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1. Preliminaries

1. In the following new results on foliations with complex leaves are announced.
Complete proofs will appear elsewhere.

A foliation with complex leaves is a (smooth) foliation X of dimension 2n+ k
whose local models are domains U = V × B of Cn × Rk, V ⊂ Cn, B ⊂ Rk and
whose local transformations are of the form

(∗)
{
z′ = f(z, t),
t′ = h(t),

where f is holomorphic with respect to z. A domain U as above is said to be a
distinguished coordinate domain of X and z = (z1, . . . , zn), t = (t1, . . . , tk) are
said to be distinguished local coordinates. k is called the real codimension of X.

As an example of such foliations we have the Levi flat hypersurfaces of Cn
([13], [4], [11]).

If X is a smooth foliation as above, then the leaves are complex manifolds of
dimension n. Let D be the sheaf of germs of smooth functions, holomorphic along
the leaves (namely the germs of CR-functions on X). D is a Fréchet sheaf and we
denote by D(X) the Fréchet algebra Γ (X,D).

It is natural to study foliations with complex leaves in the spirit of the theory
of complex spaces, in particular, the convexity with respect to the algebra D(X)
and the cohomology of X with values in D. In this talk I will discuss some recent
results obtained in a joint paper with G. Gigante.

2. LetX be a smooth foliation with complex leaves.X is said to be a q-complete
foliation if there is an exhaustive, smooth function Φ : X → R which is strictly
q-pseudoconvex along the leaves. X is a Stein foliation if

(a) DX separates points of X,
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(b) X is D-convex,
(c) for every x ∈ X there exist f1, . . . , fn, h1, . . . , hk ∈ D(X) such that

rank
∂(f1, . . . , fn, h1, . . . , hk)
∂(z1, . . . , zn, t1, . . . , tk)

= n+ k

(z1, . . . , zn, t1, . . . , tk distinguished local coordinates at x).
One can prove that a Stein foliation is 1-complete.

R e m a r k. If we replace Rk by Ck and in (∗) we assume t ∈ Ck and that
f , h are holomorphic with respect to z, t then we obtain the notion of complex
foliation of (complex) codimension k.

3. Every real analytic foliation can be complexified. Precisely, we have the
following

Theorem 1. Let X be a real analytic foliation with complex leaves, of codi-
mension k. Then there exists a complex foliation X̃ of codimension k such that :

(1) X ↪→ X̃ by a closed real analytic embedding which is holomorphic along
the leaves;

(2) every real analytic CR-function f : X → R extends holomorphically to a
neighbourhood of X;

(3) if X is a q-complete foliation with exhaustive function Φ then for every
c ∈ R, Xc = {Φ ≤ c} has a fundamental system of neighbourhoods which are
q-complete manifolds.

R e m a r k. X̃ with the properties (1)–(3) is essentially unique.

As a corollary, using the approximation theorem of M. Freeman ([5]) we prove
the following

Theorem 2. Under the assumptions of Theorem 1, if X is 1-complete, a
smooth CR-function on a neighbourhood of Xc can be approximated by smooth
global CR-functions.

R e m a r k. A similar argument can be applied to prove that in the previous
statement Xc can be replaced by an arbitrary D-convex compact K (i.e. K̂ = K).

2. Applications

1. The approximation theorem allows us to prove an embedding theorem for
real analytic Stein foliations ([7]).

Let X be a smooth foliation with complex leaves of dimension n and of codi-
mension k. Let us denote by A(X; CN ) the set of smooth CR-maps X → CN .
Then A(X; CN ) is Fréchet. We have the following

Theorem 3. Assume X is a real analytic Stein foliation. Then there exists
a smooth CR-map X → CN , N = 2n + k + 1, which is one-to-one, proper and
regular.
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2. We apply the above theorem to obtain information about the topology of X.

Theorem 4. Let X be a real analytic Stein foliation. Then Hj(X,Z) = 0 for
j ≥ n+ k + 1 and Hn+k(X,Z) has no torsion.

Sketch of proof. Embed X in CN and consider on X the distance function
% from a point z◦ ∈ CN \X. z◦ can be chosen in such a way that % is a Morse
function. Next we show that % has no critical point of index j ≥ n+ k+ 1 ([14]).

Corollary 5. Let X ⊂ PN (C) be a closed oriented real analytic foliation and
let W be a smooth algebraic hypersurface which does not contain X. Then the
homomorphism

Hj(X,Z)→ Hj(X ∩W,Z)
induced by X ∩W → X is bijective for j < n − 1 and injective for j = n − 1.
Moreover , the quotient group Hn−1(X ∩W,Z)/Hn−1(X,Z) has no torsion.

3. Cohomology

1. Given a q-complete smooth foliation X, according to the Andreotti and
Grauert theory for complex spaces it is natural to expect that the cohomology
groups Hj(X,D) vanish for j ≥ q. This is actually true for domains in Cn × Rk
([1]). More generally, we prove the following:

Theorem 6. Let X be a 1-complete real analytic foliation. Then Hj(X,D) = 0
for j ≥ 1.

Sketch of proof. Assume k = 1 and let Φ be an exhaustive function for X.
Then the vanishing theorem for domains in Cn × Rk, the bumps lemma and the
Mayer–Vietoris sequence ([1]) yield the following: for every c > 0 there is ε > 0
such that

(1) Hj(Xc+ε,D)→ Hj(Xc,D)

is onto for j ≥ 1 (and this holds true for j ≥ q whenever X is a q-complete smooth
foliation).

Now let X̃ be the complexification of X and consider the compact Xc = {Φ ≤
c}. In view of Theorem 1, Xc has a fundamental system of Stein neighbourhoods
U in X̃. X is oriented around Xc and consequently U \ X has two connected
components U+, U− (U is connected).

Denote by O+ (resp. O−) the sheaf of germs of holomorphic functions on U+

(resp. U−) that are smooth on U+ ∪ (U+ ∩X) (resp. U− ∪ (U− ∩X). Then we
have the exact sequence

(2) 0→ O → O+ ⊕O−
re→ D → 0

([2]) (here O+ (resp. O−) is a sheaf on U+ (resp. U−) extended by 0 on all U
and re (f ⊕ g) = f|x − g|x). Since U is Stein we derive from (2) that

(3) Hj(U+,O+)⊕Hj(U−,O) ∼→ Hj(U ∩X,D)
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for j ≥ 1 (and this holds true for j ≥ q whenever X is a q-complete real-analytic
foliation of codimension 1).

Let be a j-cocycle of D on a neighbourhood of Xc. In view of (2) we have
ξ = ξ+ − ξ− where ξ+ and ξ− are represented by two (0, j)-forms ω+, ω− on U+,
U− respectively which are smooth up to X.

Moreover, according to [6] it is possible to construct pseudoconvex domains
U ′+ and U ′− satisfying the following conditions: U ′+ ⊂ U+, U ′− ⊂ U ′−, ∂U ′+, ∂U ′−
are smooth and ∂U ′+ ∩X, ∂U ′− ∩X contain a neighbourhood of Xc.

Then Kohn’s theorem ([10]) implies that on U ′+ and U ′− respectively we have
ω+ = ∂v+, ω− = ∂v− where v+ ∈ C∞(U

′
+), v− ∈ C∞(U

′
−). It follows that

Hj(Xc,D) = 0 for j ≥ 1 and from (1) we deduce that Hj(xc,D) = 0 for every
c ∈ R and j ≥ 1.

At this point, in order to conclude our proof we can repeat step by step the
proof of the Andreotti–Grauert vanishing theorem for q-complex spaces ([1]).

If k ≥ 2 the situation is much more involed. Using the Nirenberg Exten-
sion Lemma ([10]) it is possible to reduce the cohomology H∗(x,D) to the ∂-
cohomology of X̃ with respect to the differential forms on X̃ which are flat on
X and to conclude invoking a theorem of existence proved by J. Chaumat and
A. M. Chollet ([3]).

Assume that X is real analytic and let O′ be the sheaf of germs of real analytic
CR-functions. Then an analogous statement for O′ is not true. Andreotti and
Nacinovich ([2]) showed that H1(X,O′) is never zero. However by Theorem 1 we
have for arbitrary k, Hj(Xc,O′) = 0 for j > 0 whenever X is q-complete.

2. Using the same method of proof, under the hypothesis of Theorem 6, we
have the following

Theorem 7. Let A = {xν} be a discrete subset of X and let {cν} be a sequence
of complex numbers. Then there exists f ∈ D(X) such that f(xν) = cν , ν =
1, 2, . . . In particular , X is D-convex and D(X) separates points of X.

R e m a r k. A vanishing theorem can be also proved for the sheaf of germs of
“CR-sections” of E → X where E is a fibre vector bundle with fibre Cm × Rh.

4. The Kobayashi metric

1. Let X be a foliation with complex leaves of codimension k, and let T (X) π→
X be the tangent bundle of X. The collection of all tangent spaces to the leaves
of X forms a complex subbundle TH(X) of T (X). Let D be the unit disc in C
and denote by CR(D,X) the set of all CR-maps D → X.

Given ζ ∈ TH(X) with x = π(ζ) we define the function F = FX on X×TH(X)
by

F (x, ζ) = inf{s ∈ R : s ≥ 0, sϕ′(0) = ζ}
where ϕ ∈ CR(D,X) and ϕ(0) = x.
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When k = 0, F reduces to the Kobayashi “infinitesimal metric” of the complex
manifold X ([8]). In particular, if X = Cn × Rk, then F = 0.

If X ′ is another foliation as above and φ : X → X ′ is a CR-map then dφ :
TH(X)→ TH(X ′) and

FX(φ(x), dφζ) ≤ FX(x, ζ).

Teorem 7. FX is upper semicontinuous.

According to the complex case [8], X is said to be hyperbolic if F (x, ζ) > 0
for every x ∈ X and ζ ∈ TH(X), ζ 6= 0.

R e m a r k s. 1) The fact that all the leaves are hyperbolic does not imply that
X itself is hyperbolic.

2) Every bounded domain in Cn × Rk is hyperbolic.
3) Following [12] it can be proved that if X admits a continuous bounded

function u, p.s.h. along the leaves and strictly p.s.h. in a neighbourhood of x,
then X is hyperbolic at x.

2. Now consider a riemannian metric on X and let V be a smooth distribution
of transversal tangent k-spaces. Then every ζ ∈ T (X) splits into ζ0 + ζc where
ζ0 ∈ V , ζc ∈ TH(X) and we denote by τ(ζ0) the length of ζ0.

Let F be the infinitesimal Kobayashi metric on X and for ζ ∈ Tx(X) set
g(x, ζ) = F (x, ζc) + τ(x, ζ0). Then g is an upper semicontinuous pseudometric.

If γ = γ(s), 0 ≤ s ≤ 1, is a smooth curve joining x, y ∈ X the pseudo-length
of γ with respect to g is

L(γ) =
1∫

0

g(γ(s), γ̇) ds

and the pseudo-distance between x, y is

d(x, y) = inf
γ
L(γ).

d is a real distance on X inducing the topology of X if X is hyperbolic. X is said
to be complete if a field V can be chosen making X complete with respect to d.

For example, the unit ball in C× R is complete for the choice

V = λ(t)
(
x
∂

∂x
+ y

∂

∂y

)
+ (1 + t2)−1 ∂

∂t

where λ(t) = 2 arctan t[(1 + t2)−1(1− arctan2 t)−3/2].
The interest of this construction is due to the following

Theorem 8. Let Ω ⊂ Cn × Rk be with the riemannian structure induced by
Cn × Rk. If Ω is hyperbolic and complete then Ω is D-convex.
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[1] A. Andreott i et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces
complexes, Bull. Soc. Math. France 90 (1962), 193–259.

[2] A. Andreott i and M. Nac inovich, Analytic convexity , Ann. Scuola Norm. Sup. Pisa
7 (1980), 287–372.

[3] J. Chaumat et A. M. Chol l e t, Noyaux pour résoudre l’équation ∂ dans des classes
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