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1. Criteria for analytic continuation into a domain of a function
given on part of the boundary. The following classical assertion is well known.
Let D ⊂ C be a simply connected bounded domain with smooth boundary ∂D
and f ∈ C(∂D). Then

(1)
∫
∂D

fzm1 dz1 = 0, m = 0, 1, 2, . . .

if and only if f(z) extends into the domain D as a holomorphic function of class
A(D) ∩ C(D). For the multidimensional case instead of the form zm1 dz1 we have
the exterior differential form of class Z∞n,n−1(D).

Theorem 1 (Weinstock–Aronov–Dautov). Let D be a domain in Cn with
smooth boundary and f ∈ C(∂D). Then there is a function F ∈ A(D) ∩ C(D)
such that F |∂D = f if and only if

(2)
∫
∂D

fα = 0

for every form α ∈ Z∞n,n−1(D).

If f is only defined on a part of the boundary of D, then the existence of
an analytic continuation into D cannot be decided by the vanishing of some
family of continuous linear functionals (as in (1)–(2)). Solutions to this problem
were given by G. Zin (1953), V. A. Fok–F. M. Kuni (1959), D. I. Patil (1972),
M. G. Krein–P. Ya. Nudelman (1973), A. Steiner (1974), N. N. Tarkhanov (1989),
O. V. Karepov–N. N. Tarkhanov (1990), A. A. Shlyapunov–N. N. Tarkhanov
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(1990), L. Zhamenskaya (1990), L. A. Aizenberg (1988, 1990, 1991, 1992),
L. A. Aizenberg–A. M. Kytmanov (1990, 1991), L. A. Aizenberg–C. Rea (1991).

A very simple solution was given by L. A. Aizenberg (1990,1992):

C a s e 1: n = 1. Let D be the domain bounded by a part of the unit circle
γ1 = {z1 : |z1| = 1} and a smooth open arc Γ connecting two points of γ1 and
lying inside γ1. Let 0 6∈ D. We set

ak =
∫
Γ

f(ζ)dζ
ζk+1

, k = 0, 1, 2, . . .

Theorem 2. If f ∈ C(Γ)∩L1(Γ), then there is a function F ∈ A(D)∩C(D∪Γ)
such that F |Γ = g if and only if

(3) lim
k→∞

k
√
|ak| ≤ 1.

If f |Γ is not identically zero, then (3) is equivalent to

(4) lim
k→∞

k
√
|ak| = 1.

P r o o f. Necessity . Put Γε = {z1 : |z1| < 1− ε} ∩ Γ, where 0 < ε < 1, and

aεk =
∫

Γε

f(ζ)dζ
ζk+1

.

Suppose there exists a function F as in the Theorem. Then the aεk are equal to
the corresponding integrals of F/ζk+1 over the part of the circle γ1−ε, therefore,

|aεk| ≤
C(ε)

(1− ε)k+1
.

Also

ak = aεk +
∫

Γ\Γε

f(ζ)dζ
ζk+1

,

hence,

|ak| ≤
C(ε)

(1− ε)k+1
+

C1

(1− ε)k+1
.

Now we obtain

lim
k→∞

k
√
|ak| ≤

1
1− ε

,

whence we arrive at (3) as ε→ +0.
Sufficiency . Consider the Cauchy type integral

(5)
1

2πi

∫
Γ

f(ζ)dζ
ζ − z

= F±(z),

which defines a function F+ holomorphic in D and a function F− holomorphic in
D− (part of the unit disc after the removal of D) such that the difference between
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their limit values along normals (points z+ and z− equally distant from ζ) on Γ
is equal to f(ζ): for ζ ∈ Γ,

(6) F+(ζ)− F−(ζ) def= lim
z±→ζ

[F+(z+)− F−(z−)] = f(ζ).

Moreover, if one of the functions F+ or F− is continuous in the corresponding
domain up to Γ, so is the other.

Expanding (5) into a power series in z in a neighborhood of zero, we find
that the coefficients of this series are ak/(2πi). This and (3) imply that F− is
holomorphic on the whole unit disc. Then F+ − F− ∈ A(D) ∩ C(D ∪ Γ), and by
(6) we can take F = F+ − F−.

If limk→∞
k
√
|ak| < 1, then (5) is holomorphic in the disc with radius R > 1

and the singularity Γ is removable, hence the second part of Theorem 2 is true.

Corollary 1. Let f ∈ C(Γ). There is a function F ∈ A(D)∩C(D ∪ Γ) such
that F |Γ = f if and only if

lim
k→∞

k

√
|aεk| ≤

1
1− ε

for 0 < ε < ε0 < 1.

Let us generalize this result to a simply connected domain Ω with Jordan
boundary ∂Ω containing a smooth open arc Γ. We connect the ends of Γ by a
curve C, lying outside Ω, and let Ω1 be the domain with boundary C ∪ (∂Ω \ Γ),
which we also assume to be Jordan. Let w = ϕ(z1) map Ω1 conformally onto the
unit disc so that the preimage of zero is in Ω1 \ Ω. Let

Aεk =
∫

Γε

f(ζ)dϕ(ζ)
ϕk+1(ζ)

.

Corollary 2. If f ∈ C(Γ), then there is a function F ∈ A(Ω) ∩ C(Ω ∪ Γ)
such that F |Γ = f if and only if

(7) lim
k→∞

k

√
|Aεk| ≤

1
1− ε

for 0 < ε < ε0 < 1.

We can apply the approach of this section to the case when Γ = ∂D. Suppose
0 lies outside D, where D is a simply connected bounded domain with a smooth
boundary. Then the classical condition for f ∈ C(∂D) to analytically continue to
D is (1).

Corollary 3. The (necessary and sufficient) condition for analytic continu-
ation of f ∈ C(∂D) to D is

(8) lim
k→∞

k

√∣∣∣ ∫
∂D

fzk1dz1

∣∣∣ < ρ = min
z∈∂D

|z|.

If (8) is true, then (1) is true. If the integrals in (1) do not grow too rapidly,
they vanish.
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Corollary 4. Given a simply connected domain Ω with Jordan boundary and
a smooth open arc Γ ⊂ Ω,Ω = Ω1 ∪Ω2 ∪Γ,Ω1 and Ω2 simply connected domains.
Let f ∈ C(Γ). There exists a function F ∈ A(Ω) so that F |Γ = f (this is not a
boundary problem, but an interior problem) if and only if two conditions of type
(7) hold.

Example. Let Ω be the whole complex plane C. In this case, a conformal
mapping of D onto the unit disc does not exist, of course, but we do not need it.
Let Γ be a simply smooth curve, dividing the plane C into two domains: Ω1 and
Ω2. Let i ∈ Ω1 and −i ∈ Ω2, and let

a±k =
∫
Γ

f(ζ)dζ
(ζ ± i)k+1

, k = 0, 1, 2, . . . ,

where f ∈ C(Γ) ∩ L1(Γ). Then the function f can be extended to an entire
function if and only if

lim
k→∞

k

√
|a+
k | = lim

k→∞
k

√
|a−k | = 0.

C a s e 2: n > 1. Let Ω = {ζ : ψ(ζ) < 0} be a (p1, . . . , pn)-circular domain in
Cn, where p1, . . . , pn are natural numbers, i.e., z∈Ω implies (z1, e

itp1 , . . . , zne
itpn)

∈ Ω for t ∈ R. In particular, for p1 = . . . = pn = 1 this circular domain is a
Cartan domain. Moreover, assume that Ω is convex and bounded and ∂Ω ∈ C2.
Furthermore, let D be a domain bounded by a part of ∂Ω and by a hypersurface
Γ ∈ C2 dividing Ω into two parts, the complement of D containing the origin. Let
us consider the Cauchy–Fantappiè differential form

w(ζ − z, w) =
(n− 1)!
(2πi)n

∑n
k=1(−1)k−1wkdw[k] ∧ dζ

〈w, ζ − z〉n
,

where dw[k] = dw1∧ . . .∧dwk−1∧dwk+1∧ . . .∧dwn, dζ = dζ1∧ . . .∧dζn, 〈a, b〉 =
a1b1 + . . . + anbn; then gradψ = (∂ψ/∂ζ1, . . . , ∂ψ/∂ζn). By the Sard Theorem,
gradψ 6= 0 for almost all r on ∂Ωr, where Ωr = rΩ is a homothety of Ω with
0 < r < 1. We will assume that gradψ 6= 0 on Γ. We set

Cq =
(|q|+ n− 1)!

q!

∫
Γ

f(ζ)
(

gradψ
〈gradψ, ζ〉

)q
ω(ζ, gradψ),

where q = (q1, . . . , qn), q! = q1! . . . qn!, |q| = q1 + . . .+ qn, wq = wq11 . . . wqn
n ,

ak =
∑

bq,sCqCs,

where

bq,s =
∫
Ω

zqzsdv,

dv is the volume element in Ω. We emphasize that the integral moments Cq
depend on f and Γ, buth the moments bq,s depend only on Ω.
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Theorem 3. For a function f ∈ C(Γ) ∩ L1(Γ) to have a holomorphic contin-
uation F ∈ A(D)∩C(D ∪ Γ) with F |Γ = f , it is necessary and sufficient that the
following two conditions are fulfilled :

(i) f is a CR function on Γ,
(ii) limk→∞ k

√
ak ≤ 1.

We managed to find a very simple solution, using a complete system of holo-
morphic functions (weighted homogeneous polynomial of degree k if it is homo-
geneous of degree k with respect to z

1/p1
1 , . . . , z

1/pn
n ). If we used the basis, the

answer would not be so easy.

Corollary 1: statement of Theorem 2.

Corollary 2 (Aizenberg–Kytmanov). Let Ω ⊂ Cn be a bounded convex n-
circular domain. Set dq(Ω) = maxΩ |z

q|. For a function f ∈C(Γ)∩L1(Γ) to have
a holomorphic continuation in D as above it is necessary and sufficient that

(i) f is a CR function on Γ,
(ii) lim|q|→∞

|q|
√
|Cq|dq(Ω) ≤ 1.

2. Carleman formulas. Let D be a bounded domain in Cn with piecewise
smooth boundary ∂D and let M be a set of positive (2n−1)-dimensional Lebesgue
measure in ∂D. We consider the following problem: if f is a holomorphic function
in D that is sufficiently well behaved at the boundary ∂D, for example f is
continuous in D, (f ∈ AC(D)), or f is contained in the Hardy class H1(D),
then how can it be reconstructed inside D by its values on M with the help of
an integral formula? The problem makes sense because M is a uniqueness set
for such functions (L. A. Aizenberg, 1959). Solutions to this problem were given
by T. Carleman (1926), G. Goluzin–V. Krylov (1933), G. Zin (1953), V. Fock–
F. Kuni (1959), D. Patil (1972), M. Krein–P. Nudelman (1973), L. Aizenberg–
N. Tarkhanov (1988), A. Kytmanov–T. Nikitina (1989), L. Aizenberg (1984, 1985,
1990, 1991, 1992).

Three methods of solution are known, due to: 1) Carleman–Goluzin–Krylov,
2) Lavrent’ev, 3) Kytmanov. There is also a very general approach offered by
N. Videnskĭı–E. Gavurina–V. Khavin (1983) for n = 1.

A very simple solution:

C a s e 1: n = 1. If M = Γ is an arc in the unit disc with ends on the unit
circle, then we can give a simpler formula (see the beginning of example 3, sec. 1
in [1] and Goluzin–Krylov (1933))

(1) f(z) = lim
m→∞

1
2πi

∫
Γ

f(ζ)
(
z

ζ

)m
dζ

ζ − z
.

We show that this simple formula can be easily obtained, not only by introduc-
ing a quenching function into the Cauchy formula (the Carleman–Goluzin–Krylov
method), but also by approximating the Cauchy kernel on ∂D\Γ (the Lavrent’ev
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method). This also yields simple Carleman formulas with holomorphic kernels,
generalizing (1), in the multidimensional case. So, let D be a domain in the disc
U(0, r) whose boundary consists of an arc γ ⊂ ∂U and a smooth arc Γ lying in
U(0, r) and connecting the ends of γ, and let 0 6∈ D. By the Cauchy formula (γ
and Γ oriented compatibly with ∂D)

(2) f(z) =
1

2πi

∫
Γ

f(ζ)dζ
ζ − z

+
1

2πi

∫
γ

f(ζ)dζ
ζ − z

.

The kernel of the second term on the right-hand side of (2) has a series ex-
pansion

1
2πi

1
ζ − z

=
1

2πi

∞∑
k=0

zk

ζk+1

which, for fixed z ∈ D, converges uniformly on γ with respect to ζ. Therefore,

(3)
1

2πi
1

ζ − z
= lim
m→∞

1
2πi

m−1∑
k=0

zk

ζk+1
= lim
m→∞

1
2πi

1− (z/ζ)m

ζ − z
.

The last function under the limit is holomorphic with respect to ζ in D, hence

(4) 0 =
1

2πi

∫
Γ

f(ζ)
1− (z/ζ)m

ζ − z
dζ +

1
2πi

∫
γ

f(ζ)
1− (z/ζ)m

ζ − z
dζ.

Then we subtract (4) from (2) and pass to the limit as m→∞. Then the integral
over γ approaches zero by (3), and we have the formula (1).

C a s e 2: n>1. Let Ω be a circular convex bounded domain (Cartan domain)
with boundary of class C2 and let Γ be a piecewise smooth hypersurface inter-
secting Ω and cutting from it the domain D, 0 6∈ D, i.e., the boundary ∂D is the
union of Γ and of a part of the boundary of Ω, which we denote by γ (γ ∈ C2 is
sufficient). Then there exists a Cauchy–Fantappiè formula for the domain D with
kernel holomorphic in z. It can be constructed by using a “barrier” for γ and a
“barrier” for Γ, and the “glueing” of the barrier in the case where they do not
match sufficiently smoothly at the joining of Γ and γ (cf. the proof of Theorems
12.1 and 12.3 in [1], method of Norguet) being passed over when integrating over
some cycle in C2n lying on Γ ∩ γ. I.e., in fact, integration will be over γ,Γ and
the faces γ ∩ Γ. We write the last two cases conditionally as the integral over Γ̃
of some form R(z, ζ, dζ, dζ). Then, for f ∈ AC(D) and the points z ∈ D,

(5) f(z) =
∫̃
Γ

f(ζ)R(z, ζ, dζ, dζ) +
∫
γ

f(ζ)ω(ζ − z, grad ρ),

where Ω = {ζ : ρ(ζ) < 0}, ρ ∈ C2(Ω).
A circular convex domain Ω is also linearly convex, i.e., the analytic tangent

plane {z : 〈ρ′(ζ), ζ − a〉 = 0}, where ζ ∈ ∂Ω, does not overlap Ω. In other words,
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for ζ ∈ ∂Ω and z ∈ Ω the inequality 〈ρ′(ζ), ζ − z〉 6= 0 holds, or

(6)
〈ρ′(ζ), z〉
〈ρ′(ζ), ζ〉

6= 1.

Moreover, if z ∈ Ω, then zeit ∈ Ω, where 0 ≤ t ≤ 2π. Therefore, (6) implies that∣∣∣∣〈 ρ′(ζ)
〈ρ′(ζ), ζ〉

, z

〉∣∣∣∣ < 1, z ∈ Ω, ζ ∈ ∂Ω,

where ρ′(ζ) = grad ρ(ζ).
Consequently, the kernel of the second integral in (5) has a series expansion

for z ∈ D, ζ ∈ γ,

ω(ζ − z, ρ′(ζ)) =
(n− 1)!

(2πi〈ρ′, ζ〉)n
∞∑
k=0

(k + n− 1)!
k!(n− 1)!

〈
ρ′(ζ)
〈ρ′(ζ), ζ〉

, z

〉k
σ,

σ =
n∑
j=1

(−1)j−1ρ′dρ′[j] ∧ dζ,

which uniformly converges with respect to ζ on γ for fixed z ∈ D.
Let the function ρ defining the domain Ω be such that every domain Ω(r) =

{z : ρ(ζ) < r} is also convex, 0 < r < 1, while min ρ is attained at the point 0.
Then, everywhere in Ω \ {0} the inequality 〈ρ′(ζ), ζ〉 6= 0 holds, and the form

(7) ϕk =
1

〈ρ′, ζ〉n

〈
ρ′(ζ)

〈ρ′, (ζ), ζ〉
, z

〉k
σ

is of class Z1
n,n−1(D)for every k. Hence, this form is orthogonal to the holomorphic

functions when integrating over ∂Ω:

(8) 0 =
∫
Γ

f(ζ)
m∑
k=0

(k + n− 1)!
k!

ϕk +
∫
γ

f(ζ)
m∑
k=0

(k + n− 1)!
k!

ϕk.

We subtract the equality (8) from (5) and pass to the limit as m → ∞. Then
the second integral in the obtained equality approaches zero, and we obtain the
following assertion:

Theorem 4. If γ is a part of the boundary of a circular convex bounded domain
Ω, Γ is a piecewise smooth hypersurface intersecting Ω, and D is the domain with
boundary ∂D = γ ∪ Γ, and 0 6∈ D, then for every function f ∈ AC(D) and z ∈ D,
the following Carleman formula with holomorphic kernel is valid :

(9) f(z) =
∫̃
Γ

f(ζ)R(z, ζ, dζ, dζ)− lim
m→∞

∫
Γ

f(ζ)
1

(2πi)n

m∑
k=0

(k + n− 1)!
k!

ϕk,

where the ϕk are given by the equality (7).



34 L. A. AIZENBERG

We note that if n = 1, ρ(ζ) = |ζ|2 − r, then ρ′(ζ) = ζ and〈
ρ′(ζ)

〈ρ′, (ζ), ζ〉
, z

〉
=
z

ζ
,

and from (9) we obtain (1). So, (9) is a direct generalization of (1) to the multidi-
mensional case. Each differential form ϕk is a homogeneous polynomial of degree
k in z.

Corollary 1. If there exists a vector-valued function (a “barrier”) w =
w(z, ζ), z ∈ D, ζ ∈ Γ, such that 〈w, ζ − z〉 6= 0, w ∈ C1

ζ (Γ), and w smoothly
extends to ρ′ on γ ∩ Γ, then

f(z) = lim
m→∞

∫
Γ

f(ζ)
[
ω(ζ − z, w)− 1

(2πi)n

m∑
k=0

(k + n− 1)!
k!

ϕk

]
.

Now let Ω be an n-circular domain (a Reinhardt domain). Then the series for
ω(ζ − z, ρ′) with respect to a homogeneous polynomial in z can be replaced by a
power series in z:

Corollary 2. If under the conditions of Corollary 1, γ is part of the boundary
of an n-circular convex bounded domain, then

f(z) = lim
m→∞

∫
Γ

f(ζ)
[
ω − 1

(2πi〈ρ′, ζ〉)n
m∑
|α|=0

(|α|+ n− 1)!
α!

(
ρ′(ζ)
〈ρ′, ζ〉

)α
zaσ

]
.

Corollary 3. If Ω = {z : |z| < r} is a ball , then

(10) f(z)

= lim
m→∞

∫
Γ

f(ζ)
[
ω − (n− 1)!

(2πi)n
(|ζ|2m − 〈ζ, z〉m)n

|ζ|2mn〈ζ, ζ − z〉n

n∑
j=1

(−1)j−1ζjdζ[j] ∧ dζ
]
.

Corollary 4. If n = 1, Ω = U(0, r) is a disc, from formula (10) we obtain
formula (1) again.
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