A NOTE ON COEFFICIENT MULTIPLIERS $\left(H^{p}, \mathcal{B}\right)$
 AND ($H^{p}, B M O A$)

MARIA NOWAK
Institute of Mathematics, M. Curie-Sktodowska University
Pl. Marii Curie-Sktodowskiej 1, 20-031 Lublin, Poland

1. Introduction and statement of results. For a function f analytic in $\mathbf{U}=\{z:|z|<1\}$ let

$$
\begin{aligned}
& M_{p}(r, f)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p}, \quad 0<p<\infty \\
& M_{\infty}(r, f)=\max _{0 \leq \theta \leq 2 \pi}\left|f\left(r e^{i \theta}\right)\right|
\end{aligned}
$$

where $0 \leq r<1$.
The Hardy class $H^{p}, 0<p \leq \infty$, is the space of those f for which

$$
\|f\|_{p}=\sup _{0 \leq r<1} M_{p}(r, f)<\infty .
$$

A function $f \in H^{1}$ is said to be in the space $B M O A$ iff its boundary function $f\left(e^{i \theta}\right)$ is of bounded mean oscillation.

The Bloch space \mathcal{B} consists of all analytic function in \mathbf{U} for which

$$
\|f\|_{\mathcal{B}}=\sup _{z \in \mathbf{U}}(1-|z|)\left|f^{\prime}(z)\right|<\infty
$$

The proper inclusions:

$$
H^{\infty} \subset B M O A \subset \bigcap_{0<p<\infty} H^{p}, \quad B M O A \subset \mathcal{B}
$$

are well-known (e.g. [3]).
A complex sequence $\left\{\lambda_{n}\right\}$ is called a multiplier of a sequence space A into a sequence space B if $\left\{\lambda_{n} a_{n}\right\} \in B$ whenever $\left\{a_{n}\right\} \in A$. A space of analytic functions in \mathbf{U} can be regarded as a sequence space by identifying each function with its

[^0]sequence of Taylor coefficients. The set of all multipliers from A to B will be denoted by (A, B).

Recently Mateljevic and Pavlovic ([4], see also [5]) have characterized the multiplier spaces $\left(H^{1}, \mathcal{B}\right)$ and $\left(H^{p}, B M O A\right), 1 \leq p \leq 2$. They have proved the following theorems:

Theorem A. Let $1 \leq p \leq 2$ and $1 / p+1 / q=1$. Then $g \in\left(H^{p}, B M O A\right)$ if and only if

$$
M_{q}\left(r, g^{\prime}\right) \leq \frac{c}{1-r}, \quad 0<r<1
$$

where c denotes a constant.
Theorem B. $\left(H^{1}, \mathcal{B}\right)=\left(H^{1}, B M O A\right)=\mathcal{B}$
Here we extend the above theorems by describing the spaces $\left(H^{p}, \mathcal{B}\right), 0<p$ $<\infty$ and $\left(H^{p}, B M O A\right), 0<p<1$.

Let c denote a general constant not necessarily the same in each case. We have
THEOREM 1. If $1 \leq p<\infty$ and $1 / p+1 / q=1$ then

$$
g \in\left(H^{p}, \mathcal{B}\right)
$$

if and only if there is a constant c such that

$$
\begin{equation*}
M_{q}\left(r, g^{\prime}\right) \leq \frac{c}{1-r}, \quad 0<r<1 \tag{1}
\end{equation*}
$$

THEOREM 2. If $0<p<1$, n is an integer such that $1 / p<n+1$ then

$$
\begin{align*}
\left(H^{p}, H^{\infty}\right) & =\left(H^{p}, B M O A\right)=\left(H^{p}, \mathcal{B}\right) \tag{2}\\
& =\left\{g: M_{\infty}\left(r, g^{(n)}\right)<\frac{c}{(1-r)^{n+1-1 / p}}\right\}=A_{n}
\end{align*}
$$

Note that for $0<p \leq 2,\left(H^{p}, \mathcal{B}\right)=\left(H^{p}, B M O A\right)$.
2. Proof of Theorem 1. For $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}, g(z)=\sum_{n=0}^{\infty} \widehat{g}(n) z^{n}$ analytic in \mathbf{U} define

$$
\begin{equation*}
h(z)=f \star g(z)=\sum_{n=0}^{\infty} \widehat{f}(n) \widehat{g}(n) z^{n} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
h\left(r^{2} e^{i \varphi}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) g\left(r e^{i(\varphi-\theta)}\right) d \theta, \quad 0<r<1 \tag{4}
\end{equation*}
$$

Assume that g satisfies (1) and $f \in H^{p}, 1 \leq p<\infty$. Differentiating (4) with respect to φ we obtain

$$
r h^{\prime}\left(r^{2} e^{i \varphi}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) g^{\prime}\left(r e^{i(\varphi-\theta)}\right) e^{-i \theta} d \theta
$$

Hence by Hölder's inequality

$$
\begin{equation*}
M_{\infty}\left(r^{2}, h^{\prime}\right) \leq C M_{p}(r, f) M_{q}\left(r, g^{\prime}\right) \tag{5}
\end{equation*}
$$

which implies $h \in \mathcal{B}$.
To prove the converse suppose that g is an analytic function such that $f \star g \in \mathcal{B}$ whenever $f \in H^{p}, 1<p<\infty$. Without loss of generality we may assume that $f(0)=0$. Then $f_{1}(z)=f(z) / z$ also belongs to H^{p} and $\left\|f_{1}\right\|_{p}=\|f\|_{p}$. It follows from the closed graph theorem that $T_{g}(f)=f \star g$ is a bounded linear operator from H^{p} to \mathcal{B}. So there is a constant c such that for any $f \in H^{p}$

$$
\begin{equation*}
\left\|T_{g}(f)\right\|_{\mathcal{B}}=\sup _{\substack{0 \leq r<1 \\ 0 \leq \varphi \leq 2 \pi}}\left(1-r^{2}\right)\left|\int_{0}^{2 \pi} \frac{e^{-i \theta}}{r} f\left(r e^{i \theta}\right) g^{\prime}\left(r e^{i(\varphi-\theta)}\right) d \theta\right| \leq c\|f\|_{p} \tag{6}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\left|\int_{0}^{2 \pi} \frac{f\left(r e^{i \theta}\right)}{r e^{i \theta}} g^{\prime}\left(r e^{-i \theta}\right) d \theta\right| \leq \frac{c\|f\|_{p}}{1-r^{2}}, \quad 0 \leq r<1 \tag{7}
\end{equation*}
$$

Let $W\left(e^{i \theta}\right)=\sum_{k=-n}^{n} a_{k} e^{i k \theta}$ be a trigonometric polynomial with $\|W\|_{L^{p}[0,2 \pi]} \leq 1$. It follows from the M. Riesz theorem that its analytic projection $w\left(e^{i \theta}\right)=$ $\sum_{k=0}^{n} a_{k} e^{i k \theta}$ satisfies

$$
\|w\|_{L^{p}[0,2 \pi]} \leq A_{p}\|W\|_{L^{p}[0,2 \pi]} \leq A_{p} .
$$

Also note that

$$
\begin{equation*}
\left|\int_{0}^{2 \pi} W\left(e^{i \theta}\right) g^{\prime}\left(r^{2} e^{-i \theta}\right) d \theta\right|=\left|\int_{0}^{2 \pi} w\left(r e^{i \theta}\right) g^{\prime}\left(r e^{-i \theta}\right) d \theta\right| \leq \frac{c A_{p}}{1-r^{2}} \tag{8}
\end{equation*}
$$

If we denote $g_{r^{2}}^{\prime}(z)=g^{\prime}\left(r^{2} z\right), 0<r<1$, then taking the supremum over all W with $\|W\|_{L^{p}[0,2 \pi]} \leq 1$ we get

$$
\left\|g_{r^{2}}^{\prime}\right\|_{q}=M_{q}\left(r^{2}, g^{\prime}\right) \leq \frac{c}{1-r^{2}}
$$

and this proves Theorem 1.
3. Proof of Theorem 2. The following property of integral means is well known (cf. [1], p. 80): if $0<p \leq \infty, \beta>0$ and f is analytic in \mathbf{U} then

$$
M_{p}(r, f)=O\left(\frac{1}{(1-r)^{\beta}}\right) \quad \text { if and only if } \quad M_{p}\left(r, f^{\prime}\right)=O\left(\frac{1}{(1-r)^{\beta+1}}\right)
$$

Hence the set A_{n} in formula (2) does not depend on n if only $n+1>1 / p$.
Now assume that $0<p<1$. It was proved by Duren and Shields [2] that $\left(H^{p}, H^{\infty}\right)=A_{n}$. So to prove our theorem it is enough to show that $\left(H^{p}, \mathcal{B}\right) \subset A_{n}$. Suppose that g is an analytic function such that $f \star g \in \mathcal{B}$ whenever $f \in H^{p}$. Then the closed graph theorem implies

$$
\|f \star g\|_{\mathcal{B}} \leq c\|f\|_{p}
$$

For $g(z)=\sum_{k=0}^{\infty} \hat{g}(k) z^{k}$ we define

$$
D^{n} g(z)=\sum_{k=0}^{\infty}(k+1)^{n} \widehat{g}(k) z^{k} .
$$

Let $f(z)=\sum_{k=0}^{\infty}(k+1)^{n} z^{k}$. Then we have

$$
\left\|D^{n} g_{r}\right\|_{\mathcal{B}}=\left\|g \star f_{r}\right\|_{\mathcal{B}} \leq c\left\|f_{r}\right\|_{p}
$$

where $f_{r}(z)=f(r z), 0<r<1$.
Because $f(z)=P_{n}(z) /(1-z)^{n+1}$, where P_{n} is a polynomial of degree n,

$$
\begin{equation*}
\left\|D^{n} g_{r}\right\|_{\mathcal{B}} \leq c\left\|\frac{1}{(1-r z)^{n+1}}\right\|_{p}=O\left(\frac{1}{(1-r)^{n+1-1 / p}}\right) . \tag{9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sup _{0<\rho<1}(1-\rho) M_{\infty}\left(\rho,\left(D^{n} g_{r}\right)^{\prime}\right) \leq \frac{c}{(1-r)^{n+1-1 / p}} \tag{10}
\end{equation*}
$$

It was shown in [4] that the integral means of $D^{n} g$ and $g^{(n)}$ have "the same behaviour". So by Lemma 1 of [4] (10) implies

$$
\begin{equation*}
M_{\infty}\left(\rho, D^{n+1} g_{r}\right) \leq \frac{c}{(1-r)^{n+1-1 / p}(1-\rho)}, \quad 0<r, \rho<1 \tag{11}
\end{equation*}
$$

which is equivalent to

$$
M_{\infty}\left(\rho r, g^{(n+1)}\right) \leq \frac{c}{(1-r)^{n+1-1 / p}(1-\rho)}, \quad 0<r, \rho<1
$$

Hence

$$
M_{\infty}\left(r, g^{(n+1)}\right) \leq \frac{c}{(1-r)^{n+2-1 / p}}
$$

and this means that $g \in A_{n}$.

References

[1] P. L. Duren, Theory of H^{p} Spaces, Academic Press, 1970.
[2] P. L. Duren and A. L. Shields, Coefficient multipliers of H^{p} and B^{p} spaces, Pacific J. Math. 32 (1970), 69-78.
[3] J. Garnett, Bounded Analytic Functions, Academic Press, 1981.
[4] M. Mateljevic and M. Pavlovic, Multipliers of H^{p} and BMOA, Pacific J. Math. 146 (1990), 71-84.
[5] L. Zengjian, Multipliers of H^{p}, G^{p} and Bloch spaces, Math. Japon. 1 (1991), 21-26.

[^0]: 1991 Mathematics Subject Classification: Primary 30D55.
 The paper is in final form and no version of it will be published elsewhere.

