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On a nonlinear second order periodic boundary
value problem with Carathéodory functions

by Wenjie Gao and Junyu Wang (Changchun)

Abstract. The periodic boundary value problem u′′(t) = f(t, u(t), u′(t)) with u(0) =
u(2π) and u′(0) = u′(2π) is studied using the generalized method of upper and lower so-
lutions, where f is a Carathéodory function satisfying a Nagumo condition. The existence
of solutions is obtained under suitable conditions on f . The results improve and generalize
the work of M.-X. Wang et al . [5].

1. Introduction. In recent years, a number of authors have studied the
following periodic boundary value problem of second order:

(1.1)
− u′′(t) = f(t, u(t), u′(t)),
u(0) = u(2π), u′(0) = u′(2π).

People mainly studied the problem for f continuous with respect to its
variables (see [1–5] and the references therein).

In [5], M.-X. Wang, A. Cabada and J. Nieto studied (1.1) when f
is a Carathéodory function, using a generalized upper and lower solution
method. Also, they developed a monotone iterative technique for finding
minimal and maximal solutions.

In this paper, we use a modified version of the method of [5] to study
the existence of solutions to problem (1.1) and develop a monotone iterative
technique for finding the minimal and maximal solutions. Our method sub-
stantially modifies that of [5] and part of our results improve and generalize
the results obtained in [5]. With our method, it is possible to extend the
result to a more general form.

For completeness, we include some of the results of [5] with their (or
modified) proofs. We use the same definitions and notations as in [5]. We
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write I = [0, 2π] and denote by W 2,1(I) the set of functions defined in I
with integrable second derivatives and define the sector [α, β] as the set
[α, β] = {u ∈W 2,1(I) : α(t) ≤ u(t) ≤ β(t) for t ∈ I = [0, 2π]}.

We call a function f : I×R2 → R a Carathéodory function if the following
conditions are satisfied:

(1) for almost all t ∈ I, the function R2 3 (u, v) → f(t, u, v) ∈ R is
continuous;

(2) for every (u, v) ∈ R2, the function I 3 t→ f(t, u, v) is measurable;
(3) for every M > 0, there exists a real-valued function φ(t) = φM (t) ∈

L1(I) such that

(1.2) |f(t, u, v)| ≤ φ(t)

for a.e. t ∈ I and every (u, v) ∈ R2 satisfying |u| ≤M and |v| ≤M .

We call a function α : I → R a lower solution of (1.1) if α ∈ W 2,1(I)
and

(1.3)
−α′′(t) ≤ f(t, α(t), α′(t)) for a.e. t ∈ I,
α(0) = α(2π), α′(0) ≥ α′(2π).

Similarly, β : I → R is called an upper solution of (1.1) if β ∈ W 2,1(I)
and

(1.4)
−β′′(t) ≥ f(t, β(t), β′(t)) for a.e. t ∈ I,
β(0) = β(2π), β′(0) ≤ β′(2π).

The following hypothesis is adopted:

(H1) The nonlinear function f satisfies the Nagumo condition on the set

Ω := {(t, u, v) : 0 ≤ t ≤ 2π, α(t) ≤ u ≤ β(t), v ∈ R},
i.e. there exist a real-valued function h(t) ∈ Lσ(I), 1 ≤ σ ≤ ∞, and a
continuous function g(v) : R+ → R+ such that

(1.5) |f(t, u, v)| ≤ h(t)g(|v|) on Ω,

and

(1.6)
∞∫
0

u(σ−1)/σ

g(u)
du > %(σ−1)/σ‖h‖σ,

where

(1.7) % = max
t∈I

β(t)−min
t∈I

α(t)

and

(1.8) ‖h‖σ =
{

(
∫ 2π

0
(h(t))σ dt)1/σ for σ ∈ (0,∞),

supt∈[0,2π] |h(t)| for σ =∞.
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R e m a r k. In our paper, the Nagumo condition is defined in a slightly
different way than in [5]. Our definition includes theirs as a special case.
In fact, it is easy to see that under their definition the combination of their
Carathéodory condition and the Nagumo condition implies that the function
h(t) in their paper must be bounded when u ∈ [α, β] and v is in a bounded
set.

2. Existence of solutions. For any u ∈ X = C1(I), we define

p(t, u) =

α(t), u(t) < α(t),
u(t), α(t) ≤ u(t) ≤ β(t),
β(t), u(t) > β(t).

The following lemma is Lemma 2 of [5]:

Lemma 1. For u ∈ X, the following two properties hold :

(1) d
dtp(t, u(t)) exists for a.e. t ∈ I.

(2) If u, um ∈ X and um → u in X, then

d

dt
p(t, um(t))→ d

dt
p(t, u(t)) for a.e. t ∈ I.

P r o o f. Note that p(t, u) = [u − α]− − [u − β]+ + u, where u+(t) =
max{u(t), 0} and u−(t) = max{−u(t), 0}. The first assertion is obvious since
u+ and u− are absolutely continuous for u ∈ X. To prove the second, we
only have to show that if u, um ∈ X and um → u in X, then

lim
m→∞

d

dt
p(t, u±m)(t) =

d

dt
p(t, u±)(t) for a.e. t ∈ I.

We only need to check the limit at a point t0 ∈ I where d
dtu

+
m and d

dtu
+

exist for all m = 1, 2, . . .
If u(t0) > 0, then u(t0) = u+(t0) > 0. Therefore d

dtu
+(t0) = d

dtu(t0) and
there exists an M > 0 such that um(t0) = u+

m(t0) > 0 for all m > M . Thus

d

dt
u+
m(t0) =

d

dt
um(t0)→ d

dt
u(t0).

If u(t0) < 0, then d
dtu

+(t0) = 0 and there exists an M > 0 such that
u+
m(t) = 0 on (t0 − δm, t0 + δm) for some δm > 0 for all m > M . Therefore
d
dtu

+(t0) = 0 = lim d
dtu

+
m(t0).

If u(t0) = 0, then u+(t0) = 0. Since d
dtu

+(t0) exists, we have d
dtu

+(t0)
= 0. It is obvious that d

dtu(t0) = 0. Then∣∣∣∣ ddtu+
m(t0)

∣∣∣∣ ≤ ∣∣∣∣ ddtum(t0)
∣∣∣∣→ ∣∣∣∣ ddtu(t0)

∣∣∣∣ = 0 =
d

dt
u+(t0).

The proof for u− is similar and thus the proof of Lemma 1 is complete.
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To study the problem (1.1), we first consider the following modified prob-
lem:

(2.1)
−u′′ + u = f∗

(
t, p(t, u),

dp(t, u)
dt

)
+ p(t, u),

u(0) = u(2π), u′(0) = u′(2π),

where

f∗(t, u, v) =

 f(t, u,N) if v > N ,
f(t, u, v) if |v| ≤ N ,
f(t, u,−N) if v < −N .

We may choose N so large that

N > max{sup
t∈I
|β′(t)|, sup

t∈I
|α′(t)|},

and

(2.2)
N∫
0

u(σ−1)/σ

g(u)
du > %(σ−1)/σ‖h‖σ.

(H1) assures the existence of such an N .
For each q ∈ X, we define

ξ(q)(t) = ξ(t) = f∗
(
t, p(t, q(t)),

dp(t, q(t))
dt

)
+ p(t, q(t)),

and consider the problem

(2.3)
−u′′ + u = ξ(t),
u(0) = u(2π), u′(0) = u′(2π).

It is obvious that the solution of (2.3) can be written in the form

(2.4) u(t) = C1e
t + C2e

−t − et

2

t∫
0

ξ(s)e−s ds+
e−t

2

t∫
0

ξ(s)es ds,

where

C1 =
1

2(e2π − 1)

2π∫
0

ξ(s)e2π−s ds,

C2 =
1

2(e2π − 1)

2π∫
0

ξ(s)es ds.

Lemma 1 obviously implies that ξ(t) is measurable and∣∣∣∣f∗(t, p(t, q(t)), dp(t, q(t))dt

)∣∣∣∣ ≤ φ(t) ∈ L1(I).
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Hence, ξ ∈ L1(I). Differentiating (2.4) with respect to t, we obtain

(2.5) u′(t) = C1e
t − C2e

−t − et

2

t∫
0

ξ(s)e−s ds+
e−t

2

t∫
0

ξ(s)es ds,

which is obviously continuous. Therefore, the solution of (2.3) is in X for
any q ∈ X.

Define the operator T : X → X by T [q] = u, with u defined by (2.4). As
in [5], we have the following

Lemma 2. T : X → X is compact.

P r o o f. Suppose that {qm} ⊂ X is such that qm → q in X. By Lemma 1,
p(t, qm) → p(t, q) and d

dtp(t, qm) → d
dtp(t, q) a.e. Then the properties of f

and the Lebesgue dominated convergence theorem imply that

lim
m→∞

t∫
0

ξm(s)e±s ds =
t∫

0

ξ(s)e±s ds,

where

ξm = f∗
(
t, p(t, qm(t)),

dp(t, qm(t))
dt

)
+ p(t, qm(t)).

Therefore, (2.4) and (2.5) show that T [qm]→ T [q] in X, i.e., T is continuous
from X to X.

Now, we only have to show that T maps every bounded sequence in X to
a compact sequence in X. Since |ξm(s)|≤h(s)g(N) + |α(s)|+ |β(s)|∈L1(I),
the sequence

∫ t
0
ξm(s)e±s ds is equicontinuous, and so are T [qm] and d

dtT [qm].
The Arzelà–Ascoli Theorem implies that T is compact.

Lemma 3. Let u∈W 2,1(I) with u′′(t)≥M(t)u(t) for a.e. t ∈ I, u(0) =
u(2π) and u′(0) ≥ u′(2π), where M(t)∈L1(I) and M(t) > 0. Then u(t) ≤ 0
fro every t ∈ I.

P r o o f. SetG = {t ∈ I : u(t) > 0}. Then u′′(t) > 0 onG. IfG ⊃ (0, 2π),
then

u′(2π) ≥ u′(0) +
2π∫
0

M(t)u(t) dt > u′(0),

which is impossible. Hence, there exists at least one τ ∈ I with u(τ) ≤ 0.
If u(0) > 0, then there exist 0 < s1 ≤ s2 < 2π with u(s1) = u(s2) = 0
and u(s) > 0 for s ∈ J = [0, s1) ∪ (s2, 2π]. Therefore, u′ is nondecreasing in
[0, s1) and (s2, 2π]. But

u′(0) < u′(s1) ≤ 0 ≤ u′(s2) < u′(2π),

a contradiction.
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If u(0) ≤ 0 and max{u(s) : s ∈ I} = u(t0) > 0 then there exist t1, t2 ∈
(0, 2π) such that t1 < t0 < t2, u(t1) = u(t2) = 0 and u(s) > 0 for s ∈ (t1, t2).
This implies that u is convex on [t1, t2] and hence u(t) ≤ 0 on [t1, t2], which
is impossible. Therefore u(s) ≤ 0, and the proof is complete.

Now, we are ready to show the existence of solutions for the prob-
lem (1.1). We have

Theorem 1. Suppose that α(t), β(t) are lower and upper solutions of
problem (1.1) respectively , and α(t) ≤ β(t) on I. If (H1) holds, then there
exists a solution u of (1.1) such that u ∈ [α, β].

P r o o f. We first consider the operator T defined as above. It is easy to
verify from (2.4) and (2.5) that T maps X to a bounded subset of X. Hence,
by the compactness of the operator and the Schauder fixed point principle,
we know that there exists a function u ∈ X such that u = T [u]. Such a u
is obviously a solution of problem (2.1), therefore, it suffices to show that
u ∈ [α, β] and |u′| ≤ N .

We first show that u ∈ [α, β]. Indeed, if u > β on I, then p(t, u) = β.
Therefore,

(2.6) −u′′ + u = f(t, β, β′) ≤ −β′′ + β

by the definition of f∗ and the choice of N . Lemma 3 then implies that
u ≤ β on I, a contradiction. Therefore there must be a point s ∈ I with
u(s) ≤ β(s). If u(0) ≤ β(0) and there exists s1 ∈ (0, 2π) with u(s1) > β(s1),
then by the continuity of u, we know that there would be t1 < s1 < t2 in
(0, 2π) such that u > β on (t1, t2) with (u− β)(t1) = (u− β)(t2) = 0. Then
(2.6) holds in the interval (t1, t2). This and the boundary conditions imply
that u ≤ β on (t1, t2), which is again a contradiction.

If u(0) > β(0), then there exist t1 < t2 in I such that u > β on [0, t1) ∪
(t2, 2π] with (u − β)(t1) = (u − β)(t2) = 0 and hence (u − β)′(t1) ≤ 0
and (u − β)′(t2) ≥ 0. In both intervals, (u − β)′′ ≥ u − β > 0. Hence,
(u− β)′ is increasing, which implies that (u− β)′(0) < (u− β)′(t1) ≤ 0 and
(u− β)′(2π) > (u− β)′(t2) ≥ 0, contrary to the boundary conditions.

To sum up, we know that u ≤ β on I. Analogously we can prove that
u ≥ α.

All that remains to be proved is that |u′| ≤ N .
The mean value theorem asserts that there exists a point t0 ∈ I such

that u′(t0) = 0. Assume that |u′| ≤ N is not true. Then there exists an
interval [t1, t2] ⊂ I such that one of the following cases holds:

(i) u′(t1) = 0, u′(t2) = N and 0 < u′(t) < N on (t1, t2),
(ii) u′(t1) = N , u′(t2) = 0 and 0 < u′(t) < N on (t1, t2),
(iii) u′(t1) = 0, u′(t2) = −N and −N < u′(t) < 0 on (t1, t2),
(iv) u′(t1) = −N , u′(t2) = 0 and −N < u′(t) < 0 on (t1, t2).
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Let us consider the case (i). By (2.1),

|u′′(t)| = |f∗(t, u(t), u′(t))| ≤ h(t)g(|u′(t)|) on [t1, t2]

and as a result
N∫
0

|u|(σ−1)/σ

g(|u|)
du =

t2∫
t1

|u′(t)|(σ−1)/σu′′(t)
g(|u′(t)|)

dt

≤
t2∫
t1

|u′(t)|(σ−1)/σ|u′′(t)|
g(|u′(t)|)

dt

≤
t2∫
t1

h(t)|u′(t)|(σ−1)/σ dt

≤
( t2∫
t1

|h(t)|σ dt
)1/σ

(u(t2)− u(t1))(σ−1)/σ

≤ ‖h‖σ%(σ−1)/σ if 1 < σ ≤ ∞

and
N∫
0

du

g(|u|)
=

t2∫
t1

u′′(t)
g(|u′(t)|)

dt ≤
t2∫
t1

h(t) dt ≤ ‖h‖1 if σ = 1.

This contradicts (2.2). The other cases are dealt with similarly. This com-
pletes the proof of Theorem 1.

3. Monotone iterative technique. In this section, we develop a mono-
tone iterative technique for our equation, the method being similar to that
of [5]. Our conditions are more precise and applicable.

In addition to the hypotheses of the first two sections, we introduce the
following hypotheses:

(H2) There exists an M ∈ L1(I) such that M(t) > 0 for a.e. t ∈ I and

(3.1) f(t, p, s)− f(t, q, s) ≥ −M(t)(p− q)

for a.e. t ∈ I and every α ≤ q ≤ p ≤ β, s ∈ R.

(H3) There exists a U ∈ L1(I) such that U(t) > 0 for a.e. t ∈ I and

(3.2) f(t, p, s)− f(t, p, y) ≥ −U(t)(s− y)

for a.e. t ∈ I and every α ≤ p ≤ β, s ≥ y, s, y ∈ R.

(H1∗) Define

g∗(v) = max{g(v),max |α|+ max |β|}, h∗(t) = h(t) + 2M(t),
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where g(v) and h(t) are as in (H1). Then
∞∫
0

u(σ−1)/σ

g∗(u)
du > %(σ−1)/σ‖h∗‖σ.

We have

Theorem 2. Suppose that (H1∗)–(H3) hold. Then there exist monotone
sequences αn ↗ x and βn ↘ z as n → ∞, uniformly on I, with α0 = α
and β0 = β. Here, x and z are the minimal and maximal solutions of (1.1)
respectively on [α, β], that is, if u ∈ [α, β] is a solution of (1.1), then u ∈
[x, z]. Moreover , the sequences {αn} and {βn} satisfy α = α0 ≤ . . . ≤ αn ≤
βn ≤ . . . ≤ β0 = β.

P r o o f. For any q ∈ [α, β]∩X, consider the following quasilinear periodic
boundary value problem:

(3.3)
−u′′(t) = f(t, q(t), u′(t)) +M(t)(q(t)− u(t)),
u(0) = u(2π), u′(0) = u′(2π).

It is easy to verify that α and β are also lower and upper solutions of (3.3)
respectively and

|f(t, q(t), u′(t)) +M(t)(q(t)− u(t))|
≤ h(t)g(|u′(t)|) + 2M(t)(max |α|+ max |β|)

≤ [h(t) + 2M(t)]g∗(|u′(t)|) = h∗(t)g∗(|u′(t)|).
Then, by Theorem 1, there exists a solution u of the problem (3.3) with
u ∈ [α, β]. It is not difficult to show that this solution is unique by using the
argument for Lemma 3. Now, define the operator T : X → X by T [q] = u,
where u is the solution of (3.3).

We shall prove:

Claim. If α ≤ q1 ≤ q2 ≤ β, q1, q2 ∈ X, then u1 = T [q1] ≤ u2 = T [q2].

Indeed, let y = u2 − u1. Then

(3.4) − y′′ = f(t, q2(t), u′2(t))− f(t, q1(t), u′1(t)) +M(t)[(q2 − q1)(t)− y(t)]

≥ −U(t)y′(t)−M(t)y(t).
Assume that t0 is such that y(t0) = min{y(t) : t ∈ I}. We only need to
prove that y(t0) ≥ 0.

In fact, if t0 ∈ (0, 2π) and y(t0) < 0, then there would be 0 ≤ t1 < t0
< t2 ≤ 2π such that y(t) < 0 on (t1, t2), y′(t1) ≤ 0 and y′(t2) ≥ 0. Now (3.4)
implies that y′′ − U(t)y′ < 0 on (t1, t2). Solving the differential inequality,
we obtain

y′(t2) exp
{
−

t2∫
t1

U(t) dt
}
< y′(t1) ≤ 0,
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which is impossible. If t0 = 0 or t0 = 2π and y(0) = y(2π) < 0, then there
would be t1, t2 ∈ (0, 2π) such that y′(t1) ≥ 0 ≥ y′(t2), y′′(t)−U(t)y′ < 0 on
[0, t1) ∩ (t2, 2π] and hence

0 ≤ y′(t1) exp
{
−

t1∫
0

U(t) dt
}
< y′(0),

y′(2π) exp
{
−

2π∫
t2

U(t) dt
}
< y′(t2) ≤ 0,

again a contradiction. This proves the claim.
Now, define sequences α0 = α, αn = T [αn−1], β0 = β and βn = T [βn−1].

Since the solution u of (3.3) satisfies u ∈ [α, β], using the monotonicity
of T , we see that α = α0 ≤ . . . ≤ αn ≤ βn ≤ . . . ≤ β0 = β. Hence,
the limits limn→∞ αn(t) = x(t) and limn→∞ βn(t) = z(t) exist. From the
previous proof, we know that |α′n|, |β′n| ≤ N uniformly in n. Using the
argument for Theorem 1, we know that the sequences {αn} and {βn} are
equicontinuous and uniformly bounded and hence converge to x and z in X.
By the definitions, we know that T [x] = x and T [z] = z. Then it is obvious
by formulas similar to (2.4) and (2.5) that x and z satisfy (1.1).

Furthermore, if u ∈ X ∩ [α, β] solves (1.1), then since T [u] = u, we have
αn ≤ u ≤ βn for any n = 1, 2, . . . and hence u ∈ [x, z] in I.

This completes the proof of the theorem.
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