}^{3} \\ x_{4}-x_{1}^{2} x_{3}-e_{4} x_{1} x_{2}^{2}-f_{4} x_{1} x_{2} x_{3}-h_{4} x_{1} x_{3}^{2}-k_{4} x_{2}^{3} \\ \quad-l_{4} x_{2}^{2} x_{3}-n_{4} x_{2} x_{3}^{2}-q_{4} x_{3}^{3}\end{array}\right)$,
(8) $\left(\begin{array}{l}x_{1} \\ x_{2}-\frac{1}{3} x_{1}^{3} \\ x_{3}-x_{1}^{2} x_{2}-e_{3} x_{1} x_{2}^{2}+g_{4} x_{1} x_{2} x_{3}-k_{3} x_{2}^{3}+m_{4} x_{2}^{2} x_{3}+g_{4}^{2} x_{2}^{2} x_{4} \\ \quad x_{4}-x_{1}^{2} x_{3}-e_{4} x_{1} x_{2}^{2}-\frac{2 m_{4}}{g_{4}} x_{1} x_{2} x_{3}-g_{4} x_{1} x_{2} x_{4}-k_{4} x_{2}^{3} \\ \quad-\frac{m_{4}^{2}}{g_{4}^{2}} x_{2}^{2} x_{3}-m_{4} x_{2}^{2} x_{4}\end{array}\right)$.

Proof. See [5, Theorem 2.7].
Proof of 3.1. As remarked in the introduction, the case ind $J H=n$ was proved in [1] and [6]. The case ind $J H=2$ was done in [4]. So we may assume that $2<$ ind $J H<n$. Therefore only the case $n=4$ and ind $J H=3$ remains. By the classification theorem of Hubbers ([5, Theorem 2.7]) we know that there exists $T \in G L_{4}(\mathbb{C})$ such that $T^{-1} F T$ has one of the eight forms described above. One easily verifies that in each of the eight
cases in which the nilpotency index of $J H$ equals $3, \operatorname{deg}\left(T^{-1} F T\right)^{-1} \leq 9$, so $\operatorname{deg} F^{-1} \leq 9$.

References

[1] H. Bass, E. Connell, and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330.
[2] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313.
[3] -, The Jacobian Conjecture: some steps towards solution, in: Automorphisms of Affine Spaces, Proc. Conf. "Invertible Polynomial Maps", Curaçao, July 4-8, 1994, A. R. P. van den Essen (ed.), Caribbean Mathematics Foundation, Kluwer Academic Publishers, 1995, 41-54.
[4] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90.
[5] E.-M. G. M. Hubbers, The Jacobian Conjecture: cubic homogeneous maps in dimension four, master thesis, Univ. of Nijmegen, February 17, 1994; directed by A. R. P. van den Essen.
[6] K. Rusek and T. Winiarski, Polynomial automorphisms of C^{n}, Univ. Iagel. Acta Math. 24 (1984), 143-149.
[7] A. V. Yagzhev, On Keller's problem, Siberian Math. J. 21 (1980), 747-754.
[8] J.-T. Yu, On the Jacobian Conjecture: reduction of coefficients, J. Algebra 171 (1995), 515-523.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF NIJMEGEN
NIJMEGEN, THE NETHERLANDS
E-mail: ESSEN@SCI.KUN.NL

