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Intersection theory in complex analytic geometry

by Piotr Tworzewski (Kraków)

Abstract. We present a construction of an intersection product of arbitrary complex
analytic cycles based on a pointwise defined intersection multiplicity.

1. Introduction. Let X and Y be irreducible analytic subsets of a
complex manifoldM of dimensionm (in this paper all manifolds are assumed
to be second-countable). We say that the intersection of X and Y is proper
if dim(X ∩Y ) = dimX+dimY −m. Then we have the intersection product
X · Y of X and Y in M , denoted also by X ·M Y , which is an analytic cycle
on M defined by the formula

X · Y =
∑
C

i(X · Y ;C) C,

where the summation extends over all analytic components C of X ∩Y and
i(X · Y ;C) denotes the intersection multiplicity along the component C in
the sense of R. Draper ([Dr], Def. 4.5, see also [W1]).

This paper contains a proposal of the extension of this well-known defi-
nition to the case of improper (excess) intersections. In the presented theory
the intersection product X • Y is an analytic cycle

X • Y =
∑
j∈J

αjCj ,

i.e. αj ∈ Z for j ∈ J and {Cj}j∈J is a locally finite family of irreducible
analytic subsets of the manifold M .

The case of an improper isolated point of intersection has been worked
out in [ATW]. Intersection multiplicities for irreducible (proper or improper)
components are algebraically investigated in [AM1], [AM2], and [AM3].
However, a full construction of an intersection product was not finished.
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In this paper we assign to every point a ∈ M a geometrically defined
intersection multiplicity d(a) of X and Y at the point a, by analogy with the
Stückrad–Vogel cycle (cf. [G1], [G2], [SV], [V]). The function d : M 3 a →
d(a) ∈ Z is analytically constructible (Theorem 6.2) and defines a required
intersection product X •Y (Definition 6.3). In the next natural steps we can
extend this definition to the case of two (by Z-bilinearity) or more analytic
cycles.

The organization of this paper is as follows. Sections 2 and 3 are of
preparatory nature; we collect together some facts on analytic cycles and
derive their consequences for use in other parts. In Sections 4 and 5 our main
results are proved, and then used in Section 6 to the main construction of a
general intersection product.

This paper is to be treated as the first in a series on this subject. It
is meant to lay down the necessary foundations. As for prerequisites, the
reader is expected to be familiar with the theory of proper intersections of
analytic sets in complex analytic geometry. Draper’s paper [Dr] is our best
reference. We shall use the notation and basic results of [Dr] (see also [Ch],
Chapter 2).

2. Cycles, multiplicities, and constructible functions. In this pa-
per analytic means complex analytic, and manifold means a complex mani-
fold satisfying the second axiom of countability. A function f : X → Y from
a topological space X to an ordered set Y is called upper semicontinuous
if for every y ∈ Y the set {x ∈ X : f(x) ≥ y} is closed in X. Usually we
consider Y = Np, p ≥ 1, with the lexicographic ordering (1).

An analytic cycle on a manifold N is the formal sum

A =
∑
j∈J

αjCj ,

where αj 6= 0 for j ∈ J are integers and {Cj}j∈J is a locally finite family of
pairwise distinct irreducible analytic subsets of the manifold N .

The analytic set
⋃
j∈J Cj is called the support of the cycle A and is de-

noted by |A|. The sets Cj are called the components of A with multiplicities
αj , j∈J . We say that the analytic cycle A is positive if αj > 0 for all j ∈ J .
If all the components of A have the same dimension k, then A will be called
a k-cycle.

We denote by G(N) the set of all analytic cycles on N with the natural
structure of a commutative group. For k ∈ N the subgroup of k-cycles of
G(N) will be denoted by Gk(N). Observe that the set of indices J has to be
at most countable and that 0 (neutral element) corresponds to J = ∅.

(1) Notice that if f = (f1, . . . , fp), then there are no simple relations between such a
semicontinuity of f and the classical semicontinuity of its real components f1, . . . , fp.
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Now, let N be an n-dimensional manifold and let Z be a pure k-dimen-
sional analytic subset of N . For c ∈ N we denote by ν(Z, c) the degree of Z
at the point c (cf. [Dr], p. 194). This degree is equal to the classical algebraic
Samuel multiplicity, and to the so-called Lelong number of Z at the point
c. In this paper we will consider a natural extension of this definition to the
case of an arbitrary analytic cycle. Namely, if A =

∑
j∈J αjCj is an analytic

cycle on N , then the sum

ν(A, c) =
∑
j∈J

αjν(Cj , c)

is well defined, and we call it the degree of the cycle A at the point c.
For an analytic cycle A there exists a unique decomposition

A = T(n) + T(n−1) + . . .+ T(0),

where T(j) is a j-cycle for j = 0, . . . , n. We define the extended degree of A
at c by the formula

ν̃(A, c) = (ν(T(n), c), . . . , ν(T(0), c)) ∈ Zn+1.

Denote by ν(A) and ν̃(A) the functions

ν(A) : N 3 x→ ν(A, x) ∈ Z, ν̃(A) : N 3 x→ ν̃(A, x) ∈ Zn+1.

Observe that ν(A, x) = ̂ν̃(A, x), where µ̂ denotes the sum of the coordinates
of µ ∈ Zn+1.

If A is positive, then by ([Wh], p. 237) (see also [Ch], p. 127), the function
ν(A) : N → N is upper semicontinuous in the Zariski topology on N . By
a standard calculation one can show that also ν̃(A) : N → Nn+1 is upper
semicontinuous if in Nn+1 we consider the lexicographic ordering.

Finally, let us recall that a function f : N → C is called analytically
constructible if its graph is an analytically constructible subset of N × C
(see [ L2], IV, §8). Define

K(N) = {f : N → C : f(N) ⊂ Z, f is analytically constructible}.

Observe that f : N → Z belongs to the class K(N) if and only if all the
fibres of f are analytically constructible subsets of N .

We end this section with the following useful

(2.1) Proposition. Let N be a manifold. Then:

(1) if A ∈ G(N), then ν(A) is an analytically constructible and locally
bounded function,

(2) if f ∈ K(N) and if C is an irreducible analytic subset of N , then
there exists µ ∈ Z such that C ∩ f−1(µ) = C,

(3) the function ν : G(N) 3 A→ ν(A) ∈ K(N) is an additive bijection.
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P r o o f. If C is an irreducible analytic subset of N , then ν(C) is an upper
semicontinuous function in the Zariski topology of N . This implies (1) in
the case A = C. The general case follows easily by the definition.

To prove (2) it is enough to observe that C =
⋃
µ∈Z C ∩ f−1(µ).

In (3) it is clear that ν(G(N)) ⊂ K(N) and that ν is an additive injection.
Suppose that ν(G(N)) 6= K(N) and fix f ∈ K(N)\ν(G(N)). For g∈ν(G(N))
define

Y (g) = {x ∈ N : f(x) 6= g(x)}.
Then Y (g) is a non-empty analytic subset of N and there exists g0 such that
dimY (g0) is minimal possible. Let {Cj}j∈J be the family of all irreducible
components of Y (g0). By (2) there exist “generic values” αj of f and βj
of g0 on each Cj for j ∈ J . Define g1 = g0 +

∑
j∈J(αj − βj)Cj . Then

dimY (g1) < dimY (g0), which is impossible.

3. Sequences of positive cycles. Let N be a manifold. In the family
FN of all closed subsets of N we introduce the topology of local uniform
convergence generated by the sets

U(S,K) = {F ∈ FN : F ∩K = ∅, F ∩ U 6= ∅ for U ∈ S}
corresponding to all compact K ⊂ N and all finite families S of open subsets
of N . We write Fi 7→ F if F, Fi ∈ FN for i ∈ N, and F is the limit of the
sequence {Fi} in the above topology (2). A detailed study of this convergence
can be found in [TW2] (see also [W1] and [Ch], §12.2, §15.5).

Now we wish to investigate the convergence of positive k-cycles on N for
a fixed k ∈ N.

(3.1) Definition. We say that a sequence {Zi}, i ≥ 1, of positive k-
cycles converges to a positive k-cycle Z0 (and write Zi � Z0) if:

(?) |Zi| 7→ |Z0| in the topology of local uniform convergence,
(??) for each regular point a of |Z0| and each submanifold T of N of

dimension n−k transversal to |Z0| at a such that T is compact and |Z0|∩T =
{a}, we have deg(Zi · T ) = deg(Z0 · T ) for almost all i (3).

The definition is based on the one given in [Ch] (§12.2, p. 141) for the
convergence of positive holomorphic chains in open subsets of Cn, equivalent

(2) By a standard calculation one can show that Fi 7→ F if and only if for every x ∈ F
and every neighbourhood V of x, Fi ∩ V 6= ∅ for sufficiently large i, and for every y 6∈ F
there exists a neighbourhood U of y such that Fi ∩ U 6= ∅ for at most a finite number
of i.

(3) Observe that the cycle Z0 · T and cycles Zi · T for a sufficiently large i have finite
supports and so the degrees (cf. [Dr], [TW3]) are well defined. Recall that for a cycle
A =
∑d
j=1 αj{aj}, deg(A) =

∑d
j=1 αj . Moreover, deg(Z0 · T ) = i(Z0 · T, {a}) is equal to

the multiplicity of the component of the cycle Z0 containing the point a.



Intersection theory 181

to the convergence in the sense of currents (see [Ch] for details). Notice that
in [R] the same convergence is introduced by a metrizable topology.

(3.2) Lemma. Let k ∈ N and Zi, for i ∈ N, be positive k-cycles. If
|Zi| 7→ |Z0|, then the following conditions are equivalent :

(1) Zi � Z0.
(2) For each a ∈ |Z0| and each submanifold T of N of dimension n− k

such that T is compact , a ∈ T and |Z0| ∩ T = {a} we have deg(Zi · T ) =
deg(Z0 · T ) for almost all i.

(3) For each point a from a given dense subset of regular points of |Z0|
there exists a submanifold T of N of dimension n− k transversal to |Z0| at
a such that T is compact , |Z0| ∩ T = {a} and deg(Zi · T ) = deg(Z0 · T ) for
almost all i.

P r o o f. (1)⇒(2). Without loss of generality we may assume that N is an
open subset of Cn, a = 0, and T = {0} ×B ⊂ Ck ×Cn−k = Cn, where B is
the open unit ball in Cn−k. There exists an open connected neighbourhood
U of 0 ∈ Ck such that U ×B ⊂ N and (U × ∂B) ∩ |Z0| = ∅. The mapping
π|(U × B) ∩ |Z0| : (U × B) ∩ |Z0| → U is a branched covering and so there
exists x0 ∈ U such that T ′ = {x0} × B and |Z0| intersect transversally at
regular points of |Z0|.

By a standard calculation we have deg(Z0 · T ) = deg(Z0 · T ′) and also
deg(Zi ·T ) = deg(Zi ·T ′) for almost all i. Condition (1) implies deg(Z0 ·T ′) =
deg(Zi · T ′) for sufficiently large i, and (2) follows.

(2)⇒(3). Obvious.
(3)⇒(1). We may assume that:

• N = B′ × Cn−k, where B′ is an open unit ball in Ck,
• |Z0| = B′ × {0}, a = 0,
• T = {0} ×B, where B is an open unit ball in Cn−k.

There exists x0 ∈ B′ and a submanifold T ′ which satisfies condition (3)
at (x0, 0) ∈ |Z0|. Without loss of generality we may assume that T ′ = F ,
where F : r̃B → B′, r̃ > 0, is a holomorphic mapping. Fix r ∈ (0, r̃) and
r′ ∈ (0, 1) such that F (rB) ⊂ r′B′. Set T ′′ = F |(rB) and observe that (3)
implies deg(Zi ·T ′′) = deg(Z0 ·T ′′) = deg(Z0 ·T ) = α for almost all i, where
Z0 = α|Z0|.

Finally, ([W1], Th. 9.1) gives deg(Zi ·T ) = deg(Zi ·T ′′) and consequently
deg(Z0 ·T ) = deg(Zi ·T ) for sufficiently large i. This gives (1), and the proof
is complete.

Suppose that Fi, for i ∈ N, are closed subsets of the manifold N . We say
that a point x ∈ N belongs to the upper topological limit of the sequence
{Fi} (and write x ∈ Ls(Fi)) if and only if each neighbourhood of x intersects
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infinitely many sets from the sequence. Now we are able to formulate the
following lemma.

(3.3) Lemma. Suppose that G is a dense subset of a k-dimensional con-
nected manifold D, B is an open unit ball in Cn−k and N = D × Cn−k.
Let Zi 6= 0, for i ∈ N, be positive k-cycles in N such that |Zi| ⊂ D × B. If
there exists an analytic subset Z of D×Cn−k of pure dimension k such that
Z ⊂ D ×B, Ls(|Zi|) ⊂ Z and

({x} × Cn−k) · Zi � ({x} × Cn−k) · Z0 for x ∈ G,
then Zi � Z0.

P r o o f. Our assumptions imply that the natural projection π : D ×
Cn−k→D is proper when restricted to each |Zi|. We first prove that |Zi| 7→
|Z0|. By ([TW2], Lemma 2) we may assume that {|Zi|} converges to a closed
subset F = Ls(|Zi|) of N . It is easy to see that |Z0| ⊂ F ⊂ Z. Fix z0 ∈ F
and its neighbourhood V in N . Since z0 = (x0, y0) ∈ Z, there exist an open
connected neighbourhood U of x0 in D and a ball B1 in Cn−k with centre
at y0 such that U ×B1 ⊂ V and (U × ∂B1)∩F = ∅. Choose x̃ ∈ U ∩G and
observe that the assumptions of the lemma imply that ({x̃}×B1)∩|Z0| 6= ∅.
From what has already been proved, we have z0 ∈ |Z0| = |Z0|. Thus
F = |Z0| and so |Zi| 7→ |Z0|.

It remains to prove that condition (??) of Definition (3.1) is satisfied.
We have the convergence of supports, and in our situation condition (3) of
Lemma (3.2) is satisfied. This completes the proof.

Now, let N be an n-dimensional manifold and let S be a closed s-
dimensional submanifold of N . For a given analytic cycle A =

∑
j∈J αjCj

the part of A supported by S is defined to be

AS =
∑

j∈J,Cj⊂S
αjCj .

Observe that every analytic cycle has a decomposition A = AS +
(A − AS). If A is positive, then both parts of this decomposition are also
positive. We will prove the following

(3.4) Theorem. Suppose that Zi, for i ∈ N, are positive k-cycles in N
such that Zi � Z0. If c ∈ S and ν(ZS0 , c) ≤ ν(ZSi , c) for i ∈ N, then there
exists an open neighbourhood U of the point c such that :

(1) ZSi ∩ U � ZS0 ∩ U and
(2) (Zi − ZSi ) ∩ U � (Z0 − ZS0 ) ∩ U

as sequences of cycles in U .

P r o o f. Without loss of generality we may assume that k ≤ s ≤ n and
that:
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• N = D×Cs−k ×Cn−s, where D is an open connected neighbourhood
of 0 ∈ Ck,
• S = D × Cs−k × {0},
• |Zi| ⊂ D × B for i ∈ N, where B = B(0, 1) is the open unit ball in

Cn−k = Cs−k × Cn−s,
• c = 0 ∈ Cn,
• ({0} × Cn−k) · Z0 = ν(Z0, 0){0}.
Define U = N , Xi = ZSi , Yi = Zi−ZSi , i ∈ N, and observe that Ls(|Xi|)

⊂ |Z0| and Ls(|Yi|) ⊂ |Z0|. Let G be the (dense) subset of D of common
regular points of the branched coverings π||Zi| : |Zi| → D, where i ∈ N and
π : D × Cs−k × Cn−s → D is the natural projection. Let p : D × Cs−k ×
Cn−s → Cs−k × Cn−s = Cn−k be the natural complementary projection.

We will prove the convergence required in the assumptions of the previ-
ous lemma for x ∈ G. Fix x ∈ G and suppose that p(|Z0| ∩ ({x}×Cn−k)) =
{y1, . . . , yd}. For every ε > 0 we have p(|Zi|∩({x}×Cn−k)) ⊂

⋃d
j=1B(yj , ε)

for sufficiently large i. For ε < ε0 the closed balls B(yj , ε), j = 1, . . . , d, are
pairwise disjoint and we have ({x}×B(yj , ε))∩S = ∅ for every j 6∈ J = {l :
(x, yl) ∈ S}. The condition Zi � Z0 implies

deg(({x} ×B(yj , ε)) · Zi) = deg(({x} ×B(yj , ε)) · Z0)

for j = 1, . . . , d and i > i0. If j 6∈ J we get

deg(({x} ×B(yj , ε)) · Yi) = deg(({x} ×B(yj , ε)) · Y0)

for i > i0, and so ({x}×Cn−k) · Yi � ({x}×Cn−k) · Y0. By Lemma 3.3 we
get Yi � Y0 and (1) follows.

To prove (2) observe that the assumption ν(X0, 0) ≤ ν(Xi, 0) for i ∈ N
implies∑

j∈J
deg(({x} ×B(yj , ε)) ·X0) ≤

∑
j∈J

deg(({x} ×B(yj , ε)) ·Xi).

Moreover, for i > i0 we have∑
j∈J

deg(({x} ×B(yj , ε)) ·X0) =
∑
j∈J

deg(({x} ×B(yj , ε)) · Z0)

=
∑
j∈J

deg(({x} ×B(yj , ε)) · Zi).

This implies that |Yi| ∩ ({x} × (
⋃
j∈J B(yj , ε)) = ∅ and so, for each j ∈ J

we have

deg(({x} ×B(yj , ε)) ·Xi) = deg(({x} ×B(yj , ε)) ·X0)

for i > i0. This gives ({x}×Cn−k) ·Xi � ({x}×Cn−k) ·X0. By Lemma 3.3
we get Xi � X0 and the proof is complete.
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Now we want to investigate the continuity of intersections of positive
analytic cycles. We start with the following lemma:

(3.5) Lemma. Let S be a closed submanifold of a manifold N . Suppose
that Zi, for i ∈ N, are positive k-cycles in N and Zi � Z0. If |Zi| intersects
S properly for i ∈ N, then Zi · S � Z0 · S.

P r o o f. Since |Z0| intersects S properly, by ([TW2], Th. 3) we get
|Zi · S| 7→ |Z0 · S|. Suppose now that a is a regular point of V = |Z0 · S| =
|Z0| ∩ S and T is a submanifold of S of dimension n − k transversal to V
at a such that T is compact and T ∩ V = {a}. Then T ∩ |Z0| = {a} and
by Lemma 3.2 we have deg(Zi · T ) = deg(Z0 · T ) for sufficiently large i. By
([TW3], Th. 2.2) we get Zi ·N T = (Zi ·N S) ·S T for i = 0, 1, . . . , and so
deg((Zi ·N S) ·S T ) = deg((Z0 ·N S) ·S T ) for large i. This ends the proof.

By the classical “diagonal construction” we finally get

(3.6) Theorem (cf. [Ch], Corollary 12.3.4). Suppose that Xi and Yi,
for i ∈ N, are positive p- and q-cycles, respectively , in a manifold M . If
Xi � X0, Yi � Y0 and if |Xi| intersects |Yi| properly for i ∈ N, then
Xi · Yi � X0 · Y0.

P r o o f. Define Zi :=Xi × Yi, a (p + q)-cycle in N =M ×M for i ∈ N.
Consider the diagonal S = ∆M of M ×M . We have Zi � Z0 and |Zi|
intersects S properly for i ∈ N. By the previous lemma we obtain Zi · S �
Z0 · S and this gives the required convergence.

4. Indices of intersection of analytic sets with submanifolds. Let
N be an n-dimensional manifold. Fix S, a closed s-dimensional submanifold
of N , and an open subset U of N such that U ∩S 6= ∅. Denote by H(U) the
set of all H := (H1, . . . ,Hn−s) satisfying the following conditions:

(1) Hj is a smooth hypersurface of U containing U∩S for j = 1, . . . , n−s,
(2)

⋂n−s
j=1 Tx(Hj) = TxS for each x ∈ U ∩ S.

For a given analytic subset Z of N of pure dimension k we denote by
H(U,Z) the set of all H ∈ H(U) such that ((U \S)∩Z)∩H1∩ . . .∩Hj is an
analytic subset of U \S of pure dimension k−j (or empty) for j = 0, 1, . . . , k.

For every H = (H1, . . . ,Hn−s) ∈ H(U,Z) define an analytic cycle Z · H
in S ∩ U by the following

(4.1) Algorithm:
Step 0: Let Z0 = Z ∩ U . Then Z0 = ZS0 + (Z0 − ZS0 ), where ZS0 is the

part of Z0 supported by S ∩ U .
Step 1: Let Z1 = (Z0−ZS0 ) ·H1. Then Z1 = ZS1 + (Z1−ZS1 ), where ZS1

is the part of Z1 supported by S ∩ U .
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Step 2: Let Z2 = (Z1−ZS1 ) ·H2. Then Z2 = ZS2 +(Z2−ZS2 ), where ZS2
is the part of Z2 supported by S ∩ U .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step n− s: Let Zn−s = (Zn−s−1−ZSn−s−1)·Hn−s. Now we have a decompo-
sition Zn−s = ZSn−s+(Zn−s−ZSn−s), and |Zn−s−ZSn−s|∩S = ∅.

We call a positive analytic cycle Z · H = ZS0 +ZS1 + . . .+ZSn−s in S ∩U
the result of the above algorithm.

(4.2) Definition. For c ∈ S we call

g̃(c) = g̃(Z, S)(c) := minlex{ν̃(Z · H, c) : H ∈ H(U,Z), c ∈ U} ∈ Ns+1

the extended index of intersection and g(c) = ̂̃g(c) the index of intersection
of Z with the submanifold S at the point c.

5. Index functions. We shall need the following two technical lemmata
in the space Cn.

(5.1) Lemma. Suppose that N = Cn and S = Cs × {0}, where 0 ∈
Cn−s. Fix c ∈ S, R > 0 and H = (H1, . . . ,Hn−s) ∈ H(B(c,R)). Then
there exist r ∈ (0, R), sequences Ui of open subsets of Cn, and H(i) =
(H(i)

1 , . . . ,H
(i)
n−s) ∈ H(Ui) such that S ∪ B(c, r) ⊂ Ui for i = 1, 2, . . . , and

H
(i)
j ∩B(c, r) � Hj ∩B(c, r) for j = 1, . . . , n− s.

P r o o f. Let c = (x0, 0) and take % ∈ (0, R) such that

P% = {(x, y) ∈ Cs × Cn−s : |x− x0| < %, |yj | < % for j = 1, . . . , n− s}
⊂ B(c,R)

and that there exist functions hj ∈ O(P%), j = 1, . . . , n − s, satisfying
the conditions Hj ∩ P% = h−1

j (0), j = 1, . . . , n − s, and such that h =
(h1, . . . , hn−s) is a submersion at each point of S ∩ P%.

One can write

hj(x, y) =
n−s∑
q=1

yqhj,q(x, y), (x, y) ∈ P%, j = 1, . . . , n− s,

where hj,q ∈ O(P%). Since det([hj,q(x, 0)]j,q=1,...,n−s) 6= 0 for x ∈ B(x0, %),
there exist r ∈ (0, %/2) and sequences h(i)

j,q ∈ O(Cn), for j, q = 1, . . . , n − s,
such that:

(1) det
[
∂h
∂y (x, y)

]
6= 0 for (x, y) ∈ P2r,

(2) det([h(i)
j,q(x, 0)]j,q=1,...,n−s) 6= 0 for i = 1, 2, . . . , and x ∈ Cs,

(3) h(i)
j,q → hj,q uniformly on P2r.
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For j = 1, . . . , n− s define sequences of entire holomorphic functions on
Cn by the formulas

h
(i)
j (x, y) =

n−s∑
q=1

yqh
(i)
j,q(x, y),

set h(i) = (h(i)
1 , . . . , h

(i)
n−s) : Cn → Cn−s, and

Ui =
{

(x, y) ∈ Cn : det
[
∂h(i)

∂y
(x, y)

]
6= 0
}
.

Condition (2) above implies S ⊂ Ui for all i, and by (1), (3) we get B(c, r) ⊂
Pr ⊂ Ui for sufficiently large i. By the definition of Ui, H

(i)
j := (h(i)

j )−1(0)∩
Ui is a smooth hypersurface of Ui containing Ui ∩ S for j = 1, . . . , n − s
and i=1, 2, . . . Moreover, (2) gives H(i) = (H(i)

1 , . . . ,H
(i)
n−s) ∈ H(Ui). Since

h
(i)
j → hj uniformly on P2r, by Theorem 3.6 we get H(i)

j ∩ B(c, r) � Hj ∩
B(c, r) for j = 1, . . . , n− s. This completes the proof.

(5.2) Lemma. Let N = B(0, 1) ⊂ Cn, S = B(0, 1) ∩ (Cs × {0}) and let
Z be a pure k-dimensional analytic subset of N . Fix c ∈ S, U = B(c,R) ⊂
B(0, 1) where R > 0, and H = (H1, . . . ,Hn−s) ∈ H(U,Z). Then there exist
r ∈ (0, R), open subsets Ui of N , and H(i) = (H(i)

1 , . . . ,H
(i)
n−s) ∈ H(Ui, Z)

such that S∪B(c, r) ⊂ Ui for i = 1, 2, . . . , and H(i)
j ∩B(c, r) � Hj ∩B(c, r)

for j = 1, . . . , n− s.

P r o o f. Take r ∈ (0, R) and the sequences {Ũi}, {H̃(i)} constructed by
Lemma 5.1 for H = (H1, . . . ,Hn−s) ∈ H(U,Z) ⊂ H(U). We may assume
that for every x ∈ Cs the set (Ũi)x = {y ∈ Cn−s : (x, y) ∈ Ũi} is a ball with
centre at 0 in Cn−s, i = 1, 2, . . .

We can find linear isometries L(i)
j : Cn−s → Cn−s such that:

(1) L(i)
j → idCn−s as i→∞, for j = 1, . . . , n− s,

(2) we have H(i) = (H(i)
1 , . . . ,H

(i)
n−s) ∈ H(Ui, Z), where Ui = B(0, 1)∩Ũi

and H(i)
j = (idCs ×L(i)

j )(H̃(i)
j ∩B(0, 1)) for i = 1, 2, . . . and j = 1, . . . , n− s.

It is easy to see that S ∪B(c, r) ⊂ Ui for i = 1, 2, . . . , and condition (1)
implies that

H
(i)
j ∩B(c, r) � Hj ∩B(c, r), j = 1, . . . , n− s.

Thus the sequence defined in (2) satisfies the assertions of our lemma and
the proof is complete.

In the remainder of this section we fix N , an n-dimensional manifold,
and S, a closed s-dimensional submanifold of N .
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(5.3) Proposition. Let Z be a pure k-dimensional analytic subset of
N . Then for each point c ∈ S there exists an open neighbourhood G of c
in S such that for every x ∈ G there exist an open subset U of N and
H = (H1, . . . ,Hn−s) ∈ H(U,Z) such that G = U ∩S and g̃(x) = ν̃(Z ·H, x).

P r o o f. Fix c ∈ S, an open neighbourhood V of b, and a chart ϕ : V →
Cn such that:

(1) ϕ(V ) = B(0, 1), ϕ(c) = 0,
(2) ϕ(S ∩ V ) = (Cs × {0}) ∩B(0, 1).

We shall prove that under the above conditions we can take G = S ∩ V .
Since ϕ is a biholomorphism, we can restrict our attention to the case G =
S = (Cs × {0}) ∩B(0, 1) and N = B(0, 1).

Fix x ∈ G, R > 0 with B(x,R) ⊂ B(0, 1) and H̃ = (H̃1, . . . , H̃n−s) ∈
H(B(x,R), Z) such that g̃(x) = ν̃(Z · H̃, x). By Lemma 5.2 there exist
r ∈ (0, R), open subsets Ui of N and H(i) = (H(i)

1 , . . . ,H
(i)
n−s) ∈ H(Ui, Z)

such that S∪B(x, r) ⊂ Ui for i = 1, 2, . . . , and H(i)
j ∩B(x, r) � Hj∩B(x, r)

for j = 1, . . . , n− s. It is clear that Ui ∩ S = G for i = 1, 2, . . . , and so it is
enough to prove that for sufficiently large i,

(?) ν̃(Z · H̃, x) = ν̃(Z · H(i), x).

Keeping the notation of Algorithm 4.1 denote by

Z · H̃ = Z̃S0 + Z̃S1 + . . .+ Z̃Sn−s,

Z · H(i) = (Z(i)
0 )S + (Z(i)

1 )S + . . .+ (Z(i)
n−s)

S , i = 1, 2, . . . ,

its results for Z and H̃, H(i), i=1, 2, . . . , respectively. Set ν(i)
j =ν((Z(i)

j )S , x)
and νj = ν(Z̃Sj , x).

After the above preparations, we proceed by induction on j. We prove
that for each j = 0, 1, . . . , n− s, there exist rj > 0 and ij ∈ N such that

(??) Z
(i)
j ∩B(x, rj) � Z̃j ∩B(x, rj) and ν

(i)
j = νj for i ≥ ij .

Observe that Z(i)
0 ∩B(x,R) = Z̃0 for i = 1, 2, . . . , and ν(i)

0 = ν0 for i ≥ i0 =
1, and so (??) is trivially true for j = 0. Suppose that j < n− s and (??) is
true for 0, 1, . . . , j. We now prove that it also holds for j + 1.

We know that Z(i)
j ∩B(x, rj) � Z̃j∩B(x, rj) and ν(i)

j = νj for sufficiently
large i. By Theorem 3.4 there exists rj+1 ∈ (0, rj) such that

(Z(i)
j − (Z(i)

j )S) ∩B(x, rj+1) � (Z̃j − Z̃Sj ) ∩B(x, rj+1).

Now Theorem 3.6 implies

Z
(i)
j+1 ∩B(x, rj+1) � Z̃j+1 ∩B(x, rj+1).
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Our assumptions imply ν
(i)
1 = ν1, ν

(i)
2 = ν2, . . . , ν

(i)
j = νj for sufficiently

large i and

ν̃(Z · H̃, x) ≤lex ν̃(Z · H(i), x) for all i ∈ N.

Then ν̃j+1 ≤ ν
(i)
j+1 for almost all i. By Theorem 3.4 there exists an open

neighbourhood U of x such that

(Z(i)
j+1)S ∩ U � (Z̃j+1)S ∩ U.

By condition (2) of Lemma 3.2 we get ν(i)
j+1 ≤ ν̃j+1 for almost all i.

Summing up, there exists ij+1 ∈ N such that ν̃j+1 = ν
(i)
j+1 for i > ij+1

and (??) is proved.
It is obvious that (??) implies (?). Thus we can take H = H(i) for large

enough i, and Proposition 5.3 follows.

(5.4) Theorem. If Z is a pure dimensional analytic subset of N , then
the extended index function g̃ : S 3 x → g̃(x) = g̃(Z, S)(x) ∈ Ns+1 is
upper semicontinuous in Zariski’s topology , when in the image space Ns+1

we consider the lexicographic ordering.

P r o o f. Fix c ∈ S. Let G be a neighbourhood of c from Proposition 5.3
and let x ∈ G. Then

g̃(x) = minlex{ν̃(Z · H, x) : H ∈ H(U,Z), G = U ∩ S}

For every H ∈ H(U,Z) such that G = U ∩ S the functions G 3 x →
ν̃(Z · H, x) ∈ Ns+1 are upper semicontinuous in Zariski’s topology. Then
g̃|G is also upper semicontinuous in G. It is obvious that semicontinuity can
be checked locally (in the standard topology of the submanifold S), and the
theorem follows.

(5.5) Theorem. If Z is a pure dimensional analytic subset of N , then
the index function g : S 3 x → g(x) = g(Z, S)(x) ∈ N ⊂ C is analytically
constructible.

P r o o f. By Theorem 5.4 we know that the mapping g̃ : S 3 x→ g̃(x) ∈
Ns+1 is upper semicontinuous in Zariski’s topology of S. Then all the fibres
of g̃ are analytically constructible. Observe that for α ∈ N,

g−1(α) =
⋃
{g̃−1(µ) : µ̂ = α, µ ∈ Ns+1},

and so (keeping the notation of Section 2), g∈K(S). This ends the proof.

6. Intersection theory in complex analytic geometry. Let X and
Y be irreducible analytic subsets of a manifold M of dimension m and let
a ∈M .
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(6.1) Definition. The multiplicity of intersection of the sets X and Y
at the point a is defined to be

d(a) = d(X,Y )(a) = g(X × Y,∆M , (a, a)).

Now, we can state the main theorem of this section.

(6.2) Theorem. The function M 3 a → d(a) ∈ N ⊂ C is analytically
constructible.

P r o o f. By Theorem 5.5 the function

g : ∆M 3 x→ g(x) = g(X × Y,∆M , x) ∈ C
is analytically constructible. Since d(a) = g(a, a) it is obvious that d is
constructible (d ∈ K(M)) and the proof is complete.

By Theorem 6.2 and condition (3) of the basic Proposition 2.1 we can
state the following definition of the intersection product of the sets X and Y .

(6.3) Definition. The intersection product of the irreducible analytic
sets X and Y is the unique analytic cycle X •Y in M such that ν(X •Y ) =
d(X,Y ).

Now, consider two analytic cycles on the manifold M :

X =
∑
ι∈I

αιXι, Y =
∑
κ∈K

βκYκ.

It is easy to see that the family of all irreducible components of the cycles
Xι • Yκ, ι ∈ I, κ ∈ K, is locally finite. Then we can state the following

(6.4) Definition. The intersection product of the analytic cycles X and
Y is the analytic cycle X • Y in M defined by the (locally finite) sum

X • Y =
∑

ι∈I, κ∈K
αιβκ (Xι • Yκ).

In the remainder of this section we assume that M is an m-dimensional
manifold and X, Y are irreducible analytic subsets of M of dimensions p,
q respectively. Additionally, define N = M ×M , S = ∆M = {(x, x) ∈ N :
x ∈ M} and Z = X × Y . We now compare the above definition of the
intersection product X • Y with the previous ones in the cases of classical
proper intersection and isolated intersection of X and Y in the sense of
([ATW], Definition 5.1).

(6.5) Theorem. If X and Y meet properly on M , then X • Y = X · Y .

P r o o f. Fix a ∈ M and suppose that X · Y =
∑
j∈J σjCj , where Cj ,

j ∈ J , are pairwise distinct irreducible components of X ∩Y and σj denotes
the multiplicity of proper intersection along the component Cj . Since the
intersection is proper, dimCj = p+q−m for j ∈ J . To compute d(a) we have
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to consider the intersection of Z and S at the point c = (a, a). Of course Z
and S meet properly and Z · S =

∑
j∈J σj∆Cj

. Take H = (H1, . . . ,Hm) ∈
H(U,Z), where U is an open neighbourhood of c. Then Z · H is an analytic
cycle in S ∩ U defined by Algorithm 4.1. Without loss of generality we
may assume that H1 ∩ . . .∩Hm = S ∩U . Then H1 · . . . ·Hm = S ∩U (with
multiplicity 1). By the associativity of proper intersections (cf. [Dr], Th. 5.1,
see also [Ch], 12.4, and [TW3], Prop. 2.3) we get ZS0 = . . . = ZSm−1 = ∅ and
finally

Z · H = ZSm = Z · (S ∩ U).
This implies that ν̃(Z ·H, c) = (µm, . . . , µ0), where µj = 0 for j 6= p+q−m,
and µp+q−m = ν(Z · S, c), does not depend on H ∈ H(U,Z) (!). Summing
up, g(c) = g(Z, S)(c) = ν(Z · S, c) and so d(a) = d(X,Y )(a) = ν(X · Y, a)
for all a ∈M . This implies that X• Y =X · Y and the proof is complete.

(6.6) Theorem. If a ∈M and X ∩ Y = {a}, then X • Y = σ{a}, where
σ = i(X · Y ; a) is the multiplicity of isolated intersection of X and Y at a.

P r o o f. Set c = (a, a) and observe (keeping the notation of [ATW]) that
σ = ĩ(Z · S; c). Take an open neighbourhood U of c and H=(H1, . . . ,Hm)
∈ H(U,Z). Without loss of generality we may assume that the intersection
V = H1 ∩ . . .∩Hp+q is a submanifold of N (of dimension 2m− (p+ q)) and
V ∩ Z = {c}. By the associativity of proper intersections (see the proof of
Th. 6.5) we obtain ZSj = ∅ for j 6= p+ q and

Z · H = ZSp+q = i(Z · V ; c){c}.

Now, ([ATW], Theorem 4.4) implies g̃(c) = g̃(Z, S)(c) = (µm, . . . , µ0),
where µj = 0 for j 6= 0, and µ0 = σ. Therefore d(c) = d(X,Y )(c) = σ.
Since d(a) = 0 for every x 6= a, we get d(x) = ν({a}, x) for x ∈ M . This
yields X • Y = σ{a} and the proof is complete.
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