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Abstract. This paper is concerned with the existence of BV and right continuous solutions
for some classes of multivalued differential equations on closed moving sets in Banach spaces.

1. Introduction. Let E be a Banach space, µ a positive Radon measure on
[0, T ] ⊂ R (T > 0). A multifunction t 7→ C(t) is given, defined on [0, T ] and with
values in E such that the sets C(t) are nonempty closed, and a multifunction
F from the graph of C to E such that the sets F (t, x) are nonempty convex
and compact. The following problem arises from the sweeping (or Moreau) pro-
cess [M2] and the calculus of variations, see Brandi–Cesari–Salvadori [BCS] and
Moussaoui [Mo].

Given x0 ∈ C(0), the problem is to find a BV and right continuous X :
[0, T ]→ E such that X(0) = x0, X(t) = x0 +

∫
]0,t]

X ′(s)µ(ds), ∀t ∈ [0, T ], where
X ′ belongs to L1

E([0, T ], µ), and

(1.1)
{
X(t) ∈ C(t), ∀t ∈ [0, T ],
X ′(t) ∈ F (t,X(t)) µ-a.e. on [0, T ].

In this paper we given several sufficient conditions for the existence of BV and
right continuous (briefly BVRC) solutions of (1.1). When µ is the Lebesgue mea-
sure, the existence of absolutely continuous solutions of (1.1) will receive a par-
ticular treatment. After the preliminary paper by Nagumo [N], there were many
results in the literature concerning absolutely continuous solutions of (1.1). We
refer to Aubin–Cellina [AC], Bony [Bo], Brezis [Br], Deimling [De2], Larrieu [L],
Martin [Ma], Methlouthi [Me]. For the complete bibliography of the subject, we
refer to [AC] and [De2].
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When µ is a Radon measure, the second author [Ca2] stated the existence
of BVRC solutions of (1.1) in the case where F is upper semicontinuous for the
right topology on the right closed graph of a multifunction C under a suitable
tangential condition and proved that the existence of BVRC solutions for the
sweeping process (see [M2])

(SW)
{
X(0) = x0 ∈ C(0),
X ′(t) ∈ −NC(t)(X(t)) µ-a.e.,

where NC(t)(X(t)) is the normal cone of the moving closed convex set C(t) in Rd
at X(t) with t 7→ C(t) bounded variation and right continuous for the Hausdorff
distance, can be deduced from the existence of BVRC solutions of (1.1) by taking
for F the subdifferential of the function x 7→ d(x,C(t)). Further, the existence
of BVRC solutions for (1.1) has applications in the calculus of variations. See
Brandi–Cesari–Salvadori [BCS] and Moussaoui [Mo] and the references therein.
So the previous considerations show the interest of finding BV solutions of (1.1).
We also refer to Moreau’s paper [M2] for the importance of the replacement of the
Lebesgue measure in the sweeping process by a Radon measure for the treatment
of an elastoplastic mechanical system.

This paper is organized as follows. In Section 3 some basic differential and
integral inequalities are presented. In Section 4 some useful compactness results
and lower semicontinuity of integral functionals are recalled. Section 5 is con-
cerned with several new existence results for BVRC (resp. absolutely continuous)
solutions of (1.1).

The main difficulties which arise in the investigation of BVRC solutions of
(1.1) are important because dim(E) is infinite and the replacement of the Le-
besgue measure by Radon positive measures possibly possessing some atoms,
requires nonclassical techniques involving recent results concerning the differential
measures of vector valued BV functions developed by Moreau–Valadier [MV3].

2. Notations and preliminaries. We introduce the following notation.

• E is a separable Banach space.
• B(x, r) is the closed ball of center x and radius r, BE the closed unit ball.
• c(E) (resp. k(E), ck(E), ckw(E), b(E)) is the set of all nonempty closed

(resp. compact, convex compact, convex weakly compact, bounded) subsets of E.
• Rk(E) (resp. Rkw(E)) is the set of all nonempty closed convex subsets of E

such that their intersections with any closed ball of E are compact (resp. weakly
compact).
• co(A) is the closed convex hull of a subset A of E.
• |K| := sup{‖x‖ : x ∈ K} where K is a subset of E.
• α is the Kuratowski measure of noncompactness defined on bounded subsets

of E.

See e.g. [Ma], p. 16.
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• A subdivision of I := [0, T ] is a finite sequence (t0, . . . , tn) such that 0 =
t0 < t1 < . . . < tn = T .
• The variation of a function u : [0, T ] → E is the supremum over the

set of subdivisions of I of the numbers
∑n
i=1 ‖u(ti) − u(ti−1)‖. The variation

of u is denoted by var(u; 0, T ). The function u has bounded variation (BV) if
var(u; 0, T ) < ∞. If u is BV, its left hand limit u−(t) exists at any t > 0. By
convention u−(0) = 0. When u is BV and right continuous, then there is a vector
measure denoted by Du (differential measure) such that

∀a ≤ b, Du([a, b]) = u(b)− u−(a)

with Du({0}) = 0 and ∀t, u(t) = u(0) +Du([0, t]).
• µ is a positive Radon measure on [0, T ]. If for some u′ ∈ L1

E([0, T ], µ), one
has u(t) = u(0) +

∫
]0,t]

u′(s)µ(ds), ∀t ∈ [0, T ], then u is BVRC with Du/dµ = u′

where Du/dµ is the Radon–Nikodym derivative of the differential measure Du
with respect to the scalar measure µ.
• A multifunction C from a topological space U to ck(E) is upper semicon-

tinuous (usc) at x0 if for each ε > 0, there is a neighbourhood Vε(x0) of x0 such
that C(x) ⊂ C(x0) + εBE whenever x ∈ Vε(x0).
• [0, T ]d (resp. [0, T ]g) denotes [0, T ] equipped with the right (resp. left) topo-

logy
• B(X) denotes the σ-algebra of borelian subsets of a topological space X.

3. Basic inequalities. In this section we establish some basic differential and
integral inequalities that occur in later sections.

The following result is due to M. D. P. Monteiro Marquès [MM].

Lemma 3.1. Let g ∈ L1
R+(I, µ) and β ≥ 0 be such that , ∀t, 0 ≤ g(t)µ({t}) ≤

β < 1. Let ϕ ∈ L∞R+(I, µ) satisfy

∀t, ϕ(t) ≤ α+
∫

]0,t]

g(s)ϕ(s)µ(ds)

where α is a positive constant number. Then

∀t, ϕ(t) ≤ α exp
(

1
1− β
∫

]0,t]

g(s)µ(ds)
)
.

P r o o f. Let ε > 0. The function

t 7→ ψ(t) := α+ ε+
∫

]0,t]

g(s)ϕ(s)µ(ds)

is increasing, right continuous and we have ψ ≥ α + ε > 0. It follows that the
function t 7→ Logψ(t) is increasing and BVRC. Since Dψ is absolutely continuous
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with respect to µ and d
dx (Log x) = 1

x , thus by virtue of a result due to Moreau–
Valadier ([MV2], Theorem 8, p. 16-18)

D Logψ
dµ

(t) ∈
{

1
x

Dψ

dµ
(t) : x ∈ [ψ−(t), ψ(t)]

}
µ-a.e.

Since ψ is increasing, we obtain

0 ≤ D Logψ
dµ

(t) ≤ 1
ψ−(t)

Dψ

dµ
(t) =

g(t)ϕ(t)
ψ(t)− g(t)ϕ(t)µ({t})

µ-a.e.

By our assumption on g and ϕ, we then have
D Logψ
dµ

(t) ≤ g(t)ϕ(t)
ϕ(t)− βϕ(t)

=
g(t)

1− β
µ-a.e.

Consequently,

∀t, Logψ(t) ≤ Log(α+ ε) +
1

1− β
∫

]0,t]

g(s)µ(ds).

Therefore

∀t ∈ I, ϕ(t) ≤ ψ(t) ≤ (α+ ε) exp
(

1
1− β
∫

]0,t]

g(s)µ(ds)
)
.

Since ε is arbitrary, it follows that

∀t ∈ I, ϕ(t) ≤ α exp
(

1
1− β
∫

]0,t]

g(s)µ(ds)
)
.

R e m a r k 3.2. If µ is the Lebesgue measure λ on [0, T ], the previous inequal-
ity reduces to Gronwall’s inequality by taking β = 0.

Now we introduce the function

∀x ∈ R, θ(x) =
{

(ex − 1)/x if x 6= 0,
1 if x = 0.

Then θ is increasing, continuous and θ(]−∞, 0]) = ]0, 1]. The following inequality
is concerned with BVRC functions.

Proposition 3.3. Let % : I → R be a BVRC function such that |D%| � µ
and that the Radon-Nikodym density D%/dµ of its differential measure D% with
respect to µ belongs to L1

R(I, µ). Let a and b in L1
R(I, µ) be such that

(∗) D%

dµ
(t) ≤ θ(−µ({t})a(t))a(t)%(t) + b(t) µ-a.e.

Then

∀t, %(t) ≤ %(0) exp
( ∫

]0,t]

a(s)µ(ds)
)

+
∫

]0,t]

exp
( ∫

[s,t]

a(r)µ(dr)
)
b(s)µ(ds).
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P r o o f. Set ϕ(t) = exp
(
−
∫
]0,t]

a(s)µ(ds)
)

and f(t) = −
∫
]0,t]

a(s)µ(ds),
∀t ∈ I.

By virtue of a result due to Moreau–Valadier ([MV2], Theorem 3.7, p. 16-15)
the function ϕ is BVRC and

Dϕ

dµ
(t) =

Df

dµ
(t)

1∫
0

exp(rf−(t) + (1− r)f+(t))dr

= −a(t)
1∫

0

exp(f(t) + rµ({t})a(t))dr.

If µ({t})a(t) = 0, then Dϕ
dµ (t) = −a(t)ϕ−(t). If µ({t})a(t) 6= 0, then

Dϕ

dµ
= −a(t)

[
1

µ({t})a(t)
exp(f(t) + rµ({t})a(t))

]r=1

r=0

=
−a(t)

µ({t})a(t)
[exp f−(t)− exp f(t)]

= −a(t) exp(f−(t))
1− exp(−µ({t})a(t))

µ({t})a(t)
= −θ(−µ({t})a(t))a(t)ϕ−(t).

Finally, for all t we get

(3.3.1)
Dϕ

dµ
(t) = −θ(−µ({t})a(t))a(t)ϕ−(t).

Since ϕ− is ≥ 0, by our assumption (∗) we have

ϕ−(t)
D%

dµ
(t) ≤ θ(−µ({t})a(t))a(t)%(t) · ϕ−(t) + b(t)ϕ−(t)

for µ-a.e. t. By (3.3.1) it follows that

(3.3.2) ϕ−(t)
D%

dµ
(t) +

Dϕ

dµ
(t)%(t)− ϕ−(t)b(t) ≤ 0 µ-a.e.

Let us introduce the function

t 7→ Φ(t) := ϕ(t)%(t)−
∫

]0,t]

ϕ−(s)b(s)µ(ds).

Since ϕ and % are BVRC, the function ϕ% is BVRC too. Moreover, by a formula
due to Moreau ([M1], Proposition 5.b) concerning the differential measure of the
product ϕ%, we have

D(ϕ%) = ϕ−D%+ %Dϕ.

It follows that

(3.3.3)
D(ϕ%)
dµ

= ϕ−
D%

dµ
+ %

Dϕ

dµ
.
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Further the function t 7→
∫
]0,t]

ϕ−(s)b(s)µ(ds) is BVRC and the Radon–Nikodym
density of its differential measure with respect to µ is ϕ−b. So by (3.3.3) we get

DΦ

dµ
=
D(ϕ%)
dµ

− ϕ−b = ϕ−
D%

dµ
+ %

Dϕ

dµ
− ϕ−b

so that inequality (3.3.2) is equivalent to

(3.3.4)
DΦ

dµ
(t) ≤ 0 µ-a.e.

Integrating we get

∀t ∈ I, Φ(t)− Φ(0) =
∫

]0,t]

DΦ

dµ
(s)µ(ds).

Hence

∀t ∈ I, ϕ(t)%(t)−
∫

]0,t]

ϕ−(s)b(s)µ(ds)− %(0) ≤ 0,

that is,

∀t ∈ I, %(t) ≤ 1
ϕ(t)

%(0) +
1
ϕ(t)

∫
]0,t]

ϕ−(s)b(s)µ(ds).

Since 1/ϕ(t) = exp
( ∫

]0,t]
a(s)µ(ds)

)
, we have

∀t ∈ I, 1
ϕ(t)

∫
]0,t]

ϕ−(s)b(s)µ(ds) =
∫

]0,t]

exp
( ∫

[s,t]

a(r)µ(dr)
)
b(s)µ(ds).

Finally, we get

∀t ∈ I, %(t) ≤ %(0) exp
( ∫

]0,t]

a(s)µ(ds)
)

+
∫

]0,t]

exp
( ∫

[s,t]

a(r)µ(dr)
)
b(s)µ(ds)

as desired.

The following result is an application of Proposition 3.3.

Proposition 3.4. Let % ∈ L∞R (I, µ), a ∈ L1
R(I, µ) and c ∈ L1

R+(I, µ) be such
that the product ac belongs to L1

R(I, µ) and

∀t ∈ I, %(t) ≤ a(t) +
∫

]0,t]

θ(−µ({s})c(s))c(s)%(s)µ(ds).

Then

∀t ∈ I, %(t) ≤ a(t) +
∫

]0,t]

exp
( ∫

[s,t]

c dµ
)
θ(−µ({s})c(s))c(s)a(s)µ(ds).

In particular , if ∀t ∈ I, a(t) = a0, then

∀t ∈ I, %(t) ≤ a0 exp
( ∫

]0,t]

c(s)µ(ds)
)
.
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C o m m e n t. If µ is the Lebesgue measure λ on [0, T ] and if a is nonnega-
tive, then the inequality in Proposition 3.4 is reduced to the following Gronwall’s
inequality

∀t ∈ I, %(t) ≤ a(t) +
∫

]0,t]

exp
( ∫

[s,t]

c(r)λ(dr)
)
c(s)a(s)λ(ds)

since c is nonnegative and 0 < θ(−µ({t})c(t)) ≤ 1 for all t ∈ I.

P r o o f. Set

∀t ∈ I, q(t) =
∫

]0,t]

θ(−µ({s})c(s))c(s)%(s) ds.

Then
Dq

dµ
(t) = θ(−µ({t})c(t))c(t)%(t) µ-a.e.

By our assumption, we have %(t) ≤ a(t) + q(t), ∀t ∈ I. Therefore, we obtain

(3.4.1)
Dq

dµ
(t) ≤ θ(−µ({t})c(t))c(t)q(t) + b(t) µ-a.e.

where b(t) = θ(−µ({t})c(t))c(t)a(t), ∀t ∈ I. Since q is BVRC, a and c belong to
L1

R(I, µ), it follows from (3.4.1) and Proposition 3.3 that

∀t ∈ I, q(t) ≤
∫

]0,t]

exp
( ∫

[s,t]

c(r)µ(dr)
)
b(s)µ(ds)

because q is BVRC and q(0) = 0. Since for all t ∈ I, %(t) ≤ a(t) + q(t), we obtain
the desired inequality

∀t ∈ I, %(t) ≤ a(t) +
∫

]0,t]

exp
( ∫

[s,t]

c(r)µ(dr)
)
θ(−µ({s})c(s))c(s)a(s)µ(ds).

If a(t) = a0, ∀t ∈ I, we get

%(t) ≤ a0 +
∫

]0,t]

exp
( ∫

[s,t]

c(r)µ(dr)
)
b(s)µ(ds)

= a0 + a0

∫
]0,t]

exp
( ∫

]0,t]

c dµ−
∫

]0,s]

c dµ
)
θ(−µ({s})c(s))c(s)µ(ds).

Now set, ∀t ∈ I, ϕ(t) = exp
(
−
∫
]0,t]

c dµ
)
. Then by (3.3.1) of the proof of

Proposition 3.3, we have

∀t ∈ I, Dϕ

dµ
(t) = −θ(−µ({t})c(t))c(t)ϕ−(t).

It follows that for all t ∈ I,

%(t) ≤ a0 + a0 exp
( ∫

]0,t]

c dµ
) ∫

]0,t]

(
− Dϕ

dµ
(s)
)
µ(ds)
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= a0 + a0 exp
( ∫

]0,t]

c dµ
)

(1− ϕ(t)) = a0 exp
∫

]0,t]

c dµ,

which the desired inequality.

Here is a useful corollary of Proposition 3.4. Let us introduce the function

θ(x) =

{
Log(1 + x)

x
if x ∈ ]− 1, 0[∪ ]0,∞[,

1 if x = 0.
It is obvious that θ is a strictly decreasing and continuous function such that
θ(]− 1, 0]) = [1,∞[.

Corollary 3.5. Let ϕ ∈ L∞R (I, µ), a ∈ R and g ∈ L1
R+(I, µ) be such that

∀t ∈ I, µ({t})g(t) < 1 and
∫
I

θ(−µ({t})g(t))g(t)µ(dt) <∞.

Suppose further that

∀t ∈ I, ϕ(t) ≤ a+
∫

]0,t]

g(s)ϕ(s)µ(ds).

Then

∀t ∈ I, ϕ(t) ≤ a exp
∫

]0,t]

θ(−µ({s})g(s))g(s)µ(ds).

P r o o f. Set c(t) = θ(−µ({t})g(t))g(t), ∀t ∈ I. Then by our assumptions
c ∈ L1

R(I, µ) and by obvious properties of functions θ and θ, we have g(t) =
θ(−µ({t})c(t))c(t), ∀t ∈ I, so that

∀t ∈ I, ϕ(t) ≤ a+
∫

]0,t]

θ(−µ({s})c(s))c(s)ϕ(s)µ(ds).

Then by Proposition 3.4, it is immediate that

∀t ∈ I, ϕ(t) ≤ a exp
∫

]0,t]

θ(−µ({s})g(s))g(s)µ(ds).

R e m a r k. Corollary 3.5 generalizes Lemma 3.1 since the condition 0 ≤
g(t)µ({t}) ≤ β < 1, for all t ∈ I, implies that the function t 7→ θ(−µ({t})g(t))g(t)
is integrable. Indeed, −β ∈ ]− 1, 0] and since θ : ]− 1, 0]→ [1,∞[ is a decreasing
function, we have

∀t ∈ I, θ(−µ({t})g(t))g(t) ≤ θ(−β)g(t).

There is another variant of the previous result.

Proposition 3.6. Let c ∈ L1
R+(I, µ), p ∈ L∞R+(I, µ) and α a positive number.

Assume that ∀t ∈ I, p(t) ≤ α +
∫
]0,t[

p(s)c(s)µ(ds). Then for all t in I, p(t) ≤
α exp(

∫
]0,t]

c(s)µ(ds)).
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P r o o f. Assume first that α is strictly positive. Define

∀t ∈ I, f(t) = α+
∫

]0,t]

c(s)p(s)µ(ds),

∀x ∈ ]0,∞[, γ(x) = −Log(x).

Then f is BVRC and Df/dµ = cp. Since γ is continuous and convex on ]0,∞[,
by Moreau–Valadier ([MV2], Theorem 2.5, p. 16-11), γ ◦ f is BV, D(γ ◦ f) is
absolutely continuous with respect to µ and for µ-a.e. t, we have

D(γ ◦ f)
dµ

(t) ≥ sup
{〈

g,
Df

dµ
(t)
〉

: g ∈ ∂γ(f−(t))
}

=
〈
− 1
f−(t)

,
Df

dµ
(t)
〉

= − c(t)p(t)
α+

∫
]0,t[

c(s)p(s)µ(ds)
.

Hence
D(γ ◦ f)

dµ
(t) ≥ −c(t) if p(t) > 0 and

D(γ ◦ f)
dµ

(t) ≥ 0 ≥ −c(t) if p(t) = 0.

So
D(γ ◦ f)

dµ
(f) ≥ −c(t) µ-a.e.

This implies that (γ ◦ f)(t) − (γ ◦ f)(0) ≥ −
∫
]0,t]

c(s)µ(ds) for all t ∈ I. Hence
we obtain

Log
[
α−1

(
α+
∫

]0,t]

c(s)p(s)µ(ds)
)]
≤
∫

]0,t]

c(s)µ(ds).

Consequently,

α−1p(t) ≤ α−1
(
α+
∫

]0,t]

c(s)p(s)µ(ds)
)
≤ exp

( ∫
]0,t]

c(s)µ(ds)
)
,

which is the stated inequality for α > 0.
If α = 0, we have p(t) ≤ ε+

∫
]0,t]

c(s)p(s)µ(ds) for any ε > 0 and any t. Hence

∀t ∈ I, p(t) ≤ ε exp
( ∫

]0,t]

c(s)µ(ds)
)
.

Then p(t) = 0 for all t = I.

We retain the previous notations. Let c ∈ L1
R+(I, µ) and define ω : I ×R+ →

R+ by

ω(t, x) = θ(−µ({t})c(t))c(t)x.
Further, let r : I → R+ with r(0) = 0 and ∀t ∈ ]0, T ], r(t) =

∫
]0,T ]

r′(s)µ(ds)
where r′ ∈ L1

R(I, µ) satisfies r′(t) ≤ ω(t, r(t)) µ-a.e. Then by Proposition 3.3, we
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have

∀t ∈ I, r(t) ≤ r(0) exp
( ∫

]0,t]

c(s)µ(ds)
)
.

Hence r ≡ 0. This leads us to the following definition.

Definition 3.7. Let KAM(I, µ) be the set of all Carathéodory mappings
ω : I × R+ → R+ such that ∀t ∈ I, ω(t, 0) = 0 and that the only function
r : I → R+ with r(0) = 0 satisfying r(t) =

∫
]0,t]

r′(s)µ(ds), ∀t ∈ ]0, T ] where
r′ ∈ L1

R(I, µ) and r′(t) ≤ ω(t, r(t)) µ-a.e., is the function identically equal to zero.
The functions ω ∈ KAM(I, µ) are called Kamke functions.

4. Lower semicontinuity and compactness results. In this section we
recall some useful results on the lower semicontinuity of integral functionals and
on the weak compactness theorems in L1

E .

Definitions 4.1 ([ACV], p. 174). A subset H of L1
E(I, µ) is Rkw(E)-tight if

for any ε > 0 there is a measurable multifunction Lε from I to Rkw(E) such that

∀u ∈ H, µ{t ∈ I : u(t) 6∈ Lε(t)} ≤ ε.
Theorem 4.2 ([Ca1, Ca3], [ACV], Théorème 6). Let H be a bounded uniformly

integrable and Rkw(E)-tight subset of L1
E(I, µ). Then H is relatively weakly com-

pact and if (un)n∈N is a sequence in H, there is a subsequence of (un)n∈N which
is weakly convergent.

Theorem 4.3. Let Γ be a measurable multifunction from I to ck(E) such that
|Γ | is integrable where |Γ |(t) = |Γ (t)| for all t in I. Let∫

I

Γ (t)µ(dt) :=
{ ∫

I

σ(t)µ(dt) : σ ∈ S1
Γ

}
where S1

Γ is the set of integrable selections of Γ . Then
∫
1
Γ (t)µ(dt) is a convex

compact subset of E.

P r o o f. By Theorem 4.2, S1
Γ is convex weakly compact in L1

E(I, µ). Hence∫
I
Γ (t)µ(dt) is convex weakly compact in E. For any x′ in E′, by Strassen’s for-

mula ([CV], Theorem V.14), we have δ∗(x′,
∫
I
Γ (t)µ(dt)) =

∫
I
δ∗(x′, Γ (t))µ(dt).

By our assumption, it follows from Lebesgue’s theorem that δ∗(·,
∫
I
Γ (t)µ(dt))

is continuous on the unit ball B′ of E′ for the topology of compact convergence.
Hence

∫
I
Γ (t)µ(dt) is convex compact.

R e m a r k. Theorem 4.3 is actually valid if Γ is scalarly integrable satisfying
(i) for every g ∈ L∞R (I, µ) and for every scalarly integrable selection f of Γ , the
weak integral

∫
fg dµ belongs to E and (ii) the set {δ∗(x′, Γ ) : x′ ∈ BE′} is

uniformly integrable in L1
R(I, µ).

The following theorem occurs frequently in the proof of convergence of the
approximated solutions in the last section.
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Theorem 4.4. Let (un)n∈N be a bounded uniformly integrable sequence in
L1
E(I, µ). Let (εn)n∈N be a sequence in ]0, 1] with limn→∞ εn = 0 and Γ : I →

ckw(E). Assume that

(∗) ∀n, un(t) ∈ Γ (t) + εnBE µ-a.e.

Then the sequence (un)n∈N is relatively σ(L1, L∞)-compact.

P r o o f. Since limn→∞ εn = 0, it is immediate by the Grothendieck Lemma
([G], p. 296) that the sequence (un(t))n∈N is relatively weakly compact by our
assumption (∗) for almost all t. Since (un)n∈N is bounded and uniformly integrable
in L1

E(I, µ), (un)n∈N is relatively σ(L1, L∞)-compact by Theorem 4.2.

The following lower semicontinuity result will be used later.

Theorem 4.5 ([V], Theorem 3, p. 3.6). Let (un)n∈N be a sequence of mea-
surable function from I to E which converges in measure to u∞. Let (vn)n∈N be
an Rkw(E)-tight sequence in L1

E(I, µ) which converges σ(L1, L∞) to v∞. If ψ
is a Tµ(I) ⊗ B(E) ⊗ B(E)-measurable integrand on I × E × E, lower semicon-
tinuous on E × (E, σ(E,E′)), if ψ(t, u∞(t), ·) is a.e. convex and if the sequence
(ψ(·, un(·), vn(·))−)n∈N is uniformly integrable then∫

I

ψ(t, u∞(t), v∞(t))µ(dt) ≤ lim inf
n→∞

∫
I

ψ(t, un(t), vn(t))µ(dt).

Here is a useful application of Theorem 4.5.

Theorem 4.6. Let F be a multifunction from I × E to the set of nonempty
closed convex subset of E satisfying :

(i) F is Tµ(F )⊗ B(E)-measurable.
(ii) For any t ∈ I, F (t, ·) is scalarly upper semicontinuous.

If (un)n∈N is a sequence of measurable functions from I to E which converges
in measure to u∞, if (vn)n∈N is an Rkw(E)-tight sequence in L1

E(I, µ) which
converges σ(L1, L∞) to v∞, if (An)n∈N is a sequence of measurable sets in I such
that limn→∞ µ(An) = µ(I) and such that for each n ∈ N, vn(t) ∈ F (t, un(t)) for
a.e. t in An, and if the sequence (d(vn(·), F (·, un(·))))n∈N is uniformly integrable,
then

v∞(t) ∈ F (t, u∞(t)) µ-a.e.

P r o o f. By our assumption, the integrand ψ : (t, x, y) 7→ d(y, F (t, x)) is
Tµ(I)⊗B(E)⊗B(E)-measurable and ψ(t, ·, ·) is E× (E, σ(E,E′)) lower semicon-
tinuous and ψ(t, x, ·) is convex. For each n, we have∫

I

d(vn(t), F (t, un(t))µ(dt) =
∫
An

d(vn(t), F (t, un(t))µ(dt)(∗)

+
∫

I\An

d(vn(t), F (t, un(t)))µ(dt).
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Since (d(vn(·), F (·, un(·))))n∈N is uniformly integrable and limn→∞ µ(I \An) = 0,
we get

lim inf
n→∞

∫
I

d(vn(t), F (t, un(t))µ(dt) ≤ 0

since the first integral in (∗) over An is equal to zero. Then by Theorem 4.5 we
obtain∫

I

d(v∞(t), F (t, u∞(t))µ(dt) ≤ lim inf
n→∞

∫
I

d(vn(t), F (t, un(t))µ(dt) ≤ 0.

5. Existence theorem

5.a. BV solutions. Let us introduce some notations:

I = [0, T ], I• = [0, T [,
I+
t,ε = I ∩ [t, t+ ε], I−t,ε = I ∩ [t− ε, t] for t ∈ I and ε > 0.

Let C : I → c(E) be a multifunction and G its graph. Define G• := G∩ [0, T [×E.
For any τ ∈ I and any ε > 0, denote by J−ε ([0, τ ]) (resp. J+

ε ([0, τ ]) the set of all
increasing right continuous (resp. left continuous) functions θ : [0, τ ]→ [0, τ ] such
that θ(0) = 0, θ(τ) = τ and for all t ∈ [0, τ ], θ(t) ∈ [t−ε, t] (resp. θ(t) ∈ [t, t+ε]).
It is obvious that J−ε ([0, τ ]) and J+

ε ([0, τ ]) are nonempty.
Let us recall the following two functions:

χ(t) =
{

(et − 1)/t if t ∈ R \ {0},
1 if t = 0,

χ =
{

(Log(1 + t))/t if t ∈ ]− 1, 0[∪ ]0,+∞[,
1 if t = 0.

Then χ : R → R+∗ and χ : ] − 1,+∞[→ R+∗ are continuous, strictly increasing
and strictly decreasing respectively and such that

χ(]−∞, 0]) = ]0, 1] and χ(]− 1, 0]) = [1,+∞[.

Let g : I → R+ be a measurable function. By obvious properties of χ and χ, it
can be checked that the following two conditions are equivalent

(a) ∀t ∈ I, 0 ≤ µ({t})g(t) < 1 and
∫
I
χ[−µ({t})g(t)]g(t)µ(dt) <∞.

(b) There is c in L1
R+(I, µ) such that ∀t ∈ I, g(t) = χ[−µ({t})c(t)]c(t).

Indeed, it is enough to note that for any positive measurable function c on I, we
have

∀t ∈ I, c(t) = χ[−µ({t})g(t)]g(t)⇔ g(t) = χ[−µ({t})c(t)]c(t).
Our first result is the basic existence of ε-approximated BV and right contin-

uous (BVRC) solutions to the problem (1.1).

Proposition 5.1. Let C : I → c(E) be a multifunction with left closed graph
G, that is, G is closed in [0, T ]g × E. Let c in L1

R+(I, µ) be such that ∀t ∈ I,
0 ≤ µ({t})c(t) < 1 and

∫
I
χ[−µ({t})c(t)]c(t)µ(dt) < ∞. Let F : I × E → ck(E)
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be such that , ∀x ∈ E, F (·, x) is scalarly µ-measurable. Suppose also that the
following conditions are satisfied :

(C.1) ∀(t, x) ∈ I × E, |F (t, x)| ≤ c(t)(1 + ‖x‖).
(C.2) ∀(t, x) ∈ G, infy∈C(t) d(y, x+ µ({t})F (t, x)) = 0.
(C.3) For each (t, x) in G•, each ε > 0, there is (tε, xε) ∈ G such that

0 < tε − t ≤ ε and that

xε − x ∈
∫

]t,tε[

F (s, x)µ(ds) + µ(]t, tε[)εBE .

Then for any x0 ∈ C(0), there exists a constant m > 0 such that for any ε ∈]0, 1],
there are θ ∈ J−ε ([0, T ]) and a BVRC function X : I → E with the following
properties:

(i) ∀t ∈ I, X(t) = x0 +
∫
]0,t]

X ′(s)µ(ds) with X ′ ∈ L1
E(I, µ).

(ii) ∀t ∈ I, X−(θ(t)) ∈ C(θ(t)).
(iii) ‖X ′(t)‖ ≤ mc(t) + 1 µ-a.e.
(iv) X ′(t) ∈ F (t,X−(θ(t)) + εBE µ-a.e.

P r o o f. Let ε > 0 and τ ∈ I. Denote by Pε([0, τ ]) the set of all pairs (θ,X)
where θ belongs to J−ε ([0, τ ]) and X is a mapping from [0, τ ] to E such that

∀t ∈ [0, τ ], X(t) = x0 +
∫

]0,t]

X ′(s)µ(ds) with X ′ ∈ L1
E(I, µ),

∀t ∈ [0, τ ], X−(θ(t)) ∈ C(θ(t))
X ′(t) ∈ F (t,X−(θ(t))) + εBE µ-a.e. t ∈ [0, τ ].

Then for establishing our proposition we need to prove the following assertions:

(A) There is a constant m > 1 such that for any ε ∈]0, 1], any τ ∈ I and any
(θ,X) in Pε([0, τ ]), we have ∀t ∈ [0, τ ], F (t,X−(θ(t))) ⊂ mc(t)BE.

(B) For any ε ∈]0, 1], the set Pε([0, T ]) is not empty.

Let ε ∈]0, 1], τ ∈ I and (θ,X) ∈ Pε([0, τ ]). Clearly X−(θ(·)) belongs to
L∞E (I, µ) and

‖X−(θ(t))‖+ 1 ≤ 1 + ‖x0‖+
∫

]0,θ(t)[

‖X ′(s)‖µ(ds) ≤ 1 + ‖x0‖+
∫

]0,t[

‖X ′(s)‖µ(ds).

By (C.1) and by the definition of Pε([0, τ ]) we have

∀t ∈ [0, τ ], ‖X−(θ(t))‖+1 ≤ 1+‖x0‖+εµ(I)+
∫

]0,t]

c(s)(1+‖X−(θ(s))‖)µ(ds).

It follows from Proposition 3.4 that

∀t ∈ [0, τ ], ‖X−(θ(t))‖+ 1 ≤ (1 + ‖x0‖+ εµ(I)) exp
( ∫
I

g(s)µ(ds)
)
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where ∀t ∈ I, g(t) = χ(−µ({t})c(t))c(t). Set m = (1 + ‖x0‖ + µ(I)) exp(‖g‖1).
Then according to (C.1) we get

∀t ∈ [0, τ ], F (t,X−(θ(t))) ⊂ c(t)(1 + ‖X−(θ(t))‖)BE ⊂ mc(t)BE .
This proves assertion (A).

Let ε ∈]0, 1] and denote by Pε the union of all sets Pε([0, τ ]) for τ ∈ I.
Clearly Pε is not empty. We introduce a partial order in Pε as follows. For any
pair (θi, Xi) in Pε with (θi, Xi) ∈ Pε([0, τi]) (i = 1, 2), let (θ1, X1) ≤ (θ2, X2) if
τ1 ≤ τ2, θ1 = θ2|[0,τ1] and X1 = X2|[0,τ1]. Let C := {(θγ , Xγ) : γ ∈ D} be a chain
(totally ordered subset) in Pε. Let τ = supγ∈D τγ . If there is an element γ̃ in D
such that τ = τγ̃ , then (θγ̃ , Xγ̃) is an upper bound for C. Suppose that, ∀γ ∈ D,
τγ < τ . Define θ : [0, τ ]→ [0, τ ] and X : [0, τ [→ E by

∀γ ∈ D, θ|[0,τγ ] = θγ and θ(τ) = τ,

∀γ ∈ D, X|[0,τγ ] = Xγ .

Then θ belongs to J−ε ([0, τ ]). Now we prove that C admits an upper bound. Choose
a sequence (kn)n∈N in D such that ∀n ∈ N, τkn < τkn+1 and τ = sup τkn . For
any positive integers m < n, we have X ′kn = X ′km µ-a.e. on [0, τkm ]. Let N be a
µ-negligible set such that X ′kn = X ′km for all integers m < n and all t ∈ [0, τkm ]\N .
Then define a mapping X ′ : [0, τ [→ E by ∀n ∈ N, ∀t ∈ [0, τkn ]\N , X ′(t) = X ′kn(t)
and ∀t ∈ N , X ′(t) = 0. Clearly X ′ is measurable and ‖X ′(t)‖ ≤ mc(t) + 1 µ-a.e.
thanks to (A). Then we have

∀t ∈ [0, τ [, X(t) = x0 +
∫

]0,t]

X ′(s)µ(ds),

∀t ∈ [0, τ [, X−(θ(t)) ∈ C(θ(t)),
X ′(t) ∈ F (t,X ′(θ(t)) + εBE µ-a.e. on [0, τ [.

Let

X−(t) = x0 +
∫

]0,t[

X ′(s)µ(ds), ∀t ∈ [0, τ ].

Then for (t, t′) in [0, τ [2 with t < t′, we have

‖X−(t′)−X−(t)‖ ≤
∫

[t,t′[

(mc(s) + 1)µ(ds).

It follows that the left limit, u, of t 7→ X−(t) at τ exists and we have

u = lim
t→τ
t<τ

(
x0 +
∫

]0,t[

X ′(s)µ(ds)
)

= lim
n→∞

(
x0 +

∫
]0,τkn [

X ′(s)µ(ds)
)
.

Since X−(τkn) ∈ C(τkn) and G is left closed, (τ, u) ∈ G. Now we extend X ′ and
X to [0, τ ] (without changing the notations) so that the previous relations hold
for [0, τ ]. If µ({τ}) = 0, define X ′(τ) = 0 and X(τ) = u. Then X(τ) = x0 +∫
]0,τ ]

X ′(s)µ(ds) and X−(τ) = u ∈ C(τ) and also X ′(t) ∈ F (t,X−(θ(t))) + εBE
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µ-a.e. on [0, τ ]. Assume now that µ({τ}) > 0. Thanks to condition (C.2), choose
yε ∈ C(τ) such that

d(yε, u+ µ({τ})F (τ, u)) < µ({τ})ε.
Define X ′(τ) := 1

µ({τ}) (yε − u) and X(τ) = yε. Then

X(τ) = u+ µ({τ})X ′(τ) = x0 +
∫

]0,τ [

X ′(s)µ(ds) + µ({τ})X ′(τ)

= x0 +
∫

]0,τ ]

X ′(s)µ(ds),

so that X−(τ) = u ∈ C(τ). Moreover, we have

d(X ′(τ), F (τ,X−(τ)) = d

(
yε − u
µ({τ})

, F (τ, u)
)

=
1

µ({τ})
d(yε, u+ µ({τ})F (τ, u)) < ε,

that is, X ′(τ) ∈ F (τ,X−(τ)) + εBE . Hence we can extend (θ,X) to [0, τ ] in such
a way that (θ,X) belongs to Pε([0, τ ]). Obviously (θ,X) is an upper bound for C.
Then by Zorn’s lemma, (Pε,≤) admits a maximal element (θε, Xε) ∈ Pε([0, τε])
with τε ∈ I.

To finish the proof we need to show that τε = T . Assume the contrary, that
is, τε < T . Choose δε > 0 with δε < inf(ε, T − τε). According to (C.3), there are
(τ̃ , x̃) ∈ G and an integrable selection Y of the multifunction F (·, X−ε (τε)) and
ỹ ∈ εBE such that τε < τ̃ ≤ τε + δε and

x̃−X−(τε) =
∫

]τε,τ̃ [

Y (s)µ(ds) + µ(]τε, τ̃ [)ỹ.

According to (C.2) there exists z̃ ∈ C(τ̃) such that z̃ ∈ x̃ + µ({τ̃})F (τ̃ , x̃) +
µ({τ̃})εBE . Take w̃ ∈ F (τ̃ , x̃) + εBE such that z̃ = x̃ + µ({τ̃})w̃. Now define
θ̃ : [0, τ̃ ]→ [0, τ̃ ], X̃ : [0, τ̃ ]→ E and X̃ ′ : [0, τ̃ ]→ E as follows:

θ̃(t) =

 θε(t) for t ∈ [0, τε],
τε for t ∈]τε, τ̃ [,
τ̃ for t = τ̃ ,

X̃(t) =


Xε(t) for t ∈ [0, τε],
X−ε (τε) +

∫
]τε,t]

(Y (s) + ỹ)µ(ds) for t ∈]τε, τ̃ [,
z̃ for t = τ̃ ,

X̃ ′(t) =

{
X ′ε(t) for t ∈ [0, τε],
Y (t) + ỹ for t ∈]τε, τ̃ [,
w̃ for t = τ̃ .

Then it is easy to check that (θ̃, X̃) ∈ Pε([0, τ̃ ]). This contradicts the fact that
(θε, Xε) is maximal.
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The main use of ε-approximated BVRC solutions to the existence of BVRC
solutions for (1.1) is the convergence of ε-approximated solutions by our next
proposition.

Proposition 5.2. Let C : I → c(E) be a multifunction with left closed
graph G. Let c in L1

R+(I, µ) be such that ∀t ∈ I, 0 ≤ µ({t})c(t) < 1 and∫
I
χ(−µ({t})c(t))c(t)µ(dt) < ∞. Let Γ : I → ck(E) be a scalarly measurable

multifunction such that , for all t, Γ (t) ⊂ c(t)BE. Let F : I × E → ck(E) be a
scalarly Tµ ⊗ B(E)-measurable multifunction such that for each t ∈ I, F (t, ·) is
upper semicontinuous. Suppose that the following conditions are satisfied :

(C.1) ∀(t, x) ∈ I × E, F (t, x) ⊂ (1 + ‖x‖)Γ (t).
(C.2) ∀(t, x) ∈ G, infy∈C(t) d(y, x+ µ({t})F (t, x)) = 0.
(C.3) For each (t, x) ∈ G• and each ε > 0 there is (tε, xε) ∈ G such that

0 < tε − t ≤ ε and that
xε − x ∈

∫
]t,tε[

F (s, x)µ(ds) + µ(]t, tε[)εBE .

Then for any x0 ∈ C(0), there is a BVRC X : I → E with the following properties:

∀t ∈ I, X(t) = x0 +
∫

]0,t]

X ′(s)µ(ds)

with X ′ ∈ L1
E(I, µ), ∀t ∈ I, X−(t) ∈ C(t) and X ′(t) ∈ F (t,X−(t)) µ-a.e.

P r o o f. Let (εn)n∈N be a decreasing sequence in ]0, 1] with limn→∞ εn = 0.
By Proposition 5.1, there are a constant m > 1, a sequence (θn)n∈N with θn ∈
J−εn(I), ∀n, and a sequence (Xn)n∈N of mappings from I to E satisfying ∀t ∈ I,
Xn(t) = x0+

∫
]0,t]

X ′n(s)µ(ds) with X ′n ∈ L1
E(I, µ), ∀t ∈ I, X−n (θn(t)) ∈ C(θn(t)),

X ′n(t) ∈ F (t,X−n (θn(t))) + εnBE µ-a.e. with

‖X ′n(t)‖ ≤ mc(t) + 1 µ-a.e.,

where m = (1 + ‖x0‖ + µ(I)) exp(‖g‖1) and g(t) = χ(−µ({t})c(t))c(t), ∀t ∈ I.
Now we prove the following main fact: For any t ∈ I, the sequence (Xn(t))n∈N is
relatively compact in E and the sequence (X ′n)n∈N is relatively weakly compact
in L1

E(I, µ).
By (C.1) we have for a.e. t,

X ′n(t) ∈ F (t,X−n (θn(t)) + εnBE ⊂ (1 + ‖X−n (θn(t))‖)Γ (t) + εnBE

⊂ mΓ (t) + εnBE ⊂ (mc(t) + 1)Be

by the proof of (A) in Proposition 5.1. Since limn→∞ εn = 0 and mΓ (t) is com-
pact, it follows from Theorem 4.4 that the sequence (X ′n) is relatively weakly
compact. Moreover, by Theorem 4.3, for any t in I, the integral

∫
]0,t]

Γ (s)µ(ds)
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is convex and compact in E and

Xn(t) = x0 +
∫

]0,t]

X ′n(s)µ(ds) ∈ x0 +m
∫

]0,t]

Γ (s)µ(ds) + εnµ(I)BE

for all n ∈ N. Since limn→∞ εn = 0, it is immediate that the sequence (Xn(t))n∈N
is relatively compact. Without loss of generality we can suppose that (X ′n)n con-
verges to X ′ for σ(L1, L∞). Define X(t) = x0 +

∫
]0,t]

X ′(s)µ(ds), ∀t. Then for
any t, (Xn(t))n∈N converges to X(t) for σ(E,E′). Since the sequence (Xn(t))n∈N
is relatively compact, we have limn→∞Xn(t) = X(t) for the norm topology. Also
we have limn→∞X−n (t) = X−(t), ∀t, for the norm topology. An easy computation
gives

‖X−n (t)−X−n (θn(t))‖ ≤
∫

[θn(t),t[

(mc(s) + 1)µ(ds)

for all t ∈ I. Hence limn→∞ ‖X−n (t)−X−n (θn(t))‖ = 0. So

lim
n→∞

X−n (θn(t)) = lim
n→∞

X−n (t)

= lim
n→∞

(
x0 +
∫

]0,t[

X ′n(s)µ(ds)
)

= x0 +
∫

]0,t[

X ′(s)µ(ds).

Since X−n (θn(t)) ∈ C(θn(t)) and G is left closed, we have X−(t) ∈ C(t). It
remains to show that X ′(t) ∈ F (t,X−(t)) for a.e. t. Observe that F is Tµ⊗B(E)-
measurable, so the previous inclusion follows directly from Theorem 4.6. Indeed,
set for (t, x, y) ∈ I × E × E, ψ(t, x, y) = d(y, F (t, x)). Then it is obvious that ψ
satisfies the assumptions of Theorem 4.5. Since X ′n(t) ∈ F (t,X−n (θn(t)) + εnBE
µ-a.e., this implies that

ψ(t,X−n (θn(t)), X ′n(t)) ≤ εn ≤ 1

for all n ∈ N and µ-a.e t in I. Hence

lim inf
n→∞

∫
I

ψ(t,X−n (θn(t)), X ′n(t))µ(dt) ≤ 0.

Since limn→∞X ′n(θn(t)) = X−(t) for all t ∈ I, and limn→∞X ′n = X ′ for
σ(L1, L∞), by Theorem 5.4, we obtain∫

I

ψ(t,X−(t), X(t)µ(dt) ≤ lim inf
n→∞

∫
I

ψ(t,X ′n(θn(t)), X ′n(t))µ(dt).

Hence d(X ′(t), F (t,X−(t)) = 0 µ-a.e. This ends the proof.

R e m a r k 5.3. The global measurability assumption on F can be weakened.
Indeed, one can replace this assumption by the following: For any measurable
mapping X : I → E, the multifunction t 7→ F (t,X(t)) is scalarly measurable. In
fact, we only need to show that X ′(t) ∈ F (t,X−(t)) µ-a.e. Let (e′k)k∈N be a dense
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sequence in E′ for the Mackey topology. For any measurable A in I, and for any
k ∈ N, we have∫

A

〈e′k, X ′(t)〉µ(dt) = lim
n→∞

∫
n→∞

〈e′k, X ′n(t)〉µ(dt)

≤ lim sup
n→∞

∫
A

δ∗(e′k, X
−
n (θn(t)))µ(dt)

≤
∫
A

lim sup
n→∞

δ∗(e′k, F (t,X−n (θn(t))))µ(dt)

by Fatou’s lemma because we have the estimate

F (t,X−n (θn(t))) ⊂ (1 + ‖X−n (θn(t))‖)Γ (t) ⊂ mcBE
for all t ∈ I and all n ∈ N. By the upper semicontinuity of F (t, ·), we get∫

A

〈e′k, X ′(t)〉µ(dt) ≤
∫
A

δ∗(e′k, F (t,X−(t)))µ(dt).

Equivalently, X ′(t) ∈ F (t,X−(t)) µ-a.e.

R e m a r k 5.4. If E is Rd, one can only suppose that F is separately mea-
surable and separately upper semicontinuous. Indeed, by the Mazur lemma and
by the upper semicontinuity of Φ(t, ·, ·) := (x, r) 7→ F (t, x) + rBE from E × [0, 1]
to ck(Rd) for fixed t in I, it is immediate that X ′(t) ∈ F (t,X−(t)) µ-a.e. since we
have X ′n(t) ∈ Φ(t,X−n (θn(t)), εn) µ-a.e. with limn→∞X−n (θn(t)) = X−(t), ∀t ∈ I,
limn→∞ εn = 0, and X ′n → X ′ for σ(L1, L∞).

Proposition 5.2 considers the existence of BVRC solutions for (1.1) when F is
scalarly Tµ ⊗ B(E)-measurable with F (t, ·) upper semicontinuous on E and the
graph of the constraint C is left closed. Now we present an analogous result for
the case where the graph G of the constraint C is right closed and F is globally
upper semicontinuous.

Proposition 5.5. Let C : I → c(E) be a multifunction such that the graph
G of C is right closed (that is, G is closed in [0, T ]d × E). Let c be a positive
number , F : G→ ck(E) an upper semicontinuous multifunction and ω a Kamke
function. Assume that the following two conditions are satisfied :

(C.1) For each ε > 0, each (t, x) in G•, and each t′ ∈ I+
t,ε, there is x′ ∈ C(t′)

such that
x′ − x ∈ µ(]t, t′])[(F (t′, x′) ∩ cBE) + εBE ].

(C.2) For µ-a.e. t in I and for all bounded subsets B of E, one has
inf
δ>0

α[F (G ∩ (I+
t,δ ×B)) ∩ cBE ] ≤ ω(t, α(B)).

Then for any x0 ∈ C(0) there is a BVRC mapping X : I → E with the following
properties:
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(i) ∀t ∈ I, X(t) = x0 +
∫
]0,t]

X ′(s)µ(ds) with X ′ ∈ L1
E(I, µ).

(ii) ∀t ∈ I, X(t) ∈ C(t).
(iii) X ′(t) ∈ F (t,X(t)) µ-a.e.

P r o o f. Let (εn)n∈N be a decreasing sequence in ]0, 1] such that limn→∞ εn
= 0. For each n ∈ N, consider a subdivision

0 = tn0 < tn1 < . . . < tnνn = T

such that tni − tni−1 ≤ εn for i = 1, . . . , νn. According to (C.1) there is a sequence
(xni )0≤i≤νn such that

(5.5.1) xn0 = x0, (tni , x
n
i ) ∈ G for i = 0, . . . , νn,

(5.5.2) xni − xni−1 ∈ µ(]tni−1, t
n
i ])[(F (tni , x

n
i ) ∩ cBE) + εnBE ] for 1 ≤ i ≤ νn.

For each 1 ≤ i ≤ νn, there is yni such that yni ∈ (F (tni , x
n
i ) ∩ BE) + εnBE and

that xni − xni−1 = µ(]tni−1, t
n
i ])yni . Define the functions θn : I → I, X ′n : I → E

and Xn : I → E by

θn(0) = 0, θn(t) = tni if t ∈]tni−1, t
n
i ], 1 ≤ i ≤ νn,

X ′n(0) = yn1 , X ′n(t) = yni if t ∈]tni−1, t
n
i ], 1 ≤ i ≤ νn,

Xn(0) = x0, Xn(t) = xni−1 + µ(]tni−1, t])y
n
i if t ∈]tni−1, t

n
i ], 1 ≤ i ≤ νn.

Then θn is increasing with 0 ≤ θn(t)− t < εn and Xn is BVRC which satisfies

(5.5.3) Xn(t) = x0 +
∫

]0,t]

X ′n(s)µ(ds), ∀t ∈ I,

(5.5.4) (θn(t), Xn(θn(t))) ∈ G, ∀t ∈ I,
(5.5.5) X ′n(t) ∈ F (θn(t), Xn(θn(t)) ∩ cBE µ-a.e.

Now to complete the proof we need to show the convergence of the sequence
(Xn)n∈N of approximate BVRC solutions by our basic result in the following
proposition.

Proposition 5.6. Let the assumptions of Proposition 5.5 be fulfilled. Let
x0 ∈ C(0). Let (Xn)n∈N and (X ′n)n∈N be two sequences of mappings from I to E
satisfying the following three conditions:

(a) ∀t ∈ I, Xn(t) = x0 +
∫
]0,t]

X ′n(s)µ(ds) with X ′n ∈ L1
E(I, µ).

(b) ∀n ∈ N, ∀t ∈ I, (θn(t), Xn(θn))) ∈ G.
(c) X ′n(t) ∈ [F (θn(t), Xn(θn(t))) ∩ cBE ] + εnBE µ-a.e.

Then there are a mapping X : I → E and a mapping X ′ ∈ L1
E(I, µ), a subse-

quence (Xnk) of (Xn), and a subsequence (X ′nk) of (X ′n) such that (Xnk) converges
pointwise to X and (X ′nk) weakly converges to X ′ in L1

E(I, µ). Further X is a
BVRC solution for (1.1).
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P r o o f. By assumption (a) and (c), we have

(5.6.1) ‖Xn(t)−Xn(t′)‖ ≤
∫

]t,t′]

‖X ′n(s)‖µ(ds) ≤ (c+ 1)µ(]t, t′])

for all n ∈ N and all (t, t′) ∈ I × I with t ≤ t′. For each t ∈ I, define

A0(t) := {Xn(t) : n ∈ N} and %(t) = α(A0(t)).

Then A0(t) is relatively compact for all t in I if and only if the function % is
identically equal to zero. For (t, t′) ∈ I × I with t ≤ t′, we have

A0(t′) ⊂ A0(t) + {Xn(t′)−Xn(t) : n ∈ N}.

Then by (5.6.1) it follows that

A0(t′) ⊂ A0(t) + (c+ 1)µ(]t, t′])BE .

Hence we get

α(A0(t′)) ≤ α(A0(t)) + 2(c+ 1)µ(]t, t′]).

That is, %(t′) ≤ %(t) + 2(c+ 1)µ(]t, t′]) and analogously

%(t) ≤ %(t′) + 2(c+ 1)µ(]t, t′]),

so that |%(t)−%(t′)| ≤ 2(c+ 1)µ(]t, t′]) for all (t, t′) in I× I with t ≤ t′. Therefore
% is a BVRC function on I and its differential measure D% satisfies D%(]t, t′]) ≤
2(c+ 1)µ(]t, t′]) and D%({0}) = %+(0)− %(0) = 0. Then it follows from Moreau–
Valadier ([MV2], lemme 2.3) that

|D%| ≤ 2(c+ 1)µ.

By Radon–Nikodym’s theorem, D% admits a density %̇ := D%/dµ ∈ L1
R(I, µ) with

respect to µ. Moreover, by virtue of a result due to Jeffery ([J], Theorem 5, p. 655
and Theorem 9, p. 662), see also ([EJ], Theorem 3.2, p. 228) there is a µ-negligible
set N such that

(5.6.2) %̇(t) = lim
ε→0+

D%[t, t+ ε]
µ[t, t+ ε]

, ∀t ∈ I \N.

By (C.2) we can suppose that

inf
δ>0

α[F (G ∩ (I+
t,δ ×B)) ∩ cBE ] ≤ ω(t, α(B))

whenever t ∈ I \N and B ∈ b(E). Now we prove the following main fact:

(5.6.3) %̇(t) ≤ ω(t, %(t)) µ-a.e. on I.

If t = 0 and if µ({0}) > 0, then %̇(0) = (%(0)−%(0))/µ({0}) = 0. Let t ∈]0, T [ \N .
Let ε > 0 and h > 0 with [t, t+ h] ⊂ I. Define

Bt,h = A0(I+
t,h) =

⋃
s∈I+

t,h

A0(s).
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Then Bt,h is obviously bounded in E. By (C.2) and (5.6.2) we can choose δε ∈
]0, h/2[ such that

(5.6.4) α[F (G ∩ (I+
t.2δ ×Bt,h)) ∩ cBE)] ≤ ω(t, Bt,h) + ε,

(5.6.5) %̇(t) ≤ %(t+ δ)− %−(t)
µ([t, t+ δ])

+ ε

whenever δ ∈]0, δε].
Now fix δ ∈]0, δε] and set

Xn(t) =
{
Xk(t+ δ)−X−k (δ)

µ([t, t+ δ])
: k ≥ n

}
.

Take p ∈ N such that n ≥ p implies εn ≤ δ. We have by easy properties of the
measure of noncompactness

%(t+ δ) ≤ α{Xn(t+ δ)−X−n (t) : n ∈ N}+ α{X−n (t)−Xn(t′) : n ∈ N}
+ α{Xn(t′) : n ∈ N}.

Hence we have the estimate

%(t+ δ) ≤ µ([t, t+ δ])α(Xp(t)) + %(t′) + α[{X−n (t)−Xn(t′) : n : N}].

Since ‖X−n (t)−Xn(t′)‖ ≤ (c+ 1)µ(]t′, t[) for all n ∈ N and for 0 ≤ t′ < t, we get

(5.6.6) %(t+ δ) ≤ %(t′) + µ(]t, t+ δ])α(Xp(t)) + 2(c+ 1)µ(]t′, t[)

for t′ ≤ t. Then by taking the limit of the second member of (5.6.6) as t′ → t−

we obtain

(5.6.7) %(t+ δ) ≤ %−(t) + µ(]t, t+ δ])α(Xp(t)).

Therefore it follows from (5.6.5) that

(5.6.8) %̇(t) ≤ α(Xp(t)) + ε.

Now we estimate α(Xp(t)) by the mean value theorem. We have

Xp(t) ⊂
⋃
n≥p

coX ′n(t)([t, t+ δ])

⊂
⋃
n≥p

co
[ ⋃
s∈[t,t+δ]

(F (θn(s), Xn(θn(s))) ∩ cBE) + εnBE

]
according to condition (c). Note that for n ≥ p and s ∈ [t, t+ δ], we have

εn ≤ δ and t ≤ θn(t) ≤ θn(s) ≤ θn(t+ δ) ≤ t+ δ + εn ≤ t+ 2δ.

Hence, for n ≥ p,⋃
s∈[t,t+δ]

(F (θn(s), Xn(θn(s))) ∩ cBE) + εnBE

⊂ [F (G ∩ (I+
t,2δ ×Bt,h)) ∩ cBE ] + δBE
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because Xn(θn(s)) ∈ Bt,2δ ⊂ Bt,h for all s ∈ [t, t+ δ]. This shows that

Xp(t) ⊂ co[(F (G ∩ (I+
t,2δ ×Bt,h)) ∩ cBE) + δBE ].

Hence

(5.6.9) α(Xp(t)) ≤ α[F (G ∩ (I+
t,2δ ×Bt,h)) ∩ cBE ] + 2δ.

Then by (5.6.4) and (5.6.9) we get

(5.6.10) α(Xp(t)) ≤ ω(t, α(Bt,h)) + ε+ 2δ.

Also by (5.6.8) and (5.6.10), we have

(5.6.11) %̇(t) ≤ ω(t, α(Bt,h)) + 2ε+ h.

Now by the definition of Bt,h and (5.6.1), it is easily seen that

A0(t) ⊂ Bt,h ⊂ A0(t) + (c+ 1)µ(]t, t+ h])BE .

Hence
%(t) ≤ α(Bt,h) ≤ %(t) + 2(c+ 1)µ(]t, t+ h])

so that limh→0+ α(Bt,h) = %(t). Finally, by (5.6.11) we obtain

%̇(t) ≤ ω(t, %(t))

as ε→ 0+ and h→ 0+. Now it remains to prove that (5.6.3) is valid for t = T if
µ({T}) > 0, that is, %̇(T ) ≤ ω(T, %(T )). By condition (C.2) we have

inf
δ>0

α[F (G ∩ (I+
T,δ ×A0(T ))) ∩ cBE ] ≤ ω(T, α(A0(T ))).

Since I+
T,δ = {T} and α(A0(T )) = %(T ), we have

(5.6.12) α[F ({T} ×A0(T )) ∩ cBE ] ≤ ω(T, α(A0(T ))) = ω(T, %(T )).

Recall that %̇(T ) = (%(T )− %−(T ))/µ({T}). Moreover, for all t ∈ [0, T [, we have

%(T ) ≤ α{Xn(T )−X−n (T ) : n ∈ N}
+ α{X−n (T )−Xn(t) : n ∈ N}+ α{Xn(t) : n ∈ N}

so that

%(T ) ≤ α{µ({T})X ′n(T ) : n ∈ N}+ 2(c+ 1)µ(]t, T [) + %(t).

Then as t→ T−, it follows that

%(T ) ≤ α{µ({T})X ′n(T ) : n ∈ N}+ %−(T ).

This implies

(5.6.13) %̇(T ) =
%(T )− %−(T )

µ({T})
≤ α{X−n (T ) : n ∈ N}.

By (c) for any integer m ∈ N, we have

{X ′n(T ) : n ≥ m} ⊂
⋃
n≥m

[(F (T,Xn(T )) ∩ cBE) + εnBE ].
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Set ε′m = supn≥m εn. Then

(5.6.14) {X ′n(T ) : n ≥ m} ⊂ [F ({T} ×A0(T )) ∩BE ] + ε′mBE .

Then by (5.6.12), (5.6.13) and (5.6.14) we obtain

%̇(T ) ≤ α[F ({T} ×A0(T )) ∩ cBE ] + 2ε′n ≤ ω(T, α(A0(T ))) + 2ε′m.

As ε′m → 0, %̇(T ) ≤ ω(T, α(A0(T )) as desired. Since %(0) = α({x0}) = 0 and since
ω is a Kamke function, we have % ≡ 0. This shows that A0(t) = {Xn(t) : n ∈ N}
is relatively compact for all t ∈ I. Now we check that (X ′n)n∈N is relatively
σ(L1, L∞)-compact. By (5.6.1), we have

Xn(θn(t)) ∈ A0(t) + (c+ 1)µ(]t, θn(t)]BE

for all n ∈ N and all t ∈ I. Since limn→∞ µ(]t, θn(t)] = 0 for all t ∈ I, and A0(t) is
relatively compact, it is immediate that {Xn(θn(t)) : n ∈ N} is relatively compact
too, for all t ∈ I. For each t ∈ I, set K(t) = {θn(t), Xn(θn(t))) : n ∈ N}. Then the
multifunction t 7→ K(t) is obviously measurable with nonempty compact values
in G. Since F : G→ ck(E) is upper semicontinuous, t 7→ F (K(t)) is a measurable
multifunction from I to k(E). Now by (c) we haveX ′n(t) ∈ F (K(t))∩cBE)+εnBE
µ-a.e.; then a fortiori we have

X ′n(t) ∈ co[F (K(t)) ∩ cBE ] + εnBE µ-a.e.

Since coF (K(·)) is measurable too, it follows from Theorem 4.4 that (X ′n) is
relatively σ(L1, L∞)-compact. Now it is easy to finish the proof. We can suppose
that (X ′n) converges to X ′ for σ(L1, L∞) so that, for all t ∈ I, we have

lim
n→∞

x0 +
∫

]0,t]

X ′n(s) ds = x0 +
∫

]0,t]

X ′(s)µ(ds)

for σ(E,E′). Since A0(t) = {Xn(t) : n ∈ N} is relatively compact for all t ∈ I, it
follows that, ∀t ∈ I, limn→∞Xn(t) = X(t) for the norm topology where X(t) =
x0 +

∫
]0,t]

X ′(s)µ(ds). Now for (t, x) in G, set

F̃ (t, x) = F (t, x) ∩ cBE .

Then F̃ is upper semicontinuous on its domain D̃ ⊂ G and by (c), for µ-a.e. t ∈ I,
K(t) ⊂ D̃. Note that for all t in I, limn→∞ θn(t) = t and limn→∞Xn(θn(t)) =
limn→∞Xn(t) = X(t) since ‖Xn(θn(t)) − Xn(t)‖ ≤ (c + 1)µ(]t, θn(t)]. Then
limn→∞(θn(t), Xn(θn(t))) = (t,X(t)) ∈ G since G is right closed. For any mea-
surable set A ⊂ I and any x′ ∈ E, we have∫

A

〈x′, X ′(t)〉µ(dt) = lim
n→∞

∫
A

〈x′, X ′n(s)〉µ(ds)

≤ lim sup
n→∞

∫
A

δ∗(x′, F̃ (θn(t), Xn(θn(t))))µ(dt)
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≤
∫
A

lim sup
n→∞

δ∗(x′, F̃ (θn(t), Xn(θn(t))))µ(dt)

≤
∫
A

δ∗(x′, F̃ (t,X(t)))µ(dt).

This inequality shows that X ′(t) ∈ F̃ (t,X(t)) µ-a.e. and finishes the proof.

5.b. Absolutely continuous solutions. In this section λ is the Lebesgue measure
on I. There are analoguous results for the existence of absolutely continuous
solutions for (1.1). We need first a preliminary lemma.

Lemma 5.7. Let g : I → R+ be an integrable function and let J be a measurable
subset in I. Then for λ-a.e. t in J , one has

lim
δ→0+

1
δ

∫
[t−δ,t]∩(I\J)

g(s) ds = 0.

P r o o f. Let us consider the function f : t 7→ 1I\J(t)g(t) on I and the measure
ν := fλ. In view of a result due to Jeffery [J], for λ-a.e. t in I, we have

f(t) =
dν

dλ
(t) = lim

ε→0
ε>0

ν[t− ε, t]
ε

= lim
ε→0+

1
ε

∫
[t−ε,t]∩(I\J)

g(s) ds.

Hence the desired result follows by noting that f(t) = 0 for all t in J .

Proposition 5.8. Let C : I → c(E) be a multifunction such that its graph
G is left closed. Let F : I × E → ck(E) be a scalarly Tλ(I) ⊗ B(E)-measurable
multifunction such that for any t ∈ I, F (t, ·) is upper semicontinuous on E. Let
ω ∈ Kam(I, λ). Suppose that the following three conditions are satisfied :

(C.1) There is c ∈ L1
R+(I, λ) such that

∀(t, x) ∈ I × E, |F (t, x)| ≤ c(t)(1 + ‖x‖)
(C.2) For each ε > 0, there is a closed set Jε ⊂ I with λ(I \ Jε) ≤ ε such that

for λ-a.e. t in Jε and for any nonempty bounded subset B of E, one has
inf
δ>0

α[F (I−t,δ ×B)] ≤ ω(t, α(B))

where I−t,δ = Jε ∩ [t− δ, t].
(C.3) For each (t, x) ∈ G• and each ε > 0, there is (tε, xε) ∈ G such that

0 < tε − t ≤ ε and that xε − x ∈
∫ tε
t
F (s, x) ds+ (tε − t)εBE.

Then for any x0 ∈ C(0), there is an absolutely continuous solution X of (1.1)
with X(0) = x0.

P r o o f. Let (εn)n∈N be a decreasing sequence in ]0, 1] such that limn→∞ εn
= 0. In view of Proposition 5.1, there are m > 1, a sequence (θn)n∈N with
θn ∈ J−εn(I) and a sequence (Xn)n∈N of absolutely continuous functions with the
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following properties:

(5.8.1) ∀t ∈ I, Xn(t) = x0 +
t∫

0

(X ′n(s) ds where X ′n ∈ L1
E(I, λ),

(5.8.2) ∀t ∈ I, Xn(θn(t)) ∈ C(θn(t)),
(5.8.3) X ′n(t) ∈ F (t,Xn(θn(t)) + εnBn λ-a.e.,
(5.8.4) ‖X ′n(t)‖ ≤ mc(t) + 1 λ-a.e.

Then (Xn)n∈N is an equicontinuous subset of CE([0, T ]. For each t ∈ I, set

A0(t) = {Xn(t) : n ∈ N} and %(t) = α(A0(t)).

We shall prove that (Xn)n∈N is relatively compact in CE([0, T ]). By Ascoli’s the-
orem, it is enough to show that A0(t) is relatively compact for any t in I. So it is
equivalent to show that the function % is identically equal to zero. For (t, t′) ∈ I×I
with t ≤ t′, we have

A0(t′) ⊂ A0(t) + {Xn(t′)−Xn(t) : n ∈ N}.

By (5.8.4), we have

{Xn(t′)−Xn(t) : n ∈ N} ⊂
( t′∫
t

g(s) ds
)
BE

where g(t) = mc(t) + 1, ∀t ∈ I. Hence A0(t′) ⊂ A0(t) + (
∫ t′
t
gs ds)BE . It fol-

lows that α(A0(t′)) ≤ α(A0(t)) + 2
∫ t′
t
g(s) ds. Then %(t′) ≤ %(t) + 2

∫ t′
t
g(s) ds.

Consequently,

∀(t, t′) ∈ I × I, t ≤ t′, |%(t′)− %(t)| ≤ 2
t′∫
t

g(s) ds.

It follows that % is absolutely continuous. Let %̇ be the Radon–Nikodym density of
% with respect to the Lebesgue measure λ. Take η > 0. Then by our assumption
(C.2), Jeffery’s theorem [J] and Lemma 5.7, there are a closed set Jη ⊂ I with
λ(I − Jη) ≤ η and a negligible set Nη ⊂ Jη such that

(5.8.5) inf
δ>0

α[F (Jη ∩ [t− δ, t]×B])] ≤ ω(t, α(B))

whenever (t, B) ∈ (Jη \Nη)× b(E).

(5.8.6) ∀t ∈ Jη \Nη, %̇(t) = lim
δ→0+

%(t)− %(t− δ)
δ

,

(5.8.7) ∀t ∈ Jη \Nη, lim
δ→0+

1
δ

∫
[t−δ,δ]∩(I\Jη)

g(s) ds = 0.

Now let t ∈ Jη \ Nη with t 6= 0. Let h > 0 with [t − h, h] ⊂ I. Set Bt,h =⋃
s∈[t−h,h]A0(s) and note that Bt,h is bounded by (5.8.4). Let ε > 0. By (5.8.5),
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(5.8.6) and (5.8.7) there is δε ∈]0, h/2] such that

(5.8.8) α[F (I−t,δ ×Bt,h)] ≤ ω(t, α(Bt,h)) + ε where I−t,δ = Jη ∩ [t− δ, t],

(5.8.9) %̇(t) ≤ 1
δ

(%(t)− %(t− δ)) + ε

(5.8.10)
1
δ

∫
[t−δ,t]∩(I\Jη)

g(s) ds ≤ ε

whenever 0 < δ ≤ δε. Now take δ ∈ ]0, δε] and choose n0 ∈ N such that n ≥ n0

implies εn ≤ δ. Set

Xn(t) =
{

1
δ

(Xk(t)−Xk(t− δ)) : k ≥ n
}
, n ∈ N.

Then A0(t) ⊂ A0(t− δ) + δX0(t) and

α(A0(t)) ≤ α(A0(t− δ)) + δα(X0(t)) = α(A0(t− δ)) + δα(Xn0(t)).

This implies %(t) ≤ %(t− δ) + δα(Xn0(t)). By (5.8.9) we get

(5.8.11) %̇(t) ≤ α(Xn0(t)) + ε.

Further, by the mean value theorem, we have

Xn0(t) ⊂
( ⋃
n≥n0

coX ′n([t− δ, t] ∩ Jη)
)

+
{

1
δ

∫
[t−δ,t]∩(I\Jη)

X ′n(s) ds : n ≥ N0

}

⊂
( ⋃
n≥n0

coX ′n([t− δ, t] ∩ Jη)
)

+
(

1
δ

∫
[t−δ,t]∩(I\Jη)

g(s) ds
)
BE .

Then by (5.8.10), we have

Xn0(t) ⊂
( ⋃
n≥n0

coX ′n([t− δ, t] ∩ Jη)
)

+ εBE .

Hence α(Xn0(t)) ≤ α(
⋃
n≥n0

coX ′n([t− δ, t] ∩ Jη) + 2ε.
By (5.8.3) we have

∀n ≥ n0, coX ′n([t− δ, t] ∩ Jη) ⊂ co
[ ⋃
s∈[t−δ,t]∩Jη

F (s,Xn(θn(s))) + εnBE

]
.

Note that ∀n ≥ n0, ∀s ∈ [t− δ, t], εn ≤ δ and

t− 2δ ≤ t− δ − εn ≤ θn(t− δ) ≤ θn(s) ≤ t,
so θn(s) ∈ [t − 2δ, t] ⊂ [t − h, t] and Xn(θn(s)) ∈ Bt,h. Therefore for n ≥ n0 we
have

coX ′n([t− δ, t] ∩ Jη) ⊂ co[F (I−t,δ ×Bt,h) + δBE ],
so that, using (5.8.8), we get

α(Xn0(t)) ≤ α(coF (I−t,δ ×Bt,h)) + 2δ + 2ε(5.8.12)

= α(F (I−t,δ ×Bt,h)) + 2δ + 2ε ≤ ω(t, α(Bt,h)) + h+ 3ε.
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Further, it easy to check that

A0(t) ⊂ Bt,h ⊂ A0(t) +
( t∫
t−h

g(s) ds
)
BE .

Hence

%(t) ≤ α(Bt,h) ≤ %(t) + 2
t∫

t−h

g(s) ds.

It follows that limh→0+ α(Bt,h) = %(t).
By using (5.8.11) and (5.8.12), we obtain

%̇(t) ≤ ω(t, α(Bt,h)) + h+ 4ε.

Then as h→ 0+ and ε→ 0+, we get

%̇(t) ≤ ω(t, %(t))

for all t ∈ Jη \Nη and t 6= 0.
Let Ω = {t ∈ [0, T ] : %̇(t) ≤ ω(t, %(t))}. Then Ω is measurable and by previous

arguments, for every η > 0, there are a closed set Jη ⊂ I with λ(I \ Jη) ≤ η
and a negligible set Nη ⊂ I such that Jη \ (Nη ∪ {0}) ⊂ Ω. Therefore I \ Ω ⊂
(I \ Jη)∪Nη ∪ {0} so that λ(I \Ω) ≤ λ(I \ Jη) + λ(Nη) ≤ η. Hence λ(I \Ω) = 0
and %̇(t) ≤ ω(t, %(t)) λ-a.e. Since %(0) = α({x0}) = 0 and ω is a Kamke function,
% is identically equal to zero. It follows that (Xn)n∈N is relatively compact in
CE([0, T ]), in particular, for each t∈I, A0(t) is relatively compact. Since we have

∀n ∈ N, Xn(θn(t)) ∈ A0(t) +
( t∫
θn(t)

g(s) ds
)
BE

and limn→∞
∫ t
θn(t)

g(s) ds = 0, the set A′0(t) := {Xn(θn(t)) : n ∈ N} is relatively
compact for all t in I. By our assumption, F (t, ·) is upper semicontinuous with
convex compact values. It follows that F (t, A′0(t)) is compact for all t in I. Further,
by (5.8.3), we have

∀n ∈ N, X ′n(t) ∈ F (t, A′0(t)) + εnBE .

Since (X ′n)n∈N is uniformly integrable, by Theorem 4.4, we see that (X ′n)n∈N is
relatively compact for σ(L1, L∞) topology. Therefore there are X ∈ CE(I), X ′ ∈
L1
E(I, λ) and a subsequence (X ′nk)k∈N of (X ′n)n∈N such that (Xnk)k∈N convergs

to X in CE(I) and (X ′nk)k∈N converges to X ′ in L1
E(I, λ) for σ(L1, L∞) topology

with ∀t ∈ I, X(t) = x0 +
∫ t
0
X ′(s) ds. But it is already proved that

∀t ∈ I, lim
n→∞

‖Xn(t)−Xn(θn(t))‖ = 0.

So that limk→∞Xnk(θnk(t)) = X(t) for all t in I. Since the graph G of C is left
closed, by (5.8.2), we have (t,X(t)) ∈ G. Now the inclusion X ′(t) ∈ F (t,X(t))
λ-a.e. follows from (5.8.3) and the arguments of the proof of Proposition 5.2. See
also Remarks 5.3 and 5.4.
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Publ. Math. Univ. Pau, 1987.

[Ma] R. H. Mart in, Nonlinear Operators and Differential Equations in Banach Spaces,
Krieger, Malabar, Fla., 1987.
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